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Two non-boolean methods are discussed for modeling context in behavioral data and

theory. The first is based on intuitionistic logic, which is similar to classical logic except

that not every event has a complement. Its probability theory is also similar to classical

probability theory except that the definition of probability function needs to be generalized

to unions of events instead of applying only to unions of disjoint events. The generalization

is needed, because intuitionistic event spaces may not contain enough disjoint events

for the classical definition to be effective. The second method develops a version of

quantum logic for its underlying probability theory. It differs from Hilbert space logic used

in quantum mechanics as a foundation for quantum probability theory in variety of ways.

John von Neumann and others have commented about the lack of a relative frequency

approach and a rational foundation for this probability theory. This article argues that its

version of quantum probability theory does not have such issues. The method based on

intuitionistic logic is useful for modeling cognitive interpretations that vary with context,

for example, the mood of the decision maker, the context produced by the influence of

other items in a choice experiment, etc. The method based on this article’s quantum

logic is useful for modeling probabilities across contexts, for example, how probabilities

of events from different experiments are related.

Keywords: non-boolean methods, Hilbert space, intuitionistic logic, quantum logic, event lattices

1. INTRODUCTION

Probability functions are special kind of functions on event algebras. Following Birkhoff and von
Neumann [1], a lattice event algebra is a structure of the form,

X = 〈X ,⊆,⋒,⋓,X,∅〉 ,

where X is a nonempty set, X is a set of subsets of X, ⊆ is the set-theoretic subset relation, X and
the empty set ∅ are in X , and for all A and B in X , A ⋒ B is the ⊆-least upper bound in X of A
and B, and A ⋓ B is the ⊆-greatest lower bound in X of A and B. X is said to be complemented if
and only if for all A in X there exists a B in X , called the complement of A, such that A ⋒ B = X
and A ⋓ B = ∅. (Throughout this article, ⋒ and ⋓ will always denote, respectively, the⊆-least upper
bound and ⊆-greatest lower bound operators on some collection of sets. The complement of A will
often be denoted by A⊥.) A special kind of lattice event algebra has been used throughout science
and mathematics to describe the domain of finitely additive probability functions. It is where
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X = 〈X ,∪,∩,−,X,∅〉

i.e., where ⋒ = set-theoretic union, ∪, ⋓ = set-theoretic
intersection, ∩, and set-theoretic complementation, −, is a
complementation operation for X. This special event algebra is
called a set-theoretic boolean algebra.

Probability theory began in the seventeenth century with the
study of gambling games. Part of the assumptions underlying
such games was that the occurrence of each event that was the
basis of a wager could be determined to have happened or could
be determined not to have happened. The non-happening of
an event A was viewed as the occurrence of another event, the
complement of A, −A. Ambiguous or indefinite outcomes were
not allowed. In the nineteenth century Boole formulated the
logical structure underlying such gambling situations as a set-
theoretic boolean algebra. One principle of this algebra is the Law
of the Excluded Middle: For each event A, either A happens or
−A happens, or in algebraic notation, A ∪ −A = X, where X is
the sure event. Another is the Distributive Law, for all A, B, C,
A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).

During the late 1920s to early 1930s, the validity of the Law
of the Excluded Middle and the Distributive Law were called
into question as general logical principles: The mathematician
Brouwer concluded that the Law of the Excluded Middle was
improper for some kinds of mathematical inference, and the
mathematician von Neumann found the Distributive Law to be
too restrictive for the structure of events in quantum physics.
Both Brouwer and von Neumann constructed new logics that
generalized boolean algebras.

Brouwer’s logic became known as intuitionistic logic. This
article uses the special form of it that is a topology open sets.
Brouwer developed his intuitionistic logic for philosophical
considerations in the foundations of mathematics. Here
intuitionistic logic is used for entirely different purposes: It has
a more flexible algebraic structure than boolean algebras, and
this flexibility is exploited to described how context can affect
probability in organized manners.

2. TOPOLOGICAL ALGEBRA OF EVENTS

T = 〈T ,∪,∩, –̇ ,X,∅〉 is said to be a topological algebra if and
only if T is a topology of open subsets with universal set X, and
for each A in T ,

–̇A is the⊆-largest element of T that is in X − A,

that is,

–̇A =
⋃

B∩A=∅

B .

–̇A is called the pseudo complement of A. For the special case
where T is a boolean algebra (and thus each element of T is both
an open and closed set), –̇ is set-theoretic complementation, −.
A “topological probability function” is defined on T as follows:

Definition 1. A topological probability function P is a
function from T into the closed interval [0,1] of the reals
such that for all A and B in T ,

• P(X) = 1,P(∅) = 0,
• if A ⊆ B then P(A) ≤ P(B), and
• topological finite additivity: P(A ∪ B) = P(A) + P(B) −

P(A ∩ B) .

If T is a boolean algebra, then topological finite additivity is
logically equivalent to the usual concept of finite additivity for
probability functions. In this article, a finitely additive probability
function on a set-theoretic boolean algebra is called a boolean
probability function.

A topology with a topological probability function is a
generalization of a set-theoretic boolean algebra with a finitely
additive probability function. Topologies are much richer
algebraically than boolean algebras, and this richness is useful for
describing probabilistic concepts that are difficult or impossible
to formulate in a boolean algebra, for example, various concepts
of ambiguity, vagueness, and incompleteness. This article uses
topologies to formulate a specific concept of “context” that
applies to some decision situations. This is done through the use
of properties of the pseudo complementation operation –̇ .

Definition 2. Let T = 〈T ,∪,∩, –̇ ,X,∅〉 be a topological
algebra. Then A in T is said to be a refutation if and only
if there exists a B in T such that A = –̇ B.

One interpretation of –̇ is based on the operations of
“verification” and “refutation” used in the philosophy of science.
For this interpretation, an underlying empirical domain is
assumed along with a scientific theory about its events. An event
is said to be “verified” if its occurrence is empirically verified or
it is a direct consequence of the underlying theory. An event
A is said to be “refuted” if and only if the assumption of its
occurrence is inconsistent with known facts and theory about its
occurrence. Event A can be refuted by verifying an event B such
that A ∩ B = ∅. A can also be refuted by showing its occurrence
is inconsistent with known verifiable events and fundamental
tenets of the theory underlying the empirical domain. Under this
interpretation, the refutation of A is the largest open set S in the
topology that refutes A. It follows that A ∩ S = ∅ and thus
S = –̇A. The refutation of –̇A, –̇ –̇A, is the largest open set T
that refutes –̇A. Because A ∩ –̇A = ∅, A refutes –̇A. However,
is often the case that –̇ –̇A is not verifiable—i.e., it is only the case
that –̇A is refutable. In such a situation A ⊂ –̇ –̇A. Because of
this, it is often the case that for verifiable A, A∪ –̇A is not the sure
event. This reflects that in most cases that verifiability should not
be identified with truth and refutation with falsehood.

Refutations play a different role in defining context for
topological algebras. Their key properties for this are given in the
following theorem.

Theorem 1. Let T = 〈T ,∪,∩, –̇ ,X,∅〉 be a topological algebra.
Then the following six statements hold for all A and B in X .

1. if A ⊆ B then –̇ B ⊆ –̇ A .
2. A ⊆ –̇ –̇ A .
3. –̇ A = –̇ –̇ –̇ A .
4. –̇ (A ∪ B) = –̇ A ∩ –̇ B and –̇ A ∪ –̇ B ⊆ –̇ (A ∩ B) .
5. A ∩ B = ∅ iff (–̇ –̇ A ∩ –̇ –̇ B = ∅) .
6. There does not exists C in X such that A ⊂ –̇ C ⊂ –̇ –̇ A .
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Proof. Statements 1–4 follow from Theorem 3.13 of Narens
[2]. Statements 5 and 6 follow from Theorem 8 of Narens [3].

The key difference between set-theoretic boolean algebras and
topological algebras is that in set-theoretic boolean algebras

B = −− B

for all B in the algebra, whereas for topological algebras that are
not boolean it can be shown that there exist events A and D such
that

A ⊂ D ⊂ –̇ –̇A . (1)

By Statement 5 of Theorem 1, such a D in Equation 1 cannot be a
refutation.

Let T = 〈T ,∪,∩, –̇ ,X,∅〉 be a topological algebra. Define
≡ on T as follows: For all A and B in T , A ≡ B if and only if
–̇ –̇A = –̇ –̇B. Then ≡ is an equivalence relation on T , and
each ≡-class is called a contextual class. The ≡-class to which A
belongs,A≡, is called the contextual class for A.Note ifA∩B = ∅,
thenA and B belong to different contextual classes by Statement 5
of Theorem 1.

In psychology, context viewed as an operation that changes
an event’s interpretation. This is often done in formalizations by
making a distinction between a description of an event E (gamble,
etc.) given in an instruction and the interpretation of that
description in a context C, EC , that can vary with instructions,
emotional states, or other forms of context.

The contextual classes of a topological algebra are highly
structured. In particular, each contextual class A≡ has a ⊆-
maximal element, the refutation –̇ –̇A, and that these maximal
elements form the following boolean algebra.

Theorem 2. Define⊎ on the set of refutationsR as follows: For all
A and B inR, A ⊎ B = –̇ –̇ (A ∪ B). Then

R = 〈R,⊎,∩, –̇ ,X,∅〉

is a boolean lattice, that is, for all A, B, C in R, A ∩ (B ⊎ C) =

(A ∩ B) ⊎ (A ∩ C).
Proof. Theorem 3.16 of Narens [2].

In general R is not a set-theoretic boolean algebra, because there
may exists an element A inR such that A∪ –̇A is a proper subset
of X. When –̇A∪A = X for all A inR,R is called a stone algebra,
and it can be shown that –̇ = − onR, that is,R is a set-theoretic
boolean algebra. Stone algebras are useful in applications, because
a topological probability function P on a stone algebra T is also
a finitely additive probability function on R, and for each A
in T , P(–̇ –̇A) can be viewed as the upper boolean probability
of the topological probabilities of the events in the contextual
class A≡.

There are many ways contextual classes can be used in
psychology. One way is to provide generalizations of the standard
theory for rational decision making, SEU (Subjective Expected
Utility.) For gambling situations, SEU assumes a gamble g =

(a1,A1 · · · an,An) is composed of a series of terms of the form

ai,Ai, where ai,Ai stands for receiving outcome ai if the event
Ai occurs, and where

⋃n
i= 1 Ai is a partition of the sure event

X. In determining the utility of gambles in SEU, the subjective
probability P(Ai) of Ai is independent of the outcome ai across
gambles. That is, SEU requires that if bi,Ai is a term in another
gamble h that partitions X, then P(Ai) is also the probability
assigned to Ai in the computation of h. Some in the literature
have question whether this is a valid rationality principle. In any
case, one might want to investigate psychological models where
such independence is violated. This is done in a model of Narens
[3] called “DSEU” (“Descriptive Subjective Expected Utility”). In
DSEU, the nature of the outcome a in a term a,A can influence
the implied subjective judgment of the probability of the event
A, e.g., where a is a catastrophe such as losing one’s life vs. a
is winning $5. Narens models the various interpretations of an
event occurring in different gambles as events in a contextual
class of a topological algebra. Strong disjointness (i.e., –̇ –̇C ∩

–̇ –̇D) guarantees that contextual interpretations of gambles
remain gambles. Narens [3] shows that subjective judgments
of the utilities of the contextual interpretations of gambles and
their associated subjective probability of events are rational
in the sense that there is a SEU model that has a submodel
that is isomorphic to the judgments made on the subjective
interpretations of gambles. The existence of such a submodel
shows that any irrationality observed in the DSEU model by
standard tests (e.g., making a Dutch Book) will transfer to SEU,
making SEU irrational by such tests, which is impossible by
known results.

3. A BEHAVIORAL QUANTUM
PROBABILITY THEORY

3.1. Orthomodular Event Lattices
In making decisions involving probabilistic phenomena, people’s
behavior often violate economic and philosophic principles
of rationality. Various theories in economics and psychology
have been developed to account for these violations, Prospect
Theory of Kahneman and Tversky [4] being currently the most
influential. Almost always the accounts assumed an underlying
boolean algebra of events. The deviations from SEU are modeled
by changing or generalizing characteristics of a finitely additive
probability function. Relatively recently, a different approach
has been taken: Change the event space to accommodate the
violations of economic and philosophic rationality. Topological
event spaces of the previous section are one example of such
an approach. More commonly in the literature are modeling
techniques inspired by von Neumann’s approach to quantum
mechanics, for example, Busemeyer and Bruza [5].

In his classic Mathematische Grundlagen der
Quantenmechanik, von Neumann [6] modeled probabilistic
quantum phenomena using closed subspaces of a Hilbert space
as events. The seminal article by Birkhoff and von Neumann
[1], “The Logic of Quantum Mechanics,” isolated the algebraic
properties of the event spaces that von Neumann thought
underly the probability theory inherent in quantum phenomena.
The logic consisted of the following:
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• A lattice event algebra X = 〈X ,⊆,⋒,⋓,⊥ ,X,∅〉 with a
complementation operation ⊥.

• ⊥ satisfies the properties of DeMorgan’s Laws, that is, for all
A and B in X ,

(A ⋒ B)⊥ = A⊥
⋓ B⊥ and (A ⋓ B)⊥ = A⊥

⋒ B⊥ . (2)

A complementation operation that satisfies DeMorgan’s
Laws is called an othrocomplementation operation.

• X satisfies themodular law, that is for all A, B, and C in X ,

if B ⊆ A then B ⋒ (A ⋓ C) = (B ⋒ A) ⋓ (B ⋒ C) .

For lattice algebras, the modular law is a generalization of the
distributive law, B ⋒ (A ⋓ C) = (B ⋒ A) ⋓ (B ⋒ C). Thus,
the von Birkhoff-von Neumann logic is a generalization of a
boolean lattice algebra, that is, of an orthocomplemented lattice
algebra satisfying the above distributive law. It applies to the
lattice algebra of all subspaces of a finite dimensional Hilbert
space. However, as Husimi [7] pointed out, the lattice algebra
of closed subspaces of an infinite dimensional Hilbert space
does not satisfy the modular law. He suggested replacing the
modular law with the following consequence of it that he called
the orthomodular law: For all A, B, C,

if B ⊆ A then A = B ⋒ (B⊥ ⋓ A) .

Today, Husimi’s suggestion won out and the term quantum logic
applies to lattice event algebras with orthocomplementation
satisfying the orthomodular law. In this article, lattice
terminology is used instead, and such lattices are called
orthomodular lattices.

In psychology, ideas derived from quantum mechanics have
been implemented in various ways, from borrowing methods
that assume some physics, to using only Hilbert space probability
theory, to using only orthomodular lattices. All of these have
foundational issues:Why shouldmethods based on physical laws,
e.g., methods based on the conservation of energy, apply to
psychology? How does one derive the geometrical properties of
Hilbert space used in quantum probability from psychological
considerations? What does orthomodularity have to do with how
experiments are designed and conducted? To my knowledge,
the first two questions has not been adequately addressed in the
literature. This article makes some progress on the third.

3.2. Counterfactuals in Behavioral
Experiments
The behavioral modeling described in this section concerns a
simplified experimental situation. It differs from a similar model
presented in Narens [8] in that minor errors and ambiguities in
the construction of that model are eliminated and the material is
presented in a more clear manner. The version presented here is
also more general.

The assumed simplified situation makes for easier
mathematical modeling and philosophical analysis, which
are the principal goals of this article. The cost for this is a
loss of realism and a design that may require much larger

numbers of subjects than is practical for usual psychological
experimentation.

The experimental situation under consideration has a large
population of subjects, where each is put into exactly one of
a finite number of experiments. In psychology, this is called a
between-subject paradigm.

Each experiment has a finite, nonempty set of choices—called
outcomes—and each of an experiment’s subjects must choose
exactly one of the experiment’s outcomes. Different experiments
are assumed to have different outcomes. Thus, each outcome
occurs only in one experiment.

To simplify the presentation, only a specific case involving two
experiments is considered throughout most of this article. The
definitions, concepts, and methods of proof developed for this
specific case are formulated in manners so that they generalize
to the case of finitely many experiments. Such a generalization is
briefly discussed in Section 3.5.

The (experimental) paradigm (P) has two experiments, (A)
and (B). Experiment (A) has a set of 3 outcomes, OA = {a, b, c},
and experiment (B) has a set of 3 outcomes, OB = {d, e, f }.
(P), which spans (A) and (B), has the set six outcomes, O =

{a, b, c, d, e, f }. The set of (P)’s subjects, S , is randomly divided in
half, with one of the halves participating in (A) and the other in
(B). In each experiment, the identity of each subject is recorded
along with the outcome she chose. Thus, the number of subjects,
N, and the number Nx of subjects who chose outcome x, x =

a, b, c, d, e, f , are known. This is the collected data of (P).
Paradigm (P) also has a theory that connects its experiments

(A) and (B). This connection is described counterfactually, for
example,

If subject s in experiment (A) chose an outcome in event E in the

power-set ℘(OA) ofOA were instead originally put in experiment

(B), then she would have chosen an outcome in event F in the

power-set ℘(OB) ofOB.

Such counterfactuals exist only in theory, not in data: For a
subject s who chose some outcome of E in ℘(OA) and E 6= OA

in experiment (A), it is not possible to determine from (P)’s
data alone whether or not s’s choice would have been in F ∈

℘(OB), where in experiment (B), F 6= OB and F 6= ∅. Such a
determination must be a consequence of the theory posited by
paradigm (P).

Definition 3. Let s be a subject in paradigm (P) and o be
an outcome in O. Then s is said to have actually chosen o
if and only if o is an outcome in an experiment of (P), s is
a subject in that experiment, and s chose o. s is said to have
counterfactually chosen o if and only if

(i) s is a subject in (A), o is an outcome in (B) and s would have
chosen o if she were placed in (B) instead of (A), or

(ii) s is a subject in (B), o is an outcome in (A) and s would
have chosen o if she were placed in (A) instead of (B).

Let E be an event in ℘(O). Then s is said to have
paradigmatically chosen E if and only if s actually chose
some element of E or s counterfactually chose some element
of E.
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Theoretical assumptions of (P). The following three theoretical
assumptions are made about (P):

(T1) Each subject in S paradigmatically choses exactly one
outcome from each of (P)’s experiments; and each of (P)’s
outcomes is paradigmatically chosen by some subject in S .

(T2) Each subject who actually chose the outcome c in OA =

{a, b, c} would have counterfactually chosen the outcome d
in OB = {d, e, f }, and each subject who actually chose the
outcome d in OB would have counterfactually chosen the
outcome c inOA.

(T3) For x = a, b, c, d, e, f , let ≪ x ≫ be the set of (P)’s subjects
that paradigmatically chose x. Then for y = a, b and z =

e, f ,≪ y ≫ 6⊆ ≪ z ≫ and ≪ z ≫ 6⊆ ≪ y ≫. (Note by
(T2) that≪ c≫ = ≪ d≫.)

(T1) is a general theoretical assumption that extends to
paradigms having finitely many experiments. (T2) and (T3) are
theoretical assumptions that are specific to properties of (P).
Section 3.5 describes modified versions of them that apply more
widely to paradigms having finitely many experiments.

By assumption, OA ∩ OB = ∅. However, there are situations
where outcomes in OA and OB are needed to be identified.
This accomplished through the use of counterfactual statements.
Assumption (T2) above is an example of this: For the purposes of
analysis and drawing conclusions about (P), it counterfactually
identifies c and d as being the same outcome.

The following notation and concepts are useful.

Definition 4. The following notation is used throughout this
article.

• < E > is the set of all subjects s of (P) who actually chose
some element e in E.

• ≪ E≫ is the set of all subjects s of (P) who paradigmatically
chose some element e in E.

• | < E > | is the number of subjects in < E >.
• | ≪ E ≫ | is the number of subjects in≪ E≫.

The following definition provides a method for identifying events
across experiments.

Definition 5. Throughout this article for each G ⊆ O, σ (G)
denotes the event in ℘(O) such that G ⊆ σ (G) and for
each of (P)’s subjects p, if p has a paradigmatic choice in
G then all of her paradigmatic choices are in σ (G). (From
the latter, it follows that she has no paradigmatic choices
in O − σ (G).) H is said to be a proposition if and only if
for some K and H = σ (K). Such a H is also called the
proposition associated with K. Note that for each K in℘(O),
the proposition associated with K, σ (K), exists.

Notation For each H ∈ ℘(O), let < −H > =< O − H > and
− < H > = < O > − < H >.

The following lemma is a simple consequence of Definition 5.

Lemma 1. Let H be the proposition. Then< −H > = − < H >.
Proof. Each subject p makes one unique actual choice. If this

choice is in −H then p is in < −H > and therefore pmust be in

− < H >, i.e., < −H > ⊆ − < H >. If p is in − < H >, then
her actual choice is in−H, i.e.,− < H > ⊆ < −H >.

Definition 6. The following notation is used throughout this
article:

• For each event F in℘(O), F is the proposition associated with
F.

• o for an outcome inO is the proposition associated with {o}.
• It follows from (P)’s assumptions that c = d = the proposition

associated with {c, d}. Throughout this article, let k stand for
the proposition associated with {c, d}. Thus, c = d = k.

• P stands for the set of propositions in ℘(O).

Elements of P are described later in Figure 1.
It follows fromP ’s theory and data that∅ is a proposition and

O is a proposition.
It will be shown that the proposition a is {a, e, f }.
{a} ⊆ {a, e, f }. Because each subject paradigmatically selects

exactly one outcome in OA, it follows that b /∈ a and c /∈ a,
and thus by assumption (T2), d /∈ a. By assumption (T1) each
subject who paradigmatically chooses some element of a must
also paradigmatically choose some element in OB. This element
cannot be d. Therefore, it is either e or f . If it is e, then another
subject who paradigmatically chose a must have chosen f , for
otherwise a ⊆ e, contradicting assumption (T3). Similarly if a
subject who chose an element of a paradigmatically chose f , then
another subject who paradigmatically chose and element of a
must have paradigmatically chosen e. Thus, it has been shown
that a = {a, e, f }. Similarly b = {b, e, f }. Note that

a ∩ b = {e, f } .

However {e, f } is not a proposition. Note that the proposition that
is the⊆-greatest-lower bound of a and b is the empty set, ∅∅∅.

Definition 7. Let E and F be, respectively, the propositions
associated with E and F. Then the following definitions
hold:

• E⊥⊥⊥ = σ (< −E >) .
• E ⋒ F = σ (< E > ∪ < F >) .
• E ⋓ F = σ (< E > ∩ < F >).

Note by Lemma 1 and the meanings of “< >” and “∪” that for all
E and F in ℘(O),

< −E > = − < E > and < E > ∪ < F > = < E ∪ F > .
(3)

Lemma 2. Let C, D, and E, respectively be, respectively,
propositions associated with C, D, and E. ThenC⊥⊥⊥ is a proposition,
C = C⊥⊥⊥⊥⊥⊥, and D ⊆ E iff E⊥⊥⊥ ⊆ D⊥⊥⊥.

Proof. C⊥⊥⊥ = σ (C) is a proposition by Definition 7.
By Equation (3),

C⊥⊥⊥⊥⊥⊥ = σ [< −(C⊥⊥⊥) >] = σ [− < C⊥⊥⊥ >] = σ [− < −C >]

= σ [−− < C >] = σ [< C >] = C .

Because
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D ⊆ E iff < D > ⊆ < E >

iff σ (< D >) ⊆ σ (E)

iff D ⊆ E

and

D ⊆ E iff − < E > ⊆ − < D >

iff σ (< −E >) ⊆ σ (−D)

iff E⊥⊥⊥ ⊆ D⊥⊥⊥ ,

it follows thatD ⊆ E iff E⊥⊥⊥ ⊆ D⊥⊥⊥.

Lemma 3. ⋒ is the⊆-least upper bound operation on P .
Proof. Let F and G, respectively, be propositions associated

with F and G. Then, because

< F > ∪ < G > = < F ∪ G > ,

it follows that

F ⋒ G = σ (< F ∪ G >)

and therefore F ⋒ G is a proposition. Then

F = σ (< F >) ⊆ σ (< F > ∪ < G >)

and

G = σ (< G >) ⊆ σ (< F > ∪ < G >) ,

making F ⋒ G an upper bound of F and G. Suppose H is the
proposition associated with H and is such that F ⊆ H and
G ⊆ H. Then

< F > ⊆ < H > and < G > ⊆ < H > .

Thus

< F > ∪ < G > ⊆ < H > ,

and therefore,

F ⋒ G = σ (< F > ∪ < G >) ⊆ σ (< H >) = H ,

showing that F ⋒ G is the least upper bound of F and G.

Lemma 4. ⋓ is the ⊆-greatest lower bound operation on P .
Proof. Let F and G, respectively, be propositions associated with
F andG. Then, because< F > ∩ < G > = < F∩G >, it follows
that

F ⋓ G = σ (< F ∩ G >)

and therefore F ⋓ G is a proposition. Thus,

F = σ (< F >) ⊇ σ (< F > ∩ < G >) = F ⋓ G

and

G = σ (< G >) ⊇ σ (< F > ∩ < G >) = F ⋓ G ,

making F⋓G a lower bound of F andG. Suppose the proposition
H associated with H is such that

< F > ⊇ < H > and < G > ⊇ < H > .

Then < F > ⊇ < H > and < G > ⊇ < H >, and thus

< F > ∩ < G > ⊇ < H > ,

and therefore,

F ⋓ G = σ (< F > ∩ < G >) = σ (H) = H ,

showing that F ⋓ G is the greatest lower bound of F and G.

Lemma 5. P = 〈P ,⋒,⋓,⊥⊥⊥,O,∅∅∅〉 is a complemented lattice
event algebra.

Proof. O is clearly the⊆-largest element ofP and∅∅∅ is clearly
the⊆-smallest element of P .

Because, by Lemmas 3 and Lemma 4,⋒ and⋓ are, respectively,
the ⊆-least upper bound and ⊆-greatest lower bound operators
on P , P is a lattice event algebra. The following shows that⊥⊥⊥ is a
complementation operation on P.

Let E and F, respectively, be the propositions associated with
E and F. Then, by E⊥⊥⊥ = σ (−E) and Equation (3),

E ⋒ E⊥⊥⊥ = σ (< E) > ∪ < −E) >)

= σ (< E > ∪ − < E >) = σ (< O >) = O,

and

E ⋓ E⊥⊥⊥ = σ (< E) > ∩ < −E) >)

= σ (< E > ∩ − < E >) = σ (< ∅ >) = ∅∅∅,

Lemma 6. The complemented lattice event algebra P =

〈P ,⋒,⋓,⊥⊥⊥,O,∅∅∅〉 satisfies DeMorgan’s Laws.
Proof. It is a well-known result of lattice theory (e.g.,

Theorem 2.14 of [2]) that DeMorgan’s Laws for P are equivalent
to the following: For all E and F in P ,

E⊥⊥⊥⊥⊥⊥ = E and (E ⊆ F iff F⊥⊥⊥ ⊆ E⊥⊥⊥) . (4)

Equation (4) follows from Lemma 2.

The above lemmas show that the description of the
experimental situation gives rise to an orthocomplemented
lattice. Aerts and Gabora [9] have a similar result for a different
psychological paradigm: They show that their empirical data is
representable as an orthocomplemented lattice that they imbed
in a Hilbert space.

Theorem 3 given later shows that P = 〈P ,⋒,⋓,⊥⊥⊥,O,∅∅∅〉 also
satisfies the Orthomodular Law. The proof, which generalizes to
a wide class of paradigms with finitely many experiments, uses a
probability function that is defined on the set ofP’s propositions.
The probability theory for this function is developed in the
following two sections.
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3.3. Probability Theory for P
Definition 8. Throughout the rest of this article, let P be the
following function on P : For each E in P ,

P(E) =
| < E > |

| < O > |
.

P is called (P)’s propositional probability function.

The following is the intended interpretation of P: For each
proposition E in P , P(E) is the probability that a randomly
chosen paradigm subject actually chose some outcome e in E. If
the subjects in < E > are known through data and theory, then
the value of P(E) completely computable from data.

Propositions E that span experiments are necessarily partially
based on counterfactuals. Because of this, they are theoretical in
nature. Nevertheless, as discussed at the end of Section 3, for
paradigm (P), P’s value for a proposition F is estimable from data
to a good approximation. As discussed at the end of Section 3
this is not generally true of other paradigms. However, for the
special case where a proposition comes from one of a paradigm’s
experiments it is generally true by an analog of the following
argument given for (P).

Because of the large numbers of subjects participating in (P)’s
experiments and the way they were randomly assigned in equal
numbers to each of (P)’s experiments, it follows that for each E in
℘(OA),

| < E > | ≈ | < E⋆ > | ,

where ≈ stands for “approximately” and | < E⋆ > | for
“the number of subjects in (B) that counterfactually chose some
outcome in E.” Thus, for E in ℘(OA),

P(E) =
| < E > |

| < O > |
=

| < E > | + | < E⋆ > |

| < O > |
≈

2| < E > |

| < O > |
,

which is computable since | < E > | and | < O > | are known
from data.

Thus for each proposition E in ℘(OA) and similarly for
each proposition F in ℘(OB), P(E) and P(F) are estimable to
a good approximation from data. For G ∈ ℘(O) where G

spans experiments can be more complicated. For such spanning
propositions, theoretical assumptions as well as data are needed
to calculate P’s probabilities. As discussed at the end of Section 3,
this is possible for paradigm (P) but may not be possible for other
paradigms where the the theory may not complete enough to
estimate all spanning propositions.

3.4. Logical and Probabilistic Structure of
Orthomodular Event Lattices
Figure 1 is a Hasse diagram of the lattice P = 〈P ,⋒,⋓,O,∅〉.
The set-theoretic boolean algebra generated by O has 26 = 64
elements. The elements at the bottom of Figure 1 but above ∅∅∅

are called atoms. They are lattice elements E such that there
there does not exist a lattice element F such that ∅ ⊂ F ⊂ E.
Figure 1 has 5 atoms, a, b, k, e, f . The set-theoretic boolean
algebra generated by these atoms has 25 = 32 elements. P has
12 elements—a substantial reduction from 64 or 32.

FIGURE 1 | Hasse diagram for P = 〈P ,⋒,⋓,⊥⊥⊥,O,∅∅∅〉. ⊆ corresponds to

elements of P (nodes) being directly connected by edges to higher elements

(higher nodes).

In Figure 1, the lattice-theoretic intersection ⋓ of atoms, e.g.,
a ⋓ f, is the proposition ∅∅∅. This is a consequence of assumption
(T3).

The following concepts are useful for the understanding of the
structure of orthomodular lattices.

Definition 9. X = 〈X ,⋒,⋓,⊥ ,X,∅〉 is said to be an
ortholattice if and only if X is a complemented lattice event
algebra satisfying DeMorgan’s Laws.

Definition 10. Let X = 〈X ,⋒,⋓,⊥ ,X,∅〉 be an
ortholattice. Then the following definitions hold.

1. Events C and D in X are said to be orthogonal, in symbols,
C ⊥ D if and only if C ⊆ D⊥.

2. Q is said to be an orthoprobability function onX if and only
if

• Q is a function from X into the real interval [0,1];
• Q(X) = 1 and Q(∅) = 0; and
• for all C and D in X , if C ⊥ D then Q(C ⋒ D) = Q(C) +

C(D).

Q is said to be⊂-monotonic if and only if for all C and D in
X , if C ⊂ D then Q(C) < Q(D).

3. An event lattice of the form Y = 〈Y ,⋒,⋓,⊥ ,X,∅〉 where
Y ⊆ X is said to be a subalgebra of X. Note that Y has
the same ⊆-maximal and minimal elements, X and ∅, as
X, and that the operations of Y are the restrictions of the
operations of X to Y .

4. A complemented lattice event algebra Z = 〈Z ,⋒,⋓,⊥ ,X,∅〉

is said to be an O6 subalgebra of X if and only there exist F
and G in Z such that the following two statements hold:
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• Z = {∅, F,G, F⊥,G⊥,X} and
• ∅ ⊂ F ⊂ G ⊂ X and ∅ ⊂ G⊥ ⊂ F⊥ ⊂ X .

Figure 2 shows a Hasse diagram of an O6 subalgebra of X

when X is a set of propositions.

Lemma 7. Suppose X = 〈X ,⋒,⋓,⊥ ,X,∅〉 is an ortholattice that
has no O6 subalgebra. Then X is orthomodular.

Proof. Theorem 2 (pp. 22–23) of Kalmbach [10]. (Also
Theorem 2.25 of [2].)

Lemma 8. P is a⊂-monotonic orthoprobability function on P =

〈P ,⋒,⋓,⊥⊥⊥,O,∅∅∅〉.
Proof. Suppose F andG are arbitrary elements of P such that

G ⊆ F⊥⊥⊥. We first show

< F ⋒ G > = < F > ∪ < G > . (5)

It is immediate that < F > ⊆ < F ⋒ G > and < G > ⊆ <

F ⋒ G >. Thus,

< F > ∪ < G > ⊆ < F ⋒ G > . (6)

Suppose s is in

< F ⋒ G > = < σ (F ∪ G) > = < σ (F) ∪ σ (G) > .

Then s is in σ (F) or s is in σ (G). Without loss of generality,
suppose s is in σ (F) = F. Then

< F ⋒ G > ⊆ < F > ∪ < G > , (7)

and Equation (5) follows from Equations (6) and (7).
By the definitions of “proposition” and “⊥⊥⊥” and Equation (3),

< F⊥⊥⊥ > = < −F > = − < F >. Thus, < F > ∩ < F⊥⊥⊥ >

= ∅, and therefore, because G ⊆ F⊥⊥⊥, < F > ∩ < G > = ∅.
Thus,

< F ⋒ G > = < F > ∪ < G > = < F > + < G > .

Therefore,

FIGURE 2 | O6 subalgebra.

P(F ⋒ G) =
| < F ⋒ G > |

|O|
=

| < F > |

|O|
+

| < G > |

|O|

= P(F)+ P(G) ,

showing ortho-additivity.
To showmonotonicity suppose F andH are arbitrary elements

of P such that F ⊂ H. Then < F > ⊂ < H >. Then, by the
definition of P, P(F) < P(H).

Theorem 3. P = 〈P ,⋒,⋓,⊥⊥⊥,O,∅∅∅〉 is an orthomodular lattice
and P is an orthoprobability function on P.

Proof. By Lemma 8, P is a monotonic orthoprobability
function on P. Suppose P is not an orthomodular lattice. A
contradiction will be shown. Then by Lemma 7 there exists a
sublattice of P that has a Hasse diagram of the form displayed
in Figure 2. By the monotonicity of P,

P(F) < P(G), (8)

and by the ortho-additivity of P,

P(F)+ P(G⊥⊥⊥) = P(F⋒G⊥⊥⊥) = P(X) = 1 = P(F)+ P(F⊥⊥⊥) . (9)

Equations (8) and (9) contradict one another, because, by the
monotonicity of P, P(G⊥⊥⊥) < P(F⊥⊥⊥) .

The literature has studied orthomodular lattices as
generalizations of the logic underlying quantum mechanics.
Unfortunately, not all orthomodular lattices admit
orthoprobability functions [11]. This in itself is a clue that
for science something more than general orthomodular
lattices are needed. For P, the probability function P

was derived directly from (P)’s theory and empirical
considerations.

3.5. Generalizations and Properties of
Paradigm Probability Functions
Thus far, our analysis has focussed on the paradigm (P) and the
probabilistic structure P. Although the analysis sometimes used
special features of them, care was taken to present, when possible,
concepts and methods of proof that generalized to a wider
class experimental situations and a wider class of probabilistic
structures. There are, however, some conditions special to P and
P that do not apply to all between-subject paradigms involving
finitely many experiments. These are concerned with the use of
P’s atoms.

The boolean algebra B = 〈℘(O),∪,∩,−,O,∅〉 spans (P)’s
experiments. Its set of atoms is O = {a, b, c, d, e, f }, which is
the set of outcomes of (P)’s experiments. (P)’s data consist of
records of the choices in O made by its subjects. In shifting the
analysis from B to P, it is desirable to keep the data intact.
(P)’s theoretical axioms and concepts does this by making the
propositions a, b, k, e, and f the atoms of P. (k results from
theoretical assumption (T2) that requires the identification of c
and d.) This allows the collected data about O to be transferred
to a, b, k, e, f. Concepts and theorems can exploit this transfer.
For example, this transfer is needed to implement the important
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concept of “actually determined” in obtaining consequences of
(P)’s theory and data.

Many of the previous results aboutP generalize to a paradigm
(Q) involving finitely many experiments, (A1), . . . , (An), where
(Q) has disjoint experimental outcomes, disjoint subject
populations, and where for 1 ≤ i, j ≤ n, Ai’s subject
population is randomly sampled from (Q)’s subject pool and
is the same size as Aj’s subject population. In particular,
with appropriate generalizations of (P)’s theory, Lemmas 2 to
8 and Theorem 3 generalize to (Q)’s lattice of propositions
using the methods of proof similar to the those presented for
P and P.

(Q)’s theory consists of a set of statements describing
relationships among subjects’ responses across experiments.
Among these are statements that generalize (T1), (T2), and (T3)
of (P)’s theory in the following manner:

(T⋆1) Each of (Q)’s subjects paradigmatically choses an outcome
from each of (Q)’s experiments; and each of (Q)’s
outcomes is paradigmatically chosen by at least one of
(Q)’s subjects.

(T⋆2) Identifications of outcomes across experiments are made.
(T⋆3) The atomic propositions of (Q)’s propositional lattice

consist of propositions that correspond to the outcomes
that were not identified in (T⋆2) along with propositions
corresponding to each set of mutually identified outcomes
in (T⋆2).

“< >” and P have analogous definitions and results for (Q) to
those for (P).

3.6. Comparison with Quantum Probability
Many researchers of the formal foundations of quantum
mechanics have speculated that the underlying probability theory
for quantum mechanics is not interpretable in a physically
acceptable manner into a boolean probability theory (e.g.,
[1, 12–14]). Others have disagreed (e.g., [15]), producing
a long-running controversy that continues to the present
(e.g., 16).

Von Neumann was well aware of foundational difficulties
presented in his seminal 1932 book, Mathematische Grundlagen
der Quantenmechanik. It appears to me that such difficulties
are sharply increased and compounded by the importation
of formalisms involving probability from quantum mechanics
to cope with the difficult contextual issues presented in the
behavioral sciences.

Rédei [17] writes the following about the evolution of von
Neumann’s position about the nature of probability in quantum
mechanics.

What von Neumann aimed at in his quest
for quantum logic in the years 1935–1936 was
establishing the quantum analog of the classical
situation, where a Boolean algebra can be interpreted
as being both the Tarski-Lindenbaum algebra of
a classical propositional logic and the algebraic
structure representing the random events of a classical
probability theory, with probability being an additive

normalized measure on the Boolean algebra satisfying
[monotonicity], and where the probabilities can also
be interpreted as relative frequencies. The problem
is that there exist no “properly non-commutative”
versions of this situation: The only (irreducible)
examples of non-commutative probability spaces
probabilities of which can be interpreted via relative
frequencies are the modular lattices of the finite
(factor) von Neumann algebras with the canonical
trace; however, the non-commutativity of these
examples is somewhat misleading because the non-
commutativity is suppressed by the fact that the
trace is exactly the functional that insensitive for the
non-commutativity of the underlying algebra. So it
seems that while one can have both a non-classical
(quantum) logic and a mathematically impeccable
non-commutative measure theory, the conceptual
relation of these two structures cannot be the same
as in the classical commutative case—as long as one
views themeasure as probability in the sense of relative
frequency. This must have been the main reason
why after 1936 von Neumann abandoned the relative
frequency view of probability in favor of what can be
called a “logical interpretation.” In this interpretation,
advocated by von Neumann explicitly in his address
to the 1954 Amsterdam Conference, (quantum) logic
determines the (quantum) probability, and vice versa,
i.e., von Neumann sees logic and probability emerging
simultaneously.

Von Neumann did not think, however, that this
rather abstract idea had been worked out by him as
fully as it should. Rather, he saw in the unified theory of
logic, probability, and quantum mechanics a problem
area that he thought should be further developed.
He finishes his address to the Amsterdam Conference
with these words [18]:

I think that it is quite important and will
probably shade a great deal of new light on logics
and probably alter the whole formal structure of
logics considerably, if one succeeds in deriving this
system from first principles, in other words for a
suitable set of axioms. All the existing axiomatizations
of this system are unsatisfactory in this sense, that
they bing in quite arbitrarily algebraical laws which
are not clearly related to anything that one believes
to be true or that one has observed in quantum
theory to be true. So, while one has very satisfactorily
formalistic foundations of projective geometry
of some infinite generalizations of it, including
orthogonality, including angles, none of them are
derived from intuitively plausible first principles
in the manner in which axiomatizations in other
areas are.

Now I think that at this point lies a very important
complex of open problems, about which one does
not know well of how to formulate them now, but
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which are likely to give logics and the whole dependent
system of probability a new slam.

Von Neumann’s concerns about probability theory in
quantum mechanics do not hold for the multi-experiment
behavioral paradigms presented in this article. The paradigms’
orthomodular lattice event structures follows directly from
their experimental designs and theories linking experiments.
This produces an orthoprobability probability function Q for a
paradigm’s lattice of propositions, Q. Because for propositions,
actual probabilities coincide paradigmatic probabilities, Q can
be estimated through a relative-frequency process for events
for which the underlying theory and collected data specify to
a good approximation which subjects paradigmatically chose
outcomes for those events. Paradigm (P) is an example where
such a relative frequency approach applies to all of its events: Its
event lattice has twelve elements. Of these, the probabilities of
two, O and ∅, are determined by definition. Five others, a, b,
k, e, f, are atoms and their actual probabilities are estimable by
collected data and thus, as described earlier, their paradigmatic
probabilities are estimable. The remaining five are complements
of the five atoms and these have as probabilities 1 minus the
probability of its atom, and thus they too are estimable. Now
consider the general case Q where F and G are lattice disjoint
propositions where it is known which subjects chose an element
of F and which chose an element of G. If it is the case that
F∪G ⊂ F⋒G then more information is required to estimate the
number of subjects who are in F⋒G. The additional information
has to come from the paradigm’s theory. For (P), its theory tells
us that a ⋒ f = {a, b, e, f }, which is the complement of k and thus
has number of subjects |O| − |k|. This number is known because
|O| and |k| are known.

4. CONCLUSIONS

Both the topological probability and the quantum-like
paradigm theories presented here are applicable to a variety
of psychological experimental situations where Kolmogorov
probability theory appears inadequate for modeling cognitive
processes. Although very different in how they handle
probabilities, they both can often offer explanations for puzzling
behavioral phenomena. From a modeling point of view, this
is not entirely surprising: After all, both are generalizations of
Kolmogorov probability, and, as such, both have greater freedom
to model behavioral data than the Kolmogorov theory. However,
because of their algebraic structural differences, they are likely
to suggest different cognitive mechanisms producing the data.
Topological probability functions are arguably “rational” in the
sense that they do not violate the key ideas of rationality inherent
in the Dutch Book Argument and the SEU model.

The probability theory of quantum mechanics and the
psychological paradigm probability theory developed here share
many formal characteristics, but at a fundamental level they are
about different kinds of uncertainty. The uncertainty in paradigm
probability theory is manufactured by the random assignment
of subjects to experiments by the scientist. It is not an inherent
part of the subjects, outcomes, or of the paradigm’s theory. The

subjects in an experiment have actual and counterfactual choices.
These choices, as well as the theory connecting the paradigm’s
experiments, are modeled in deterministic manners. All of this is
very different than the probability theory of quantummechanics,
where the uncertainty results from the randomness inherent an
ensemble of particles.

Systems satisfying the Kolmogorov axioms for probability
produce a probability theory founded on a σ -additive boolean
probability function. Such probability functions have come to
dominate the probability theories of mathematics, statistics, and
science. They are usually conceptualized as a single boolean
probability function defined over all relevant situations. They
are often interpreted as measuring the propensity of an event to
occur or a subjective degree of belief that an event will occur. Such
a propensity or degree are considered to be completely associated
with the event, and, as a consequence, does not depend on the
situation to which an event belongs. In this sense, propensity (or
degree of belief) is noncontextual.

Kolmogorov probability theory can be generalized to become
contextual by allowing events that belong to different situations
to have different propensities (or different degrees of belief).
These situations are characterized as having different probability
functions. This causes various challenging issues in behavioral
science, e.g., the identification of random variables across
situations, or descriptions of the relationships of random
variables across different probabilistic situations. Dzharafov and
Kujala [19] and Dzharafov et al. [20] have laid out a foundation
for such a generalization. It produces an alternative to the
single probability function interpretation of the Kolmogorov
theory that have many features in common with the probability
theory underlying quantum mechanics. There are several other
quantum-like probability theories in the literature that are not
discussed in this article (e.g., the probability theory of [21]). It is
beyond the scope of this article to go into their foundations or
relationships to the alternative probability theories described in
this article.

Context is an ill-understood concept in the behavioral
sciences. While there are many psychological experiments
illustrating its ubiquity and importance in psychological
phenomena, e.g., framing effects in cognitive psychology, there is
very little theory and experimentation describing the relationship
of contexts across different experiments. I believe part of the
reason for this has been the lack of mathematical theories
designed to model contextual relationships. For particle physics,
this kind of modeling was accomplished by von Neumann. His
method has been imported by Busemeyer and colleagues and
others into the behavioral science (e.g., [5]). This has produced
some interesting new phenomena (e.g., [22]) and has been
used as a unifying foundation for explaining many puzzling
psychological phenomena. Not surprisingly, this importation has
raised new, serious foundational and methodological issues.

Narens [2] interprets many results from lattice theory—
most known in the 1930s—as suggesting there are not many
alternatives to boolean algebras that are useful event spaces
for modeling probabilistic experimental phenomena, except
for those that are distributive (e.g., topological algebras) or
orthomodular (e.g., closed subspaces of a Hilbert space). This
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means that richmathematical theories of probabilistic context are
likely very limited without giving up much more structure from
Kolmogorov probability theory, particularly, without greatly
reducing the parts of the event space displaying forms of
“probabilistic additivity.”
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