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Obesity, a growing global health concern, is linked to severe ailments such as
cardiovascular diseases, type 2 diabetes, cancer, and neuropsychiatric disorders.
Conventional pharmacological treatments often have significant side effects,
highlighting the need for safer alternatives. Traditional Chinese Medicine (TCM)
offers potential solutions, with plant extracts like those from Nelumbo nucifera
leaves showing promise due to their historical use and minimal side effects. This
study employs a comprehensive computational biology approach to explore the
anti-obesity effects of Nelumbo nucifera Leaf Bioactive Compounds. Sixteen
active compounds from Nelumbo nucifera leaves were screened using the
Traditional Chinese Medicine Systems Pharmacology Database (TCMSP).
Clustering analysis identified three representative molecules, and network
pharmacology pinpointed PPARG as a common target gene. Molecular
docking and machine learning models were used for inhibitors screening, and
molecular dynamics simulations were futher used to investigate the inhibitory
effects and mechanisms of these molecules on PPARG. Subsequent cellular
assays confirmed the ability of Sitogluside to reduce lipid accumulation and
triglyceride levels in 3T3-L1 cells, underscoring its potential as an effective and
safer obesity treatment. Our findings provide a molecular basis for the anti-
obesity properties of Nelumbo nucifera Leaf Bioactive Compounds and pave the
way for developing new, effective, and safer obesity treatments.
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1 Introduction

Obesity is a prevalent and escalating health issue, closely associatedwith severe conditions such
as cardiovascular diseases, type 2 diabetes, cancer, and neuropsychiatric disorders (Lopez-Jimenez
et al., 2022; Khan and Hegde, 2020; Martins, 2013). Globally, obesity rates have more than tripled
since 1975, with recent data indicating that over 650 million adults are obese, contributing
significantly to the global burden of non-communicable diseases and healthcare costs (Mohajan
andMohajan, 2023). This condition not only contributes significantly to the global burden of non-
communicable diseases but also imposes a heavy psychological and physical toll on individuals,
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often leading to depression, anxiety, reduced mobility, and diminished
quality of life. Additionally, obesity is associated with increased healthcare
costs and reduced productivity, thereby impacting both personal
wellbeing and socioeconomic stability. The urgent need for effective
pharmacological interventions is undeniable. Current treatments,
including phentermine (Smith et al., 2013), fluoxetine (Wise, 1992),
orlistat (Ballinger and Peikin, 2002), sibutramine (Padwal andMajumdar,
2007), and rimonabant (Curioni and André, 2006), each with distinct
mechanisms of action. Phentermine and sibutramine primarily work by
suppressing appetite through central nervous system stimulation, while
orlistat inhibits lipid absorption in the gastrointestinal tract. Fluoxetine
and rimonabant modulate neurotransmitter activity to influence appetite
and satiety. Despite their efficacy, these pharmacological interventions are
often associated with adverse effects, including nausea, dizziness,
insomnia, and gastrointestinal discomfort, which limit their long-term
use for obesity management (Velazquez and Apovian, 2018; Patel, 2015).
These challenges, combined with the difficulty of maintaining a healthy
lifestyle and the invasiveness of surgery, have sparked interest in natural
therapies (Acosta et al., 2014). Traditional Chinese medicine, known for
its milder side effects, has emerged as a promising alternative (Qi
et al., 2015).

Plant-derived compounds have attracted considerable attention for
their potential role in obesity management due to their multifaceted
mechanisms of action, lower toxicity, and diverse bioactive
components. These compounds, which include polyphenols,
flavonoids, alkaloids, and terpenes, are known to interact with key
metabolic pathways, influence lipid metabolism, and exhibit
antioxidant and anti-inflammatory properties that can address
various obesity-related health issues. For instance, polyphenols such
as curcumin, resveratrol, and proanthocyanidins have demonstrated the
ability tomodulate adipocyte differentiation, reduce lipid accumulation,
and improve insulin sensitivity, making them valuable in the fight
against obesity (Sergent et al., 2012; Boccellino and D’Angelo, 2020).
Additionally, Garcinia cambogia extract, which contains hydroxycitric
acid, is widely used for weight management without toxic effects
(Onakpoya et al., 2011; Semwal et al., 2015).

One particularly promising natural therapy is the use of Nelumbo
nucifera leaves (Nelumbo nucifera) (Wang et al., 2021), which have been
employed for their anti-obesity properties since the Ming Dynasty in
China over 1,000 years ago (Fan et al., 2021; Zheng et al., 2010). Initially
documented in “The Key to Diagnosis and Treatment,” Nelumbo
nucifera leaves have recently gained popularity in China as tea and
dietary supplements for weight loss and lipid reduction (Allison et al.,
2001). Additionally, Diospyros (D.) Nelumbo nucifera, known for its
sedative, anti-diabetic, antiseptic, and anti-tumor properties, has fruits
and roots that exhibit anti-proliferative and cytotoxic effects on various
cancer cell lines (Rauf et al., 2017). Nelumbo nucifera leaves have also
been used to alleviate muscle and joint pain (Sridhar and Bhat, 2007).
However, the anti-obesity potential of Nelumbo nucifera leaves remains
underexplored (Liu et al., 2023).While synthetic anti-obesity drugs target
specific pathways such as appetite suppression and lipid absorption,
natural compounds like polyphenols and alkaloids provide amulti-target
approach with generally milder side effects. This distinction highlights
the complementary potential of plant-derived compounds, which can
influence similar metabolic pathways in a holistic manner, offering
potentially safer andmore sustainable solutions for obesitymanagement.

In recent years, machine learning has revolutionized various
domains of science, and its integration into cheminformatics has

significantly transformed drug discovery and development processes.
Cheminformatics involves the application of computational techniques
to solve chemical problems, particularly in drug design and toxicology.
Machine learning, a subset of artificial intelligence, has been widely used
in cheminformatics to predict molecular properties, bioactivities, and
toxicity profiles, enabling the identification of potential drug candidates
more efficiently. By learning from large datasets of chemical and
biological information, machine learning models can predict the
interactions between small molecules and biological targets,
facilitating virtual screening, molecular docking, and drug
repurposing efforts. These advancements are crucial in identifying
novel therapeutic agents, including those derived from natural
products, such as Traditional ChineseMedicine (TCM) (Nestler, 2002).

This research adopts a comprehensive approach utilizing various
computational biology methods. Sixteen highly absorbable small
molecules from Nelumbo nucifera leaves were screened in the
Traditional Chinese Medicine Systems Pharmacology Database
(TCMSP) (Ru et al., 2014). Clustering analysis identified three
representative molecules, and network pharmacology analysis
revealed PPARG as their common target gene. Subsequent molecular
docking examined the inhibitory effects of these molecules on PPARG,
and molecular dynamics simulations explored the underlying
mechanisms. By integrating these advanced computational
techniques, the study aims to elucidate the molecular basis of the
anti-obesity effects of Nelumbo nucifera Leaf Bioactive Compounds,
potentially paving the way for the development of new, effective, and
safer obesity treatments. Our workflow was shown in Figure 1.

2 Materials and methods

2.1 Clustering analysis of small
molecule data

Using the Traditional Chinese Medicine Systems Pharmacology
Database and Analysis Platform (TCMSP, https://tcmsp-e.com/), we
screened all active components of Nelumbo nucifera leaves based on
criteria of oral bioavailability (OB) ≥ 20% (Veber et al., 2002) and drug-
likeness (DL) ≥ 0.18 (Ursu et al., 2011). To analyze the clustering of
small molecule similarities, we utilized molecular fingerprints,
dimensionality reduction, clustering, and 3D visualization
techniques. Specifically, Morgan fingerprints were computed for
each compound using RDKit (Landrum, 2013), with a radius of
2 and 2048 bits. SMILES strings were converted to molecular objects
for fingerprint generation, excluding invalid ones, and duplicates were
removed to ensure uniqueness in the dataset. We applied t-SNE (Van
der Maaten and Hinton, 2008) with a perplexity of 30 to reduce the
fingerprint data to three dimensions. Hierarchical clustering using
Ward’s method was then performed on the t-SNE results (Van der
Maaten andHinton, 2008), setting the number of clusters to three. Each
compound was assigned a cluster label, and within each cluster, we
calculated a similarity matrix using the Tanimoto coefficient (Bajusz
et al., 2015). The molecule with the highest average similarity within
each cluster was identified as the representative. A 3D scatter plot
was created using Plotly, coloring each compound by cluster
assignment and distinctly marking representative molecules,
enabling intuitive exploration of small molecule similarities and
relationships (He et al., 2022).
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2.2 Prediction and analysis of potential
obesity targets and Nelumbo nucifera leaf
component interactions

In this study, potential target genes related to obesity were
initially identified from four authoritative databases: DisGeNET
(Piñero et al., 2016), GeneCards (Safran et al., 2010), PharmGKB
(Hewett et al., 2002), and UniProt (UniProt Consortium, 2015).
By comprehensively comparing these databases and removing
duplicates, we screened a total of 2,063 potential target genes for
further analysis. To predict possible interactions between the
active components of Nelumbo nucifera leaves and these obesity
target genes, we utilized databases and tools such as SEA,
SuperPred (Gallo et al., 2022), and SwissTargetPrediction
(Daina et al., 2019). These platforms enabled us to perform an

in-depth prediction of intersection target genes for the active
components found in Nelumbo nucifera leaves.

2.3 Construction and analysis of the Protein-
Protein Interaction network

To explore the potential interactions among key target proteins, we
constructed a comprehensive Protein-Protein Interaction (PPI)
(Athanasios et al., 2017) network using the STRING database
(Wagner and Fischer, 1974), a prominent bioinformatics tool. This
network was visualized with the latest version of Cytoscape software
(Kohl et al., 2011). We conducted a thorough analysis of the network’s
topological features using advanced analytical tools within Cytoscape,
identifying ten hub genes that play a crucial role in the diseasemechanism.

FIGURE 1
The work flow of our study.
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2.4 Comprehensive enrichment analysis of
GO and KEGG pathways

We performed enrichment analyses of Gene Ontology (GO)
(Harris et al., 2004) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) (Kanehisa and Goto, 2000) pathways using R packages
including clusterProfiler (Yu et al., 2012), org. Hs.eg.db (Carlson
et al., 2019), and pathview. Gene lists were converted to Entrez IDs
and analyzed for enrichment using enrichGO and enrichKEGG with
p-value and q-value cutoffs of 0.01 and 0.05, respectively. Results

were visualized with dot plots and bar plots, highlighting significant
terms and pathways. Additionally, pathview was used to map genes
onto KEGG pathways for detailed visualization (Wang et al., 2024).

2.5 Batch molecular docking of active
components

A receptor protein model based on PPARG (PDB ID: 8WFE)
was constructed, encompassing 268 residues. The crystal structure

FIGURE 2
Molecular clustering diagram. The diagram shows three clusters of small molecules: the first cluster is green representing Sitogluside, the second
cluster is brown representing Kaempferol, and the third cluster is gray representing Nuciferin.

FIGURE 3
The Venn diagram illustrates the shared intersection genes between lotus leaf small molecules and obesity disease. (A) The number of shared
intersection genes between Sitogluside and obesity disease is 13. (B) The number of shared genes between Kaempferol and obesity disease is 48. (C) The
number of shared intersection genes between Nuciferin and obesity disease is 39.
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was the latest structure available and was determined using the gold
standard X-ray diffraction method, with a relatively high resolution
of 2.20 Å. Additionally, it is a human-derived protein, and it is free
from the conformational influences of other ligands or bound
proteins, thus more closely representing the natural
conformation. Therefore, we selected this structure. Homology
modeling was performed with MODELER 10.1 to include
missing residues and domains. Small molecules, initially in
SMILES format, were converted to pdbqt format using Open

Babel (O’Boyle et al., 2011). Molecular docking was then carried
out using AutoDock Vina 1.2.0 (Eberhardt et al., 2021). The docking
box was set to dimensions of 29.25 Å × 34.5 Å × 21.0 Å with center
coordinates at x = −7.574, y = 10.801, z = 138.847. The docking site
was chosen because it was described as the binding site for PPARG
inhibitors and inverse agonists (Irwin et al., 2022; Nolte et al., 1998).
Batch docking of 18 small molecules with their respective target
proteins was conducted. This methodology enabled a detailed
evaluation of potential inhibitors by analyzing their predicted

FIGURE 4
The diagram illustrates protein interactions involved in lotus leaf treatment of obesity. (A) Top 10 gene interactions of Sitogluside. (B) Top 10 gene
interactions of Kaempferol. (C) Top 10 gene interactions of Nuciferin.

FIGURE 5
The results presented are based on the GO (A) and KEGG (B) pathway enrichment analyses of intersection genes between Sitogluside and obesity.
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interaction strengths with the target enzyme (Song et al., 2024). We
also used the R357A PPARG mutant (PDB ID: 4O8F) and the
V290M PPARG mutant (PDB ID: 4OJ4) and conducted molecular
docking at the same site with a consistent method.

2.6 Machine learning

In this study, machine learning models were developed to predict
the activity of PPARG inhibitors based on different molecular
fingerprints. Molecular data for PPARG inhibitors were collected
from publicly available databases, including CHEMBL (Gaulton
et al., 2012) and PUBCHEM (Kim et al., 2019) and were
represented as SMILES (Simplified Molecular Input Line Entry
System) strings (Weininger, 1988). There were in total 7899 PPARG
inhibitors, and for data balancing, we selected 7,900 inactive molecules.
These SMILES strings were then converted into various molecular
fingerprints to capture different structural and chemical features. The
dataset was divided into training and test sets in an 8/2 ratio using the
train_test_split function from Scikit-Learn, ensuring that both sets
maintained a representative distribution of the data.

Five types of molecular fingerprints were generated: MACCS Keys
(Jow et al., 1990), Morgan (Zhong and Guan, 2023), RDKit (Qiao et al.,
2021), Topological Torsion (Nilakantan et al., 1987), and Atom Pairs

fingerprints (Awale et al., 2015). MACCS Keys fingerprints were
generated using RDKit’s GetMACCSKeysFingerprint function, which
provides a 166-bit vector representation of predefined structural keys.
Morgan fingerprints, analogous to Extended Connectivity Fingerprints
(ECFP), were created using GetMorganFingerprintAsBitVect with a
radius of 2 and 1,024 bits to capture circular substructures. RDKit
fingerprints, generated with RDKFingerprint, encoded molecular
substructures based on paths of bonded atoms. Topological Torsion
fingerprints, produced by
GetHashedTopologicalTorsionFingerprintAsBitVect, represented
topological torsions within the molecular structure. Finally, Atom
Pairs fingerprints, created using
GetHashedAtomPairFingerprintAsBitVect, captured the relationship
between atom pairs in terms of their topological distances.

Two machine learning algorithms, Random Forest (RF)
(Belgiu and Drăguţ, 2016) and Extreme Gradient Boosting
(XGBoost) (Sheridan et al., 2016), were employed for model
development. The Random Forest model, implemented using
Scikit-Learn’s RandomForestClassifier, is an ensemble method
based on decision trees. Hyperparameters for the RF model,
including the number of trees, maximum tree depth, minimum
samples per split, minimum samples per leaf, and bootstrap
sampling, were optimized using GridSearchCV. XGBoost,
implemented with the XGBClassifier from the XGBoost

FIGURE 6
The results presented are based on the GO (A) and KEGG (B) pathway enrichment analyses of intersection genes between kaempferol and obesity.
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library, is a gradient boosting algorithm. Key hyperparameters
such as the number of estimators, maximum tree depth, learning
rate, subsample ratio, and column sampling by tree were
similarly optimized. Both models were trained using 5-fold
cross-validation with KFold to ensure robust evaluation and
hyperparameter optimization. The Area Under the Receiver
Operating Characteristic Curve (AUC-ROC) was used as the
primary scoring metric for model selection.

The performance of the trained models was evaluated on the test
set using several metrics. These included AUC-ROC, which provides
a comprehensive measure of model performance across all
classification thresholds, sensitivity (SE) to assess the true positive
rate, specificity (SP) to evaluate the true negative rate, and the
Matthews Correlation Coefficient (MCC) to measure the overall
quality of binary classifications. These metrics collectively provided
a thorough assessment of the models’ ability to predict RANKL
inhibitory activity based on different molecular fingerprints.

2.7 Molecular dynamics simulations

We conducted molecular dynamics (MD) simulations
(Hollingsworth and Dror, 2018) on two key molecules,
Cycloartenol and Sitogluside, using the PMEMD module of

Amber 22 (Case et al., 2022) with CUDA acceleration. Each
system underwent 100 ns MD simulations. Hydrogen bonds were
constrained using the SHAKE algorithm (Elber et al., 2011), and
electrostatic interactions were managed with the Particle Mesh
Ewald (PME) method (He et al., 2024), with an 8 Å cutoff.
Following initial system construction, atomic clashes were
resolved through 500 steps of steepest descent and conjugate
gradient minimization. Systems were then heated from 0 K to
300 K over 50 ps, followed by density equilibration and constant
pressure operations at 300 K for 500 ps in the NPT ensemble. Once
the systems stabilized, three 100 ns MD simulations were run, with
data recorded every 1 fs using a 2 fs time step and a Langevin
thermostat with a 1 ps collision frequency. Data storage occurred
every 2 ps, resulting in 2,000 frames for analysis. Trajectory analysis
was performed using the CPPTRAJ (Roe et al., 2013) module of
Amber 22, assessing RMSD, RMSF, radius of gyration (Rg), and
solvent-accessible surface area (SASA). K-means clustering within
CPPTRAJ produced 10 representative structures. The binding free
energy differences of protein-ligand complexes were estimated using
MM-PBSA (Genheden and Ryde, 2015) calculations from
500 snapshots of the final trajectory. This method reduces errors
related to covalent energy and is frequently used alongside MM-
GBSA to predict binding free energies in a continuum
solvent model.

FIGURE 7
The results presented are based on the GO (A) and KEGG (B) pathway enrichment analyses of intersection genes between Nuciferin and obesity.
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2.7.1 Secondary structure analysis
We analyzed the protein’s secondary structure using AMBER

tools. First, the protein structures were aligned, and the
secondary structure of each residue for every frame was
outputted into a data file. The file was then modified to
correct initial settings and enhance visualization by adding
lines to set parameters for grid settings, color palettes, and
axis labels. These adjustments allowed for accurate plotting of
the data. The modifications included mapping the secondary
structure data over time and adjusting the output settings to
generate a detailed visual representation. Finally, the modified
script was executed to produce a comprehensive plot of the
protein’s secondary structure, enabling thorough analysis and
interpretation of structural changes over time.

2.7.2 Covariance matrix analysis
To analyze the covariance matrix of the protein, we utilized the

Bio3D package (Grant et al., 2021) in R. Initially, the protein
structure file (PDB) and the trajectory file (DCD) were loaded
into the environment. The Bio3D package was then employed to
facilitate the analysis. We selected the C-alpha atoms for the analysis
to focus on the protein’s backbone. The trajectories were fitted to the
reference structure to ensure proper alignment by aligning the
C-alpha atoms in both the fixed and mobile structures.
Subsequently, the covariance matrix was computed using the
aligned coordinates of the C-alpha atoms. Finally, the covariance
matrix was visualized to interpret the correlations between the
movements of different parts of the protein.

2.7.3 Principal component analysis
We conducted a Principal component analysis (PCA) (Abdi and

Williams, 2010) using AMBER tools. First, the root mean square
deviation (RMSD) was calculated for the initial structure (residues
1–269, excluding hydrogen atoms). An average structure was
generated, and its RMSD was recalculated against the initial
structure. A covariance matrix for the same residues was then
constructed. Principal component analysis was performed by
diagonalizing the covariance matrix, and the first two
eigenvectors were extracted. These eigenvectors were used to
project the conformational changes of the protein, providing
insights into the dominant motions within the molecular
dynamics simulation.

2.8 Validation of sitogluside on adipogenesis
in 3T3-L1 cells

The murine embryonic fibroblast cell line, 3T3-L1, was procured
from the National Infrastructure of Cell Line Resource (China
Infrastructure of Cell Line Resource). Dulbecco’s Modified Eagle’s
Medium (DMEM) was purchased from Gibco. Sitogluside was
obtained from TargetMol. The triglyceride (TG) assay kit was
sourced from Applygen Technologies. Fetal calf serum (FCS) was
supplied by Lablead. The modified Oil Red O staining kit was
procured from Beyotime. Isobutylmethylxanthine (IBMX) was
acquired from Sigma-Aldrich, Dexamethasone from
MedChemExpress, and Insulin from Lablead.

TABLE 1 Results of small molecule clustering.

Smiles V1 V2 V3 Cluster is_representative

CC(CCC = C(C)C)C1CCC2(C1(CCC34C2CCC5C3(C4)CCC(C5(C)C)O)C)C 35.95328426 5.281447471 −60.05988609 1 FALSE

CCC(CCC(C)C1CCC2C1(CCC3C2CC = C4C3(CCC(C4)OC5C(C(C(C(O5)
CO)O)O)O)C)C)C(C)C

40.93408991 23.39484502 −69.09622853 1 TRUE

COC1 = C(C=CC(=C1)C2 = C(C(=O)C3 = C(C=C(C=C3O2)O)O)O)O −45.14556035 122.8726886 −20.70020026 2 FALSE

C1 = CC(=CC = C1C2 = C(C(=O)C3 = C(C=C(C=C3O2)O)O)O)O −36.61972104 121.4483762 −35.90034263 2 TRUE

C1CNC2CC3 = CC = CC = C3C4 = C2C1 = CC5 = C4OCO5 10.27514164 −104.4951622 80.00591538 3 FALSE

CN1CCC2 = CC3 = C(C4 = C2C1CC5 = CC = CC = C54)OCO3 −0.424218041 −94.74319612 87.46698128 3 FALSE

C1 = CC(=C(C=C1C2 = C(C(=O)C3 = C(C=C(C=C3O2)O)O)O)O)O −29.00356636 119.5613867 −21.19470978 2 FALSE

COC1 = C(C=C2C(NCCC2 = C1)CC3 = CC = C(C=C3)O)O 13.30287557 −51.76793009 21.76064704 3 FALSE

CN1CCC2 = CC(=C(C3 = C2C1CC4 = CC = CC = C43)OC)O −1.523418171 −84.98220215 62.35640523 3 FALSE

C1 = C(C=C(C(=C1O)O)O)C2C(C(C3 = C(C=C(C=C3O2)O)O)O)O −46.1954924 55.16171064 −40.39702155 2 FALSE

CCC(CCC(C)C1CCC2C1(CCC3C2CC = C4C3(CCC(C4)O)C)C)C(C)C 40.24398367 15.71520654 −52.05702476 1 FALSE

C1C(C(OC2 = CC(=CC(=C21)O)O)C3 = CC(=C(C=C3)O)O)O −33.19215336 56.1836017 −29.13674847 2 FALSE

C1 = CC(=C(C=C1C2C(C(C3 = C(C=C(C=C3O2)O)O)O)O)O)O −49.74114868 54.14480073 −24.83973799 2 FALSE

CN1CCC2 = CC(=C(C3 = C2C1CC4 = CC = CC = C43)OC)OC 9.217775785 −74.85162786 73.25581385 3 TRUE

CN1CCC2 = CC(=C(C=C2C1CC3 = CC = C(C=C3)O)OC)OC 7.111890518 −44.31980445 31.53113958 3 FALSE

CN1CCC2 = CC(=C(C3 = C2C1 = CC4 = CC = CC = C43)OC)OC 12.37675032 −32.78793245 9.977769123 3 FALSE

COC1 = C(C2 = C3C(CC4 = CC = CC = C42)NCCC3 = C1)OC 17.25403315 −86.55540912 62.78189844 3 FALSE

COCC1C(C(C(O1)N2C = NC3 = C(N=CN = C32)N)O)O 55.17545358 0.739200882 −75.75466988 1 FALSE
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TABLE 2 Compound_name and docking energy results.

compound_name SMILES Affinity
(kcal/mol)

Interacting amino acid residues

Hydrogen
bond

Alkyl Pi-Signa Pi-
Cation

Cycloartenol CC(CCC = C(C)C)C1CCC2(C1(CCC34C2CCC5C3(C4)
CCC(C5(C)C)O)C)C

−9.5 - HIS351 ILE500 VAL350 VAL321 LEU481 LEU497 LYS502 LYS485 - -

Sitogluside CCC(CCC(C)C1CCC2C1(CCC3C2CC = C4C3(CCC(C4)
OC5C(C(C(C(O5)CO)O)O)O)C)C)C(C)C

−8.5 HIS351 HIS477 LYS502 LYS485 LEU481 LEU493 VAL478 - -

isorhamnetin COC1 = C(C=CC(=C1)C2 = C(C(=O)C3 =
C(C=C(C=C3O2)O)O)O)O

−7.9 SER317 ILE500 LEU493 LEU481 HIS351

kaempferol C1 = CC(=CC = C1C2 = C(C(=O)C3 = C(C=C(C=C3O2)O)
O)O)O

−7.8 LEU496 LEU493 LEU481 LEU497 ILE500 - HIS351

anonaine C1CNC2CC3 = CC = CC = C3C4 = C2C1 = CC5 = C4OCO5 −7.8 ARG425 TYR348 VAL478 - -

Remerin CN1CCC2 = CC3 = C(C4 = C2C1CC5 = CC = CC = C54)
OCO3

−7.8 - LEU481 LYS485 LEU493 -

quercetin C1 = CC(=C(C=C1C2 = C(C(=O)C3 = C(C=C(C=C3O2)O)
O)O)O)O

−7.6 TYR355 LEU496 LEU497 LEU493 ILE500 LEU481 -

Machiline COC1 = C(C=C2C(NCCC2 = C1)CC3 = CC = C(C=C3)
O)O

−7.5 HIS351 HIS477 LEU497 ILE500 LEU481 LEU493 -

o-Nornuciferine CN1CCC2 = CC(=C(C3 = C2C1CC4 = CC = CC = C43)
OC)O

−7.4 - ARG471 GLN472 THR475 -

leucodelphinidin C1 = C(C=C(C(=C1O)O)O)C2C(C(C3 = C(C=C(C=C3O2)
O)O)O)O

−7.4 HIS477 HIS479 LEU481 ILE500 - HIS351

sitosterol CCC(CCC(C)C1CCC2C1(CCC3C2CC = C4C3(CCC(C4)
O)C)C)C(C)C

−7.3 TYR348 ARG471 TYR348 - -

ent-Epicatechin C1C(C(OC2 = CC(=CC(=C21)O)O)C3 = CC(=C(C=C3)O)
O)O

−7.3 VAL478 LEU481 ILE500 HIS351

(+)-Leucocyanidin C1 = CC(=C(C=C1C2C(C(C3 = C(C=C(C=C3O2)O)O)O)
O)O)O

−7.2 - MET491 LYS485 - -

Nuciferin CN1CCC2 = CC(=C(C3 = C2C1CC4 = CC = CC = C43)
OC)OC

−7.1 - ARG471 GLN472 THR475 -

Armepavine CN1CCC2 = CC(=C(C=C2C1CC3 = CC = C(C=C3)O)
OC)OC

−7 HIS351 LYS485 MET491 LYS502 LEU497 LEU493 LEU481 -

dehydronuciferine CN1CCC2 = CC(=C(C3 = C2C1 = CC4 = CC = CC = C43)
OC)OC

−6.9 - MET491 LYS485 LEU481 LEU493 -

(Continued on following page)

Fro
n
tie

rs
in

P
h
arm

ac
o
lo
g
y

fro
n
tie

rsin
.o
rg

0
9

H
u
an

g
e
t
al.

10
.3
3
8
9
/fp

h
ar.2

0
2
4
.15

0
0
8
6
5

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1500865


Cell Culture and Treatment: 3T3-L1 preadipocytes were
maintained in Dulbecco’s Modified Eagle’s Medium (DMEM)
supplemented with 10% fetal calf serum, at 37°C in a 5%
CO2 atmosphere. Differentiation was induced when cells
reached confluence, using a differentiation medium containing
1 µM Dexamethasone, 0.5 mM IBMX, and 10 μg/mL Insulin with
10% FCS for 48 h. Thereafter, the medium was replaced with
DMEM containing only 10 μg/mL Insulin and the cells were
cultured for an additional 5–7 days, with the medium refreshed
every 2 days.

Sitogluside Treatment: Post-differentiation, 3T3-L1 adipocytes
were treated with Sitogluside at concentrations of 0 μM, 5 μM, and
10 µM. The treatments were administered in DMEM throughout the
experiment to evaluate their effects on lipid accumulation and
metabolic activity.

Lipid Accumulation Assessment (Oil Red O Staining): Cells
were washed with PBS and fixed in 4% paraformaldehyde for 10 min
at room temperature. Fixed cells were stained with Oil Red O for
40 min to visualize lipid droplets. The dye was subsequently eluted
with isopropanol and quantified by measuring the absorbance
at 490 nm.

Triglyceride Quantification: Triglycerides were extracted using a
lysis buffer and quantified using a triglyceride quantification kit
according to the manufacturer’s instructions. Absorbance was
measured at 570 nm and concentrations were calculated against a
standard curve.

Optical Density Measurements: The optical density of the dye
extracted from the stained cells was measured at 490 nm using a
spectrophotometer, to quantify the lipid content indicative of
adipogenesis under various treatment conditions.

All experiments were conducted in triplicate. Data are expressed
as mean ± standard deviation (SD). Differences between treated and
control groups were analyzed using one-way ANOVA followed by
Tukey’s post hoc test, where a p-value of less than 0.05 was
considered statistically significant.

3 Results

3.1 Targets of active ingredients

As shown in Figure 2 and Table 1, 18 active molecules in
Nelumbo nucifera leaves were clustered, resulting in three
categories of molecules. The first category is represented by
Sitogluside, the second category by Kaempferol, and the third
category by Nuciferine.

Using multiple databases, we predicted targets and intersected
the results with collected obesity disease targets. As shown in
Figure 3, Sitogluside intersected with 13 genes, Kaempferol with
48 genes, and Nuciferine with 39 genes. Using the Matthews
Correlation Coefficient (MCC) algorithm from the cytoHubba
toolkit, we identified the crucial nodes within the Nelumbo
nucifera leaf-obesity interactome. The MCC scores, indicating the
strength of connectivity, were visually represented with varying
color intensities, where a deeper hue indicated higher relevance
to obesity pathogenicity. We then cataloged the top 10 targets for
each active small molecule, revealing key players such as PPARG, as
shown in Figure 4.T
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3.2 KEGG and GO analysis

Figures 5–7 collectively present the results of GO and KEGG
pathway enrichment analyses for genes related to Nelumbo
nucifera leaf small molecules and obesity disease. The GO
enrichment analyses (A of each figure) identify key biological
processes, cellular components, and molecular functions. In the
first figure, significant biological processes include cellular

response to chemical stress and regulation of inflammatory
response, with cellular components such as membrane rafts
and neuronal cell bodies, and molecular functions focusing on
protein tyrosine kinase and serine hydrolase activities. The
KEGG pathway analysis highlights pathways like endocrine
resistance, EGFR tyrosine kinase inhibitor resistance, and
several cancer-related pathways including prostate, breast, and
gastric cancer. In the second figure, enriched biological processes

FIGURE 8
Docking results of PPARG with two active compounds from lotus Leaf. (A) Interaction between sitogluside and PPARG. (B) Interaction between
cycloartenol and PPARG.
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include organic hydroxy compound transport and vascular
processes in the circulatory system, with cellular components
like synaptic and presynaptic membranes and molecular
functions emphasizing G protein-coupled receptor activity and
neurotransmitter binding. Key KEGG pathways include
neuroactive ligand-receptor interaction, serotonergic synapse,
and chemical carcinogenesis, as well as addiction pathways
such as cocaine and amphetamine addiction. The third figure’s
GO analysis emphasizes processes like organic hydroxy
compound transport and stress responses, with cellular
components including membrane microdomains and neuronal
cell bodies, and molecular functions like neurotransmitter
receptor activity. KEGG pathway analysis reveals significant
pathways such as lipid and atherosclerosis, various signaling
pathways (e.g., MAPK and PI3K-Akt), and cancer-related
pathways. Collectively, these analyses suggest that the
interaction between Nelumbo nucifera leaf small molecules
and obesity involves complex networks affecting inflammation,
cellular signaling, and metabolic processes, with broad
implications for cancer, neurological disorders, and
metabolic diseases.

3.3 Molecular docking and machine
learning screening

Due to the inclusion of PPARG as a key target for the three
categories of molecules and considering the importance of PPARG
in treating obesity, we performed molecular docking to screen the
affinity of active small molecules in Nelumbo nucifera leaves for
PPARG. The docking energy results are shown in Table 2. The
ChemDraw (.cdx) structures of all compounds listed in Table 2 have
been uploaded in the supplementary materials. Molecular docking
results revealed key interactions between Nelumbo nucifera leaf
bioactive compounds and PPARG (Table 2). Cycloartenol
showed the highest binding affinity (−9.5 kcal/mol), engaging
residues such as HIS351 and LYS502 through hydrophobic
interactions. Sitogluside (−8.5 kcal/mol) formed hydrogen bonds
with HIS351 and HIS477, and had multiple hydrophobic
interactions. Isorhamnetin (−7.9 kcal/mol) formed a hydrogen
bond with SER317, while kaempferol (−7.8 kcal/mol) formed one
with LEU496. Both compounds also exhibited significant
hydrophobic interactions. Other notable compounds, such as
anonaine and remirin, showed binding affinities of −7.8 kcal/mol

FIGURE 9
Performance metrics of Random Forest (RF) and Extreme Gradient Boosting (XGB) models using five different molecular fingerprints for PPARG
inhibitor prediction.
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with distinct hydrogen and hydrophobic bonds. TThese findings
highlight the potential of cycloartenol and sitogluside as promising
PPARG ligands, contributing to the anti-obesity effects of Nelumbo
nucifera leaf bioactive compounds.

The two molecules with the highest affinity, Sitogluside
(Figure 8A) and Cycloartenol (Figure 8B), both belong to the
first category of molecules, with binding affinities of −8.5 kcal/
mol and −9.5 kcal/mol, respectively. The docking conformations
and binding sites are illustrated in Figure 8. We conducted
molecular dynamics simulations on the complexes of these two
molecules with the PPARG protein, as well as on the apo protein.
The interaction diagram in Figure 8A highlights various residues
involved in interactions: van der Waals interactions with residues
such as TYR348 and LEU496; conventional hydrogen bonds with
residues like HIS351 and HIS477; and alkyl interactions with
residues such as VAL478 and LYS502. Similarly, the interaction
diagram in Figure 8B details van der Waals interactions with
residues like CYS313 and PHE310, and alkyl interactions with
residues such as VAL321 and LEU497. These interactions are
crucial for understanding the binding affinity and specificity of
the ligands to the PPARG protein.

PPARG contains a well-defined hydrophobic binding pocket
that plays a critical role in ligand recognition and stabilization. This
pocket is composed of key hydrophobic residues, including LEU,
VAL, and ILE, which facilitate van der Waals interactions and
stabilize the binding of non-polar regions of ligands.
Additionally, hydrogen bonds contribute significantly to binding

specificity, with residues such as GLN487 and LYS488 forming
stable hydrogen bonds with ligand functional groups. Aromatic
interactions, including π-alkyl and π-π stacking with residues like
TYR473 and HIS477, further enhance ligand binding by providing
additional stability through π-electron interactions. These findings
suggest that an effective PPARG inhibitor may ideally engage
multiple interaction types, including hydrophobic, hydrogen
bond, and π-interactions, to ensure both specificity and
binding strength.

Target prediction and reverse docking alone are insufficient for
achieving biological significance, as it is challenging to distinguish
between activity and inhibitory activity. To address this, we
developed machine learning models for predicting PPARG inhibitors.
The development of machine learning models for PPARG prediction
included the use of Random Forest (RF) and ExtremeGradient Boosting
(XGB) algorithms, with five molecular fingerprints (MACCS, Morgan,
RDKit, Topological Torsion, AtomPairsFP) as inputs, resulting in
10 models in total. The performance of each model, evaluated using
metrics such as sensitivity (SE), specificity (SP), accuracy (ACC),
Matthews correlation coefficient (MCC), precision (P), F1 score (F1),
balanced accuracy (BA), and area under the ROC curve (AUC), is
summarized in Figure 9.

The XGB models generally performed well, with Morgan-
XGBoost achieving the highest AUC (0.9661) and precision
(0.9775), indicating its robustness in identifying true positive
PPARG inhibitors while minimizing false positives. The
confusion matrices for the XGB models (Figure 10) further

FIGURE 10
Confusion matrices for the Extreme Gradient Boosting (XGB) models using different molecular fingerprints for PPARG inhibitor prediction.
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demonstrate this, with Morgan-XGBoost showing a very high true
negative rate (97.89%) and a reasonably high true positive rate
(86.14%), suggesting that this model can reliably predict PPARG
inhibitors with high specificity and good sensitivity. Other XGB

models, such as AtomPairsFP-XGBoost and TopologicalTorsion-
XGBoost, also showed strong performance in both specificity
(91.58% and 94.74%, respectively) and sensitivity (87.13% and
83.17%, respectively). The MACCS-XGBoost model exhibited a

FIGURE 11
Structural stability analysis of three systems. (A) SASA during a 100-nanosecondmolecular dynamics simulation. (B) Relative frequencies of SASA. (C)
Time evolution of RMSD from their initial structures for the three systems. (D) Relative frequencies of RMSDs. (E) Radius of gyration (Rg) for three systems
during a 100-nanosecond molecular dynamics simulation. (F) Relative frequencies of radius gyration.
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slightly lower sensitivity (81.19%) but maintained a high specificity
(96.84%), reflecting its effectiveness in filtering out false positives
while being slightly more conservative in identifying true positives.
The Morgan-XGBoost model, with its high precision and balanced
accuracy, is particularly suited for distinguishing between active and
inactive PPARG inhibitors. Using the best-performing model,
Morgan-XGBoost, Cycloartenol and Sitogluside were both
identified as potential PPARG inhibitors.

Several mutations, including R357A and V290M in PPARG,
render it unresponsive to drugs. To mitigate this impact, we used the
R357A PPARG mutant (PDB ID: 4O8F) and the V290M PPARG
mutant (PDB ID: 4OJ4) and conducted molecular docking at the
same site using a consistent method. The results are provided in the
supplementary material. Sitogluside showed an affinity of −7.5 kcal/
mol with R357A and −8.5 kcal/mol with V290M, while Cycloartenol
had an affinity of −8.0 kcal/mol with R357A and −8.6 kcal/mol with
V290M. It can be observed that both Sitogluside and Cycloartenol
maintained high affinity in unresponsive mutants (Bharti
et al., 2021).

3.4 Molecular dynamics simulation

Molecular dynamics simulations were performed for the three
systems (Sitogluside, Cycloartenol and Apo). The solvent-accessible

surface area (SASA) of a protein can be used to analyze its
hydrophobicity and the degree of surface exposure (Wang et al.,
2023). Higher SASA values indicate greater hydrophobicity, while
lower values indicate less. As shown in Figure 11A, the SASA of
Sitogluside decreases after 40 ns, falling below that of the apo protein
(Apo) and Cycloartenol, indicating that the conformation of the
protein changes after binding with this inhibitor, resulting in
increased hydrophobicity and a more closed surface. Figure 11B
shows that the SASA distribution center of Sitogluside is at 140 nm2,
while those of Apo and Cycloartenol are at 145 nm2, which is
consistent with the trend observed in the line chart.

The root mean square deviation (RMSD) of the backbone
carbon atoms relative to their initial positions is an indicator of
the stability of the simulated system and reveals the deviation of the
complex from its initial conformation, indicating conformational
changes. Analysis of Figure 11C shows that the RMSD of Sitogluside
is higher than that of the apo protein (Apo) and Cycloartenol after
20 ns, indicating greater conformational changes. As shown in
Figure 11D, the RMSD distribution center of Sitogluside is at
1.7 Å, also higher than that of Apo and Cycloartenol, which
aligns with the trend observed in the line chart.

The radius of gyration (Rg) reveals the compactness of the
complex. Analysis of Figure 11E, F shows that the Rg of Sitogluside is
smaller than that of Cycloartenol, indicating a more compact
conformation after binding. However, the Rg of Sitogluside is

FIGURE 12
The RMSFs of the CA atoms.

FIGURE 13
Secondary structure analysis of the protein in three systems. (A) Apo (B) Sitogluside (C) Cycloartenol.
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slightly larger than that of Apo, because Apo is an apo protein
without the supporting effect of a ligand.

The root mean square fluctuation (RMSF) of protein amino acids is
used to analyze the extent of fluctuation of individual amino acids
during the simulation process, revealing the flexibility changes of
residues (Figure 12). The overall lower RMSF of Sitogluside
indicates better stability, suggesting that Sitogluside induces a stable
conformational change in PPARG. Therefore, despite having a higher
RMSD value, Sitogluside maintains a relatively low RMSF.

We performed a protein secondary structure (DSSP) analysis
and found no significant changes (Figure 13). This reveals that the
influence of Sitogluside on PPARG is not closely related to
secondary structure changes. Instead of affecting the
conformation of alpha-helices, Sitogluside impacts the overall
compactness of the protein by modulating the flexibility of loops.

After studying the conformational changes, we then focused on
the dynamic characteristics of the protein. The analysis of specific
motion patterns, as shown by PCA (Figures 14A–C), indicates that
the first two principal components of the apo group and the
Cycloartenol group account for only 27.1% and 28.8% of the
motion modes, with PC1 accounting for only 16.7% and 16.2%,
respectively. In contrast, the first two principal components of the
Sitogluside group account for 40.5%, with PC1 alone accounting for
32.9%. This reveals that the binding of Sitogluside leads to significant
differences in the protein’s motion patterns.

To investigate the changes in the internal motion patterns of the
protein, we calculated the dynamic cross-correlation matrix (DCCM)
for each residue in the three systems (Figures 14D–F). Blue indicates
positive correlated motion between related residues, while pink
indicates negatively correlated motion between related residues. The
diagonal correlations are relatively high because they represent the
correlation of a residue with its own motion. Compared to the Apo
group, the blue and pink colors in the Cycloartenol group are slightly
deeper, indicating a slight increase in internal interconnectivity and a
similar overall matrix shape, suggesting that its dynamic characteristics
have not significantly changed.

In contrast, the Sitogluside group shows a substantial increase in
internal correlation. The 1–80 region exhibits enhanced positive
correlation within itself, the 80–175 region shows increased negative
correlation with the 1–80 region, the 80–175 region also has increased
negative correlation with the 175–200 region, and the 230–270 region
shows increased positive correlation within itself. Previously

FIGURE 14
PCA analysis of the three systems. (A) Apo. (B) Sitogluside (C) Cycloartenol. Covariance matrix analysis of three systems. (D) Apo. (E) Sitogluside (F)
Cycloartenol.

TABLE 3 The result of MM-PBSA.

System Sitogluside Cycloartenol

ΔEvdW −68.81 ± 4.29 −48.29 ± 2.49

ΔEele −4.52 ± 3.25 −2.52 ± 2.04

ΔGgas −73.33 ± 5.19 −50.81 ± 2.99

ΔGsolv 36.84 ± 3.13 17.39 ± 1.84

ΔGtotal −36.49 ± 3.69 −33.41 ± 2.34
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uncorrelated white regions have become interrelated, visibly changing
the matrix shape. Loosely packed proteins generally have lower internal
motion interconnectivity, indicating that the binding of Sitogluside
increases the protein’s compactness by affecting flexible regions, thereby
enhancing internal stability and interconnectivity.

Finally, we analyzed the binding energy contributions using the
Molecular Mechanics Poisson-Boltzmann Surface Area (MM-
PBSA) method. The binding energy are shown in Table 3, and
the energy contribution graph is illustrated as Figure 15.

The results of the MM-PBSA (Molecular Mechanics Poisson-
Boltzmann Surface Area) are presented in Table 2. This method
evaluates the binding free energy between the ligand and the target
enzyme, providing a quantitative measure of the interaction strength.
Sitogluside exhibited a binding free energy of −36.49 ± 3.69 kcal/mol,
indicating a stronger binding affinity than Cycloartenol which showed a
binding free energy of −33.41 ± 2.34 kcal/mol.

In summary, we identified 18 bioactive compounds from
Nelumbo nucifera leaves with potential anti-obesity effects,
focusing on their interactions with the PPARG protein.
Clustering analysis classified these compounds into three distinct
groups, with sitogluside, kaempferol, and nuciferine selected as
representative molecules for further evaluation.

The molecular docking results revealed significant interactions
between these compounds and PPARG, with sitogluside and
cycloartenol displaying the highest binding affinities (−9.5 kcal/
mol and −8.5 kcal/mol, respectively). Sitogluside demonstrated
multiple hydrogen bonds with key residues such as HIS351 and
HIS477, as well as extensive hydrophobic interactions, indicating a
strong inhibitory potential. Cycloartenol exhibited similar binding
strength, primarily through hydrophobic interactions involving
residues such as LEU481 and VAL350.

Machine learning models, including Random Forest (RF) and
Extreme Gradient Boosting (XGB), were trained to predict

PPARG inhibitors based on molecular fingerprints. The XGB
model using Morgan fingerprints demonstrated the best
performance, achieving an AUC-ROC of 0.9661, with high
precision and specificity. Sitogluside and cycloartenol were
both predicted as likely PPARG inhibitors by the XGB model,
validating our docking findings.

Molecular dynamics (MD) simulations were conducted for the
PPARG complexes with sitogluside, cycloartenol, and the apo
protein. The SASA, RMSD, and Rg analyses indicated that
sitogluside binding led to a more compact and stable PPARG
structure. The root mean square fluctuation (RMSF) analysis
revealed that sitogluside reduced flexibility in key regions, further
supporting its potential as a stabilizing ligand for PPARG. Principal
component analysis (PCA) and dynamic cross-correlation matrix
(DCCM) analysis highlighted significant shifts in PPARG’s motion
patterns upon sitogluside binding, suggesting an allosteric effect.

Overall, the results indicate that sitogluside, followed closely by
cycloartenol, exhibits strong binding and stabilizing interactions
with PPARG, providing a molecular basis for their potential anti-
obesity effects. These findings suggest that Nelumbo nucifera
bioactive compounds could serve as promising candidates for
natural PPARG modulators in obesity treatment.

3.5 Effects of Sitogluside on lipid
accumulation and triglyceride levels in 3T3-
L1 cells

Treatment with Sitogluside significantly reduced lipid
accumulation in 3T3-L1 cells in a dose-dependent manner
(Figure 16A–C). The untreated cells showed a high percentage of
lipid accumulation (~43%), which decreased to ~22%with 5 µM and
further to ~15% with 10 µM Sitogluside (Figure 16D).

FIGURE 15
MM-PBSA energy contribution and hydrogen bonds. (A) Sitogluside (B) Cycloartenol.
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Consistent with the reduction in visible lipid accumulation, the
optical density measurements at 490 nm decreased with increasing
Sitogluside concentrations. Cells treated with 0 µM Sitogluside
exhibited an OD of approximately 0.175, which reduced to
0.125 with 5 µM and further to 0.085 with 10 µM (Figure 16E).

A similar trend was observed in the triglyceride concentrations
measured in the cells. The control group displayed high triglyceride
levels (approximately 500 μmol/L), which significantly dropped to
about 250 μmol/L with 5 µM Sitogluside and to around 50 μmol/L
with 10 µM Sitogluside treatment (Figure 16F).

These results demonstrate the efficacy of Sitogluside in
modulating lipid metabolism in 3T3-L1 cells, suggesting its
potential as a therapeutic agent in the treatment of obesity.

4 Discussion

This study investigates the potential of bioactive compounds from
Nelumbo nucifera (lotus leaf), specifically sitogluside and cycloartenol,
as inhibitors of peroxisome proliferator-activated receptor gamma
(PPARG)—a nuclear receptor integral to adipogenesis and glucose
metabolism. By integrating molecular docking, machine learning, and

molecular dynamics (MD) simulations, we provide a comprehensive
evaluation of these compounds as natural PPARG modulators.
However, it is essential to contextualize our computational findings
within the broader literature on PPARG inhibition, acknowledging both
the strengths and limitations of our approach.

Anotable strength of this study is the application ofmachine learning,
particularly the Extreme Gradient Boosting (XGB) model with Morgan
fingerprints, to enhance the accuracy and efficiency of identifying
potential PPARG inhibitors. Achieving an AUC-ROC of 0.9661, our
model aligns with and slightly surpasses previous studies where similar
machine learning methodologies attained predictive accuracies around
0.94 for ligand classification tasks (Wu et al., 2024). This high accuracy
underscores the robustness of our computational model, highlighting the
growing role of artificial intelligence in accelerating the screening process
for bioactive natural compounds, as evidenced in recent cheminformatics
research (Wu et al., 2024; Liu et al., 2024).

Molecular dynamics simulations further enriched our
understanding by revealing that sitogluside binding enhances
PPARG’s structural stability, as evidenced by decreased solvent-
accessible surface area (SASA), lower root mean square deviation
(RMSD), and reduced radius of gyration (Rg). Previous studies have
shown that ligand-induced receptor stabilization can significantly

FIGURE 16
Effects of Sitogluside on Lipid Accumulation and Triglyceride Levels in 3T3-L1 Cells. (A–C) Representativemicroscopy images of 3T3-L1 cells stained
with Oil Red O showing lipid accumulation at Sitogluside concentrations of 0 µM (A), 5 µM (B), and 10 µM (C). (D)Graph illustrating the percentage of lipid
accumulation in 3T3-L1 cells at different concentrations of Sitogluside. A clear dose-dependent decrease in lipid accumulation is observed. (E) Optical
density (OD) at 490 nm of extracted dye from Oil Red O staining, demonstrating decreased lipid content with increasing concentrations of
Sitogluside. (F) Triglyceride (TG) concentration measured in µmol/L, showing a significant reduction in triglyceride levels as the concentration of
Sitogluside increases.
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inhibit receptor activity by limiting the flexibility of key functional
regions, corroborating our findings (Zhang et al., 2024).
Furthermore, the observed allosteric modulation in PPARG’s
motion patterns upon sitogluside binding, supported by principal
component analysis (PCA) and dynamic cross-correlation matrix
(DCCM) analyses, resonates with other research indicating that
natural ligands may induce conformational adjustments in nuclear
receptors, thereby offering a mechanism for selective inhibition.

However, this study’s reliance on computational methods also
poses limitations. Molecular docking and dynamics simulations,
though informative, may not capture all aspects of ligand behavior in
a biological context. For instance, computational estimates of
binding affinity may differ from in vitro or in vivo results due to
factors like solvation effects, receptor flexibility, and simplifications
in molecular models (Cataldi et al., 2021).

While sitogluside and cycloartenol exhibit high binding
affinities and stabilizing effects, their pharmacokinetics and
bioavailability remain unexplored. Similar studies on natural
PPARG inhibitors have shown that compounds with strong
computational predictions sometimes lack sufficient
bioavailability or metabolic stability when tested
experimentally (Stone et al., 2022). This is a critical gap that
future research should address to better assess the therapeutic
viability of these compounds.

In summary, sitogluside and cycloartenol emerge from our analysis
as promising PPARG inhibitors, demonstrating binding affinities and
stabilization effects comparable to other plant-derived PPARG
modulators. However, bridging computational predictions with
experimental validations remains essential to substantiate their
therapeutic potential. Our findings underscore the feasibility of
leveraging Nelumbo nucifera bioactives in anti-obesity treatments
and illustrate the potential of combining machine learning with
molecular modeling to streamline natural product research. Further
exploration into the pharmacodynamics and clinical viability of these
compounds would strengthen their candidacy as therapeutic agents.

5 Conclusion

This study has demonstrated the significant anti-obesity
potential of Nelumbo nucifera Leaf Bioactive Compounds
through an in-depth computational biology approach. By
identifying and analyzing the active compounds in Nelumbo
nucifera leaves, we have provided a detailed understanding of
their molecular mechanisms and therapeutic effects. Clustering
analysis pinpointed Sitogluside, Kaempferol, and Nuciferine as
the primary active components. These molecules were found to
interact with key obesity-related genes, notably PPARG,
highlighting their relevance in obesity treatment.

Functional enrichment analyses using Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways revealed that the active compounds influence critical
biological processes and pathways, including inflammation
regulation, cellular signaling, and metabolic processes. These
interactions suggest a multifaceted approach by which
Nelumbo nucifera Leaf Bioactive Compounds exert their anti-
obesity effects.

Molecular docking studies demonstrated strong binding affinities of
Sitogluside and Cycloartenol to PPARG, with Sitogluside showing the
highest affinity. Machine learning modesl were established for PPARG
inhibitors screening, Sitogluside and Cycloartenol were predicted as
inhibitors.

Molecular dynamics simulations further confirmed that these
interactions significantly impact the stability and conformation of
the PPARG protein. Sitogluside was found to enhance the stability
and compactness of PPARG, as indicated by various stability metrics
such as SASA, RMSD, Rg, and RMSF.

Crucially, cellular assays demonstrated that Sitogluside
significantly reduces lipid accumulation and triglyceride levels in
3T3-L1 cells, validating its functional efficacy in a biological setting.

Overall, our findings underscore the potential of Nelumbo
nucifera Leaf Bioactive Compounds, particularly Sitogluside, as
effective natural agents for obesity treatment. This study paves
the way for future research and development of lotus leaf-based
therapies, offering a promising alternative to conventional anti-
obesity drugs.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Ethics statement

Ethical approval was not required for the study involving
humans in accordance with the local legislation and institutional
requirements. Written informed consent to participate in this
study was not required from the participants or the participants’
legal guardians/next of kin in accordance with the national
legislation and the institutional requirements. The manuscript
presents research on animals that do not require ethical approval
for their study.

Author contributions

HH: Conceptualization, Data curation, Formal Analysis,
Investigation, Methodology, Writing–original draft, Writing–review
and editing, Visualization. CL: Formal Analysis, Methodology,
Writing–review and editing. CC: Software, Validation,
Writing–original draft. MC: Data curation, Investigation, Validation,
Writing–review and editing. RL: Resources, Validation,Writing–review
and editing. JY: Funding acquisition, Project administration,
Supervision, Writing–review and editing.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. This research
was funded by the National Key R&D Program of China under
Grant 2022YFF1100404.

Frontiers in Pharmacology frontiersin.org19

Huang et al. 10.3389/fphar.2024.1500865

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1500865


Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fphar.2024.1500865/
full#supplementary-material

References

Abdi, H., and Williams, L. J. (2010). Principal component analysis. Wiley
Interdiscip. Rev. Comput. Stat. 2, 433–459. doi:10.1002/wics.101

Acosta, A., Dayyeh, B. K. A., Port, J. D., and Camilleri, M. (2014). Recent advances in
clinical practice challenges and opportunities in the management of obesity. Gut 63,
687–695. doi:10.1136/gutjnl-2013-306235

Allison, D. B., Fontaine, K. R., Heshka, S., Mentore, J. L., and Heymsfield, S. B. (2001).
Alternative treatments for weight loss: a critical review. Crit. Rev. food Sci. Nutr. 41,
1–28. doi:10.1080/20014091091661

Athanasios, A., Charalampos, V., Vasileios, T., and Ashraf, G. M. (2017). Protein-
protein interaction (PPI) network: recent advances in drug discovery. Curr. drug Metab.
18, 5–10. doi:10.2174/138920021801170119204832

Awale, M., Jin, X., and Reymond, J.-L. (2015). Stereoselective virtual screening of the
ZINC database using atom pair 3D-fingerprints. J. cheminformatics 7, 3–15. doi:10.
1186/s13321-014-0051-5

Bajusz, D., Rácz, A., and Héberger, K. (2015). Why is Tanimoto index an appropriate
choice for fingerprint-based similarity calculations? J. cheminformatics 7, 20–13. doi:10.
1186/s13321-015-0069-3

Ballinger, A., and Peikin, S. R. (2002). Orlistat: its current status as an anti-obesity
drug. Eur. J. Pharmacol. 440, 109–117. doi:10.1016/s0014-2999(02)01422-x

Belgiu, M., and Drăguţ, L. (2016). Random forest in remote sensing: a review of
applications and future directions. ISPRS J. photogrammetry remote Sens. 114, 24–31.
doi:10.1016/j.isprsjprs.2016.01.011

Bharti, R., Yamini, Y., Bhardwaj, V. K., Bal Reddy, C., Purohit, R., and Das, P. (2021).
Benzosuberene-sulfone analogues synthesis from Cedrus deodara oil and their
therapeutic evaluation by computational analysis to treat type 2 diabetes. Bioorg.
Chem. 112, 104860. doi:10.1016/j.bioorg.2021.104860

Boccellino, M., and D’Angelo, S. (2020). Anti-obesity effects of polyphenol intake: current
status and future possibilities. Int. J. Mol. Sci. 21, 5642. doi:10.3390/ijms21165642

Carlson, M., Falcon, S., Pages, H., and Li, N. (2019). org. Hs. eg. db: genome wide
annotation for Human. R. package version 3, 3.

Case, D. A., Duke, R. E., Walker, R. C., Skrynnikov, N. R., Cheatham III, T. E.,
Mikhailovskii, O., et al. (2022). AMBER 22 reference manual.

Cataldi, S., Costa, V., Ciccodicola, A., and Aprile, M. (2021). PPARγ and diabetes:
beyond the genome and towards personalized medicine. Curr. Diabetes Rep. 21, 18.
doi:10.1007/s11892-021-01385-5

Curioni, C., and André, C. (2006). Rimonabant for overweight or obesity. Cochrane
database Syst. Rev. 2006, CD006162. doi:10.1002/14651858.CD006162.pub2

Daina, A., Michielin, O., and Zoete, V. (2019). SwissTargetPrediction: updated data
and new features for efficient prediction of protein targets of small molecules. Nucleic
acids Res. 47, W357–W364. doi:10.1093/nar/gkz382

Eberhardt, J., Santos-Martins, D., Tillack, A. F., and Forli, S. (2021). AutoDock Vina
1.2. 0: new docking methods, expanded force field, and python bindings. J. Chem. Inf.
Model. 61, 3891–3898. doi:10.1021/acs.jcim.1c00203

Elber, R., Ruymgaart, A. P., and Hess, B. (2011). SHAKE parallelization. Eur. Phys.
J. Special Top. 200, 211–223. doi:10.1140/epjst/e2011-01525-9

Fan, Q., Xu, F., Liang, B., and Zou, X. (2021). The anti-obesity effect of traditional
Chinese medicine on lipid metabolism. Front. Pharmacol. 12, 696603. doi:10.3389/
fphar.2021.696603

Gallo, K., Goede, A., Preissner, R., and Gohlke, B.-O. (2022). SuperPred 3.0: drug
classification and target prediction—a machine learning approach. Nucleic Acids Res.
50, W726–W731. doi:10.1093/nar/gkac297

Gaulton, A., Bellis, L. J., Bento, A. P., Chambers, J., Davies, M., Hersey, A., et al.
(2012). ChEMBL: a large-scale bioactivity database for drug discovery.Nucleic acids Res.
40, D1100–D1107. doi:10.1093/nar/gkr777

Genheden, S., and Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to
estimate ligand-binding affinities. Expert Opin. drug Discov. 10, 449–461. doi:10.1517/
17460441.2015.1032936

Grant, B. J., Skjaerven, L., and Yao, X. Q. (2021). The Bio3D packages for structural
bioinformatics. Protein Sci. 30, 20–30. doi:10.1002/pro.3923

Harris, M. A., Clark, J., Ireland, A., Lomax, J., Ashburner, M., Foulger, R., et al. (2004).
The Gene Ontology (GO) database and informatics resource. Nucleic acids Res. 32,
D258–D261. doi:10.1093/nar/gkh036

He, Y., Liu, K., Cao, F., Song, R., Liu, J., Zhang, Y., et al. (2024). Using deep learning and
molecular dynamics simulations to unravel the regulation mechanism of peptides as
noncompetitive inhibitor of xanthine oxidase. Sci. Rep. 14, 174. doi:10.1038/s41598-023-
50686-0

He, Y., Liu, K., Han, L., and Han, W. (2022). Clustering analysis, structure fingerprint
analysis, and quantum chemical calculations of compounds from essential oils of
sunflower (helianthus annuus L.) receptacles. Int. J. Mol. Sci. 23, 10169. doi:10.3390/
ijms231710169

Hewett, M., Oliver, D. E., Rubin, D. L., Easton, K. L., Stuart, J. M., Altman, R. B., et al.
(2002). PharmGKB: the pharmacogenetics knowledge base. Nucleic acids Res. 30,
163–165. doi:10.1093/nar/30.1.163

Hollingsworth, S. A., and Dror, R. O. (2018). Molecular dynamics simulation for all.
Neuron 99, 1129–1143. doi:10.1016/j.neuron.2018.08.011

Irwin, S., Karr, C., Furman, C., Tsai, J., Gee, P., Banka, D., et al. (2022). Biochemical
and structural basis for the pharmacological inhibition of nuclear hormone receptor
PPARγ by inverse agonists. J. Biol. Chem. 298, 102539. doi:10.1016/j.jbc.2022.102539

Jow, H., Sprung, J., Ritchie, L., Rollstin, J., and Chanin, D. (1990). MELCOR accident
consequence code system (MACCS). Washington, DC (USA): Nuclear Regulatory
Commission.

Kanehisa, M., and Goto, S. (2000). KEGG: kyoto encyclopedia of genes and genomes.
Nucleic acids Res. 28, 27–30. doi:10.1093/nar/28.1.27

Khan, M. S. H., and Hegde, V. (2020). Obesity and diabetes mediated chronic
inflammation: a potential biomarker in Alzheimer’s disease. J. personalized Med. 10, 42.
doi:10.3390/jpm10020042

Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., et al. (2019). PubChem
2019 update: improved access to chemical data. Nucleic acids Res. 47, D1102–D1109.
doi:10.1093/nar/gky1033

Kohl, M., Wiese, S., and Warscheid, B. (2011). Cytoscape: software for visualization
and analysis of biological networks. Data Min. proteomics Stand. Appl. 696, 291–303.
doi:10.1007/978-1-60761-987-1_18

Landrum, G. R. D. K. (2013). A software suite for cheminformatics, computational
chemistry, and predictive modeling. Greg Landrum 8, 5281.

Liu, K., Guo, F., Ma, Y., Yu, X., Fu, X., Li, W., et al. (2023). Functionalized fullerene
potentially inhibits SARS-CoV-2 infection by modulating spike protein conformational
changes. Int. J. Mol. Sci. 24, 14471. doi:10.3390/ijms241914471

Liu, K., Yu, X., Cui, H., Li, W., and Han, W. (2024). GPT4Kinase: high-accuracy
prediction of inhibitor-kinase binding affinity utilizing large language model. Int. J. Biol.
Macromol. 282, 137069. doi:10.1016/j.ijbiomac.2024.137069

Lopez-Jimenez, F., Almahmeed, W., Bays, H., Cuevas, A., Di Angelantonio, E., le Roux, C.
W., et al. (2022). Obesity and cardiovascular disease: mechanistic insights and management
strategies. A joint position paper by the World Heart Federation and World Obesity
Federation. Eur. J. Prev. Cardiol. 29, 2218–2237. doi:10.1093/eurjpc/zwac187

Martins, I. J. (2013). Increased risk for obesity and diabetes with neurodegeneration in
developing countries. J. Mol. Genet. Med. 1, 1. doi:10.4172/1747-0862.S1-001

Mohajan, D., and Mohajan, H. K. (2023). Obesity and its related diseases: a new
escalating alarming in global health. J. Innovations Med. Res. 2, 12–23. doi:10.56397/
jimr/2023.03.04

Frontiers in Pharmacology frontiersin.org20

Huang et al. 10.3389/fphar.2024.1500865

https://www.frontiersin.org/articles/10.3389/fphar.2024.1500865/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphar.2024.1500865/full#supplementary-material
https://doi.org/10.1002/wics.101
https://doi.org/10.1136/gutjnl-2013-306235
https://doi.org/10.1080/20014091091661
https://doi.org/10.2174/138920021801170119204832
https://doi.org/10.1186/s13321-014-0051-5
https://doi.org/10.1186/s13321-014-0051-5
https://doi.org/10.1186/s13321-015-0069-3
https://doi.org/10.1186/s13321-015-0069-3
https://doi.org/10.1016/s0014-2999(02)01422-x
https://doi.org/10.1016/j.isprsjprs.2016.01.011
https://doi.org/10.1016/j.bioorg.2021.104860
https://doi.org/10.3390/ijms21165642
https://doi.org/10.1007/s11892-021-01385-5
https://doi.org/10.1002/14651858.CD006162.pub2
https://doi.org/10.1093/nar/gkz382
https://doi.org/10.1021/acs.jcim.1c00203
https://doi.org/10.1140/epjst/e2011-01525-9
https://doi.org/10.3389/fphar.2021.696603
https://doi.org/10.3389/fphar.2021.696603
https://doi.org/10.1093/nar/gkac297
https://doi.org/10.1093/nar/gkr777
https://doi.org/10.1517/17460441.2015.1032936
https://doi.org/10.1517/17460441.2015.1032936
https://doi.org/10.1002/pro.3923
https://doi.org/10.1093/nar/gkh036
https://doi.org/10.1038/s41598-023-50686-0
https://doi.org/10.1038/s41598-023-50686-0
https://doi.org/10.3390/ijms231710169
https://doi.org/10.3390/ijms231710169
https://doi.org/10.1093/nar/30.1.163
https://doi.org/10.1016/j.neuron.2018.08.011
https://doi.org/10.1016/j.jbc.2022.102539
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.3390/jpm10020042
https://doi.org/10.1093/nar/gky1033
https://doi.org/10.1007/978-1-60761-987-1_18
https://doi.org/10.3390/ijms241914471
https://doi.org/10.1016/j.ijbiomac.2024.137069
https://doi.org/10.1093/eurjpc/zwac187
https://doi.org/10.4172/1747-0862.S1-001
https://doi.org/10.56397/jimr/2023.03.04
https://doi.org/10.56397/jimr/2023.03.04
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1500865


Nestler, G. (2002). Traditional Chinese medicine. Med. Clin. 86, 63–73. doi:10.1016/
s0025-7125(03)00072-5

Nilakantan, R., Bauman, N., Dixon, J. S., and Venkataraghavan, R. (1987).
Topological torsion: a new molecular descriptor for SAR applications. Comparison
with other descriptors. J. Chem. Inf. Comput. Sci. 27, 82–85. doi:10.1021/ci00054a008

Nolte, R. T., Wisely, G. B., Westin, S., Cobb, J. E., Lambert, M. H., Kurokawa, R., et al.
(1998). Ligand binding and co-activator assembly of the peroxisome proliferator-
activated receptor-gamma. Nature 395, 137–143. doi:10.1038/25931

O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., and
Hutchison, G. R. (2011). Open Babel: an open chemical toolbox. J. cheminformatics
3, 1–14.

Onakpoya, I., Hung, S. K., Perry, R., Wider, B., and Ernst, E. (2011). The use of green
coffee extract as a weight loss supplement: a systematic review and meta-analysis of
randomised clinical trials. J. Obes. 2011, 382852. doi:10.1155/2011/382852

Padwal, R. S., and Majumdar, S. R. (2007). Drug treatments for obesity: orlistat,
sibutramine, and rimonabant. Lancet 369, 71–77. doi:10.1016/S0140-6736(07)60033-6

Patel, D. (2015). Pharmacotherapy for the management of obesity. Metabolism 64,
1376–1385. doi:10.1016/j.metabol.2015.08.001

Piñero, J., Bravo, À., Queralt-Rosinach, N., Gutiérrez-Sacristán, A., Deu-Pons, J.,
Centeno, E., et al. (2016). DisGeNET: a comprehensive platform integrating
information on human disease-associated genes and variants. Nucleic acids Res. 45,
D833–D839. doi:10.1093/nar/gkw943

Qi, F., Zhao, L., Zhou, A., Zhang, B., Li, A., Wang, Z., et al. (2015). The advantages of
using traditional Chinese medicine as an adjunctive therapy in the whole course of
cancer treatment instead of only terminal stage of cancer. Biosci. trends 9, 16–34. doi:10.
5582/bst.2015.01019

Qiao, Z., Li, L., Li, S., Liang, H., Zhou, J., and Snurr, R. Q. (2021). Molecular
fingerprint and machine learning to accelerate design of high-performance homochiral
metal–organic frameworks. AIChE J. 67, e17352. doi:10.1002/aic.17352

Rauf, A., Uddin, G., Patel, S., Khan, A., Halim, S. A., Bawazeer, S., et al. (2017).
Diospyros, an under-utilized, multi-purpose plant genus: a review. Biomed. and
Pharmacother. 91, 714–730. doi:10.1016/j.biopha.2017.05.012

Roe, D. R., Cheatham, I. I. I., and Ptraj, T. E. (2013). CPPTRAJ: software for
processing and analysis of molecular dynamics trajectory data. J. Chem. theory
Comput. 9, 3084–3095.

Ru, J., Li, P., Wang, J., Zhou, W., Li, B., Huang, C., et al. (2014). TCMSP: a database of
systems pharmacology for drug discovery from herbal medicines. J. cheminformatics 6,
13–16. doi:10.1186/1758-2946-6-13

Safran, M., Dalah, I., Alexander, J., Rosen, N., Iny Stein, T., Shmoish, M., et al. (2010).
GeneCards Version 3: the human gene integrator. Database 2010, baq020. doi:10.1093/
database/baq020

Semwal, R. B., Semwal, D. K., Vermaak, I., and Viljoen, A. (2015). A comprehensive
scientific overview of Garcinia cambogia. Fitoterapia 102, 134–148. doi:10.1016/j.fitote.
2015.02.012

Sergent, T., Vanderstraeten, J., Winand, J., Beguin, P., and Schneider, Y.-J. (2012).
Phenolic compounds and plant extracts as potential natural anti-obesity substances.
Food Chem. 135, 68–73. doi:10.1016/j.foodchem.2012.04.074

Sheridan, R. P., Wang, W. M., Liaw, A., Ma, J., and Gifford, E. M. (2016). Extreme
gradient boosting as a method for quantitative structure–activity relationships. J. Chem.
Inf. Model. 56, 2353–2360. doi:10.1021/acs.jcim.6b00591

Smith, S. M., Meyer, M., and Trinkley, K. E. (2013). Phentermine/topiramate
for the treatment of obesity. Ann. Pharmacother. 47, 340–349. doi:10.1345/aph.
1R501

Song, R., Liu, K., He, Q., He, F., and Han, W. (2024). Exploring bitter and sweet: the
application of large language models in molecular taste prediction. J. Chem. Inf. Model
64, 4102–4111. doi:10.1021/acs.jcim.4c00681

Sridhar, K., and Bhat, R. (2007). Lotus-A potential nutraceutical source. J. Agric.
Technol. 3, 143–155.

Stone, S., Newman, D. J., Colletti, S. L., and Tan, D. S. (2022). Cheminformatic
analysis of natural product-based drugs and chemical probes.Nat. Prod. Rep. 39, 20–32.
doi:10.1039/d1np00039j

UniProt Consortium (2015). UniProt: a hub for protein information. Nucleic acids
Res. 43, D204–D212. doi:10.1093/nar/gku989

Ursu, O., Rayan, A., Goldblum, A., and Oprea, T. I. (2011). Understanding drug-
likeness. Wiley Interdiscip. Rev. Comput. Mol. Sci. 1, 760–781. doi:10.1002/wcms.52

Van der Maaten, L., and Hinton, G. (2008). Visualizing data using t-SNE. J. Mach.
Learn. Res. 9, 2579–2605.

Veber, D. F., Johnson, S. R., Cheng, H.-Y., Smith, B. R., Ward, K. W., and Kopple, K.
D. (2002). Molecular properties that influence the oral bioavailability of drug
candidates. J. Med. Chem. 45, 2615–2623. doi:10.1021/jm020017n

Velazquez, A., and Apovian, C. M. (2018). Updates on obesity pharmacotherapy.
Ann. N. Y. Acad. Sci. 1411, 106–119. doi:10.1111/nyas.13542

Wagner, R. A., and Fischer, M. J. (1974). The string-to-string correction problem.
J. ACM (JACM) 21, 168–173. doi:10.1145/321796.321811

Wang, K., Cui, H., Liu, K., He, Q., Fu, X., Li, W., et al. (2024). Exploring the anti-gout
potential of sunflower receptacles alkaloids: a computational and pharmacological
analysis. Comput. Biol. Med. 172, 108252. doi:10.1016/j.compbiomed.2024.108252

Wang, M., Liu, K., Ma, Y., and Han, W. (2023). Probing the mechanisms of inhibitors
binding to presenilin homologue using molecular dynamics simulations. Molecules 28,
2076. doi:10.3390/molecules28052076

Wang, Z., Cheng, Y., Zeng, M., Wang, Z., Qin, F., Wang, Y., et al. (2021). Lotus
(Nelumbo nucifera Gaertn.) leaf: a narrative review of its Phytoconstituents, health
benefits and food industry applications. Trends Food Sci. and Technol. 112, 631–650.
doi:10.1016/j.tifs.2021.04.033

Weininger, D. (1988). SMILES, a chemical language and information system. 1.
Introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 28, 31–36.
doi:10.1021/ci00057a005

Wise, S. D. (1992). Clinical studies with fluoxetine in obesity. Am. J. Clin. Nutr. 55,
181S–184S. doi:10.1093/ajcn/55.1.181s

Wu, J., Chen, Y., Wu, J., Zhao, D., Huang, J., Lin, M., et al. (2024). Large-scale
comparison of machine learning methods for profiling prediction of kinase inhibitors.
J. Cheminformatics 16, 13. doi:10.1186/s13321-023-00799-5

Yu, G., Wang, L.-G., Han, Y., and He, Q.-Y. (2012). clusterProfiler: an R package for
comparing biological themes among gene clusters. Omics a J. Integr. Biol. 16, 284–287.
doi:10.1089/omi.2011.0118

Zhang, J., Tang, M., and Shang, J. (2024). PPARγ modulators in lung cancer:
molecular mechanisms, clinical prospects, and challenges. Biomolecules 14, 190.
doi:10.3390/biom14020190

Zheng, C.-D., Duan, Y.-Q., Gao, J.-M., and Ruan, Z.-G. (2010). Screening for anti-
lipase properties of 37 traditional Chinese medicinal herbs. J. Chin. Med. Assoc. 73,
319–324. doi:10.1016/S1726-4901(10)70068-X

Zhong, S., and Guan, X. (2023). Count-based morgan fingerprint: a more efficient and
interpretable molecular representation in developing machine learning-based predictive
regression models for water contaminants’ activities and properties. Environ. Sci. and
Technol. 57, 18193–18202. doi:10.1021/acs.est.3c02198

Frontiers in Pharmacology frontiersin.org21

Huang et al. 10.3389/fphar.2024.1500865

https://doi.org/10.1016/s0025-7125(03)00072-5
https://doi.org/10.1016/s0025-7125(03)00072-5
https://doi.org/10.1021/ci00054a008
https://doi.org/10.1038/25931
https://doi.org/10.1155/2011/382852
https://doi.org/10.1016/S0140-6736(07)60033-6
https://doi.org/10.1016/j.metabol.2015.08.001
https://doi.org/10.1093/nar/gkw943
https://doi.org/10.5582/bst.2015.01019
https://doi.org/10.5582/bst.2015.01019
https://doi.org/10.1002/aic.17352
https://doi.org/10.1016/j.biopha.2017.05.012
https://doi.org/10.1186/1758-2946-6-13
https://doi.org/10.1093/database/baq020
https://doi.org/10.1093/database/baq020
https://doi.org/10.1016/j.fitote.2015.02.012
https://doi.org/10.1016/j.fitote.2015.02.012
https://doi.org/10.1016/j.foodchem.2012.04.074
https://doi.org/10.1021/acs.jcim.6b00591
https://doi.org/10.1345/aph.1R501
https://doi.org/10.1345/aph.1R501
https://doi.org/10.1021/acs.jcim.4c00681
https://doi.org/10.1039/d1np00039j
https://doi.org/10.1093/nar/gku989
https://doi.org/10.1002/wcms.52
https://doi.org/10.1021/jm020017n
https://doi.org/10.1111/nyas.13542
https://doi.org/10.1145/321796.321811
https://doi.org/10.1016/j.compbiomed.2024.108252
https://doi.org/10.3390/molecules28052076
https://doi.org/10.1016/j.tifs.2021.04.033
https://doi.org/10.1021/ci00057a005
https://doi.org/10.1093/ajcn/55.1.181s
https://doi.org/10.1186/s13321-023-00799-5
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.3390/biom14020190
https://doi.org/10.1016/S1726-4901(10)70068-X
https://doi.org/10.1021/acs.est.3c02198
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1500865

	Investigating the anti-obesity potential of Nelumbo nucifera leaf bioactive compounds through machine learning and computat ...
	1 Introduction
	2 Materials and methods
	2.1 Clustering analysis of small molecule data
	2.2 Prediction and analysis of potential obesity targets and Nelumbo nucifera leaf component interactions
	2.3 Construction and analysis of the Protein-Protein Interaction network
	2.4 Comprehensive enrichment analysis of GO and KEGG pathways
	2.5 Batch molecular docking of active components
	2.6 Machine learning
	2.7 Molecular dynamics simulations
	2.7.1 Secondary structure analysis
	2.7.2 Covariance matrix analysis
	2.7.3 Principal component analysis

	2.8 Validation of sitogluside on adipogenesis in 3T3-L1 cells

	3 Results
	3.1 Targets of active ingredients
	3.2 KEGG and GO analysis
	3.3 Molecular docking and machine learning screening
	3.4 Molecular dynamics simulation
	3.5 Effects of Sitogluside on lipid accumulation and triglyceride levels in 3T3-L1 cells

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


