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Insomnia is the most common sleep disorder in which an individual has trouble
falling or staying asleep. Chronic sleep loss interferes with daily functioning and
adversely affects health. The main clinical drugs for insomnia are the positive
allosteric modulator of the GABA (gamma-aminobutyric acid) A receptors
(GABAARs) at the benzodiazepine site with selectivity of the GABA-α1
receptor. They are divided into benzodiazepine drugs and non-
benzodiazepine drugs. Most recently, the first partial positive allosteric
modulator of GABAAR Dimdazenil was approved by National Medical Products
Administration (NMPA) and launched in China. This review summarized the
mechanism of actions of current clinical drugs for insomnia, and the clinical
applications of these drugs, which may help to understand their involvement in
insomnia, and to search for more selective and potent ligands to be used in the
treatment of insomnia.
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1 Introduction

Insomnia is a symptom characterized by difficulty with sleep onset and/or sleep
maintenance, which is defined by key criteria including insomnia symptoms along with
daytime symptoms occurring at least three times per week for at least 3 months (Riemann
et al., 2020). According to this definition, as long as daytime function is impaired, every
sleep complaint (whether related to sleep quality or sleep quantity) is sufficient to diagnose
insomnia (Morin et al., 2015; St Louis and Boeve, 2017). There is an increasing number of
people suffering from insomnia problems such as difficulty falling asleep, early awakening,
and short sleep duration currently due to the social and economic pressures of modern
societies which COVID-19 intensified. Insomnia is associated with impaired daytime
functioning, cognitive function, and occupational performance, resulting in irritability,
anxiety, fatigue, inattention, memory impairment, and increased reaction time (Luzzi et al.,
2022; Kantrowitz et al., 2009). Elder people are particularly vulnerable to insomnia, with
nearly half of people over 65 estimated to suffer from insomnia (Proserpio et al., 2022; Lou
and Oks, 2021). These symptoms are especially concerning in older adults, who may have
already experienced cognitive decline from aging or other conditions (Saletu et al., 2005).
Insomnia is linked to the development of Alzheimer’s disease (AD), with aging being the
biggest risk factor for late-onset AD (Wu et al., 2010). Chronic insomnia may seriously
affect our work and life, and increase the risk of physical and mental diseases, resulting in
various economic and social burden. With the increasing incidence of insomnia and the
growing self-awareness of patients, the demand for hypnotics increased gradually.
Presently, the main clinical drugs for insomnia are the positive allosteric modulator of
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the GABA (gamma-aminobutyric acid) A receptors (GABAARs) at
the benzodiazepine site with selectivity of the GABA-α1 receptor,
most of which have certain adverse reactions. Recently, Dimdazenil,
the first partial positive allosteric modulator of GABAAR, received
approval from the National Medical Products Administration
(NMPA) and was launched in China. This review outlines the
mechanisms of action and clinical applications of current
insomnia medications. Understanding these aspects may provide
insights into their role in treating insomnia and guide the search for
more selective and effective ligands for future therapies.

2 Underlying mechanisms of GABAA
receptor agonists in insomnia

The regulation of the sleep-wake cycle is complex involving
multiple brain circuits and signal pathways. On one hand,
interactions between a number of neuroanatomical and
neurochemical systems, including acetylcholine, norepinephrine,
dopamine, serotonin, histamine, and hypocretin (orexin), have
been shown to control waking state (Brown et al., 2012;
Schwartz, 2011). On the other hand, sleep onset is controlled by
the activity of sleep-promoting neurons located in the anterior part
of the hypothalamus, which utilizes GABA to inhibit areas that
promote wakefulness (Murillo-Rodriguez et al., 2012).

GABA is the main inhibitory neurotransmitter in the brain. It
plays a crucial inhibitory role in the central nervous system, and
regulates neural activity and emotions. GABA promotes relaxation
and sleep by inhibiting the excitability of neurons and reducing
neurotransmission and activity. In the brain, GABA exerts its effects
primarily through two types of receptors: GABA-A receptors
(GABAARs) and GABA-B receptors (GABABRs). GABAARs are
a family of ligand-gated chloride anion channels widely expressed in
the central nervous system (CNS) and consist of five subunits, each
with several isoforms, composed of 19 related isoforms (α1−6, β1−3,
γ1−3, δ, ε, θ, π, ρ1−3). The most abundant GABAAR forms consist
of α, β, and γ subunits in a 2:2:1 stoichiometry. The binding site for
the orthosteric ligand is located at the interface between α and β
subunits, resulting in two GABA binding sites per heteropentamer
(Figure 1). Studies have shown that the functions of α subunits of
GABAA receptors can be generalized as follows: α1 is closely related
to sedative function without anti-anxiety effect, but benzodiazepine
addiction; α2 and α3 mainly mediate anti-anxiety and muscle
relaxation effect without sedative effect; α5 is closely associated
with learning and memory processes (Rudolph and Möhler, 2006).
In the mammalian brain, there are approximately 25 different
subtypes of GABAARs that occur in different subcellular
locations. The neurotransmitter GABA is released into a synaptic
cleft from the presynaptic nerve terminus when a GABAergic
(GABA-releasing) neuron fires. GABA binds to GABAARs in
postsynaptic nerve terminus, and changes their conformation
state. GABAARs open the pore to allow chloride anion to move
through the channels, and lower their electrochemical gradient.
When GABA binds to it, GABAAR will increase the opening of
chloride anion channels, resulting in increased negative potential in
cells. This increase in negative potential inhibits neuronal
excitability, producing a calming and anti-anxiety effect. In
general, GABA regulates sleep by inhibiting neuronal excitability

and reducing neurotransmission and activity, resulting in sedation,
relaxation, and anti-anxiety effects (Gottesmann, 2002).

3 Current pharmacological therapies
and their side effects

3.1 Main therapeutic drugs and their
mechanisms of action

At present, the marketed medications for insomnia treatment
mainly include GABAA receptor positive allosteric modulator,
melatonin receptor agonists, antidepressants with hypnotic
effects, daridorexant, and other classes (De Crescenzo et al.,
2022). At present, the drugs used to treat insomnia in China are
still dominated by GABAA receptor positive allosteric modulator at
the benzodiazepine site located at the interface of α1 and γ2, also
called benzodiazepine receptor agonists (BzRAs) (Figure 1) (Ebert
et al., 2006). Both BzRAs with and without the chemical structure of
benzodiazepine compounds, which are classed with
benzodiazepines (BZDs) and non-benzodiazepines (nBZDs), work
by binding at the benzodiazepine site (Berman et al., 2017; Möhler
et al., 2002).

BzRAs enhance the effect by binding to the subunits of
GABAAR, thereby increasing the opening frequency of the
chloride ion channel (Roehrs and Roth, 2012). The occupation of
receptors leads to the opening of chloride ion channels, promoting
the inhibitory effect of GABA. BzRAs bind to the BZD recognition
site of the GABAA receptor as a positive allosteric modulator of the
inhibitory neurotransmitter GABA, which means that GABA must
also exist on the receptor complex for BzRAs to exert their inhibitory
effect. BZDs, such as Diazepam, Lorazepam, and Alprazolam, bind
to the α1, α2, α3, and α5 subunits of the GABAAR. BZDs mainly act
on the α1 subunits binding site of GABAAR complex for sedation
and sleep, and act on the α2 subunits of GABAAR complex for anti-
anxiety (Nørgaard et al., 2021; Maramai et al., 2020; Sharkey and
Czajkowski, 2008).

3.2 Types and side effects of
benzodiazepines

BZDs act as widely used sleeping pills in clinical practice. The
mechanism of action is to block the impulse conduction from the
limbic system to the brain stem reticular structure, reduce the
excitatory impulse transmitted from the thalamus to the cerebral
cortex, and improve sleep, but do not increase the deep sleep period
(Zezula et al., 1988; Nguyen et al., 2013). Due to the influence of the
limbic system, BZDs have multiple therapeutic effects such as
sedation, hypnotic, antianxiety, anticonvulsant, and muscle
relaxation, but cause adverse reactions such as amnesia
and addiction.

Noticeably, BZDs do not have precise receptor selectivity, the
anti-anxiety, sedation, and hypnotic effects occur at the same time,
but also bring muscle relaxation, and affect psychomotor and
cognitive function (Da Settimo et al., 2007). When BZDs are
used continuously, GABAAR adapts to the sensitivity of
benzodiazepine, requiring increased drug doses to achieve the
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same efficacy. Recently, quite a number of studies have reported that
BZDs are addictive and dependent, and long-term usage may cause
side effects including excessive sedation, cognitive impairment,
consciousness disturbance, withdrawal symptoms, easy falls,
fractures, cardiovascular abnormalities, respiratory depression
and so on (Crowe and Stranks, 2018; Markota et al., 2016;
Puustinen, 2018; Skinner et al., 2017). This makes most
guidelines and expert consensus recommend that BZDs should
not be used for more than 2–4 weeks (Davies et al., 2017).
However, in clinical practice, the duration of use of these drugs
is not strictly controlled where BZDs are often used for a long time in

the treatment of most anxiety and sleep disorders, and longer when
used to improve residual symptoms after first-line treatment
(Jørgensen and Osler, 2018; Marsden et al., 2019). Due to the
addictive and tolerability issues of the drugs, but given their
efficacy many patients are forced to rely on drugs for a long time
to maintain sleep. Currently used BZDs also suffer from other
limitations, including tolerance, withdrawal symptoms, and
ethanol interaction.

There are several types of BZDs including short-acting BZDs
such as Midazolam, Triazolam, and Nordazepam with a half-life of
about 2–10 h; medium effective varieties such as Lorazepam,
Alprazolam, Estazolam, Chlorazepine with a half-life of about
10–24 h; and long-acting varieties such as Diazepam,
Nitrazepam, Clonazepam, Flunitrazepam, Flurazepam with a
half-life of more than 30 h (Kienitz et al., 2022). Fluazepam,
Temazepam, Triazolam, and Midazolam are used in patients who
have difficulty falling asleep and who wake up too much or too early
at night. Lorazepam is suitable for insomnia in a state of anxiety or
temporary, environmental stress.

Both short-term and long-term use of sedative-hypnotics have
certain adverse reactions. The rebound and withdrawal symptoms of
short-acting drugs are more severe when the drug is stopped. The
adverse effects of short-term use of sedative-hypnotic drugs include
sedation, vertigo, fatigue, and memory impairment (Gravielle,
2016). Among short-term BZDs users, 15%–44% of patients
experienced moderate to severe prolonged withdrawal symptoms,
including sudden anxiety and depression (Ashton, 1991). Studies
have found that benzodiazepines may affect patients’ cognitive
function including memory, attention, perception, and thinking
(Kripke, 2016). Case-control studies by French and Canadian
researchers have found that long-term use of BZDs may increase
the risk of Alzheimer’s disease (Billioti de Gage et al., 2014). Long-
term use of sedative-hypnotics will cause psychomotor impairment
and memory impairment, and may lead to increased risk of falls
(Hajak et al., 2003; Schifano et al., 2019). Patients with long-term use

FIGURE 1
Overall structure of the GABAA receptor. (A) Top view: two GABAs binding sites are found at the junctions between α1 and β2 subunits, while the
BZDs is located at the interface of α1 and γ2. α1 subunit is colored in pink, while γ2 is blue and β2 is green. (B) Side view: the heteropentameric arrangement
of subunits in the 2:2:1 stoichiometry of α, β, and γ subunits that comprise the most abundant form of GABAAR, arranged around the central chloride-
permeable channel pore.

FIGURE 2
Conceptual diagram of compounds bound to the
benzodiazepine site of GABAAR as agonists. Full agonists, such as
Diazepam or Lorazepam, have a high (* 100%) intrinsic effect on
receptors, increasing GABA inhibitory activity in a dose-
dependent manner until maximum activity is reached. The dose-
response curve is steep, and the maximum effect is achieved at
relatively low drug concentrations based on the studied effects. Partial
agonists, based on the intrinsic efficacy, also increase the inhibitory
activity of GABA in a dose-dependent manner, but cannot achieve the
maximum effect of a full agonist. The dose-response curve of some
agonists is flat and can only reach peak effects even the drug
concentration is very high.
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TABLE 1 Comparison of classic benzodiazepines, non-benzodiazepines, and novel partial benzodiazepine drugs for insomnia.

Mechanism Categories Drug Structure Recommended
dosage

Characteristics Weaknesses
or risk

BZR partial
agonists

Novel
benzodiazapines

Dimdazenil 2.5 mg Rapid onset; Sleep
maintenance; Low risk
of drug-drug
interaction; Low risk
of drug addiction;
Significant easing
effect on anxiety and
tension

—

BZR full agonists Benzodiazepines Diazepam 2.5–5 mg Long half-life; Rapid
onset

Sedation, ataxia,
and memory
impairment;
Continued use will
develop tolerance,
and withdrawal
symptoms will
occur after
stopping
treatment;
Residual effects,
respiratory
depression and
drug resistance,
addiction, and
other problems
Ebert et al. (2006);
Lader (2011)

Lorazepam 2–3 mg Medium half-life;
Rapid onset,
significant easing
effect on anxiety and
tension

Clonazepam 1–4 mg Long half-life;
Improving difficulty
falling asleep and
reducing daytime
sleepiness

Triazolam 0.25–0.5 mg Short half-life; Rapid
onset

Non-
benzodiazepine

Zolpidem 10 mg Reducing sleep
latency; Improving
total sleep time;
Reducing nighttime
awakenings

May cause
drowsiness,
dizziness, and
impaired
coordination;
Long-term use
may lead to
tolerance,
dependence, and
withdrawal
symptoms upon
discontinuation
Ebert et al. (2006)

(Continued on following page)
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(>6 months) of BZDs will lead to withdrawal symptoms, with 40%
exhibiting moderate to severe withdrawal symptoms (Rickels et al.,
1990). For patients diagnosed with insomnia for the first time, it is
not recommended to choose this type of medication as the first
choice. Short-term insomnia should be treated with short-acting
varieties, and the duration of medication should not exceed
12 weeks. After discontinuing medication, the dosage should be
reduced gradually. For stubborn insomnia, long-acting preparations
can be chosen, and various symptoms that the patient may
experience during the medication process can be strictly
observed, and the dosage can be adjusted in a timely manner.
Traditional BZDs, such as Diazepam or Lorazepam, act as full
agonists at the BZD recognition site, so one strategy to address
the shortcomings of these compounds is to develop partial agonists
with lower intrinsic efficacy at the GABAA receptor BZD site
(Rundfeldt and Löscher, 2014).

3.3 Properties of non-benzodiazepines

For patients with poor therapeutic effect of BZDs or with higher
potential risk, clinicians often use nBZDs, such as Zopiclone,

Zaleplon, Zolpidem, and Eszopiclone to improve the night sleep
in sleep disorders. These so-called “Z-drugs” sedative-hypnotics are
often advocated as safer alternatives to BZDs for sleep disturbances
as a result of short half-life and preservation of healthy sleep
architecture. nBZDs have different binding affinities to different
subunits of GABAAR. These differences include that Zolpidem has
relatively high affinity for α1 compared with α3 subunit containing
GABAA receptors. In addition, nBZDs have strong binding affinity
on the α1 subunit of GABAAR, however, weak binding affinity on
α2, α3, or α5 subunits, resulting in strong sedative and hypnotic
effects but lacking obvious anti-anxiety, anti-epileptic, or muscle
relaxation effects (Krystal, 2010). nBZDs affect the same receptor as
BZDs, suggesting that their risks may be similar. nBZDs in the
treatment of insomnia, compared with traditional BZDs, have the
advantages of lower dependence and tolerance, less occurrence of
rebound insomnia after withdrawal, and relatively small respiratory
depression and muscle relaxation effects (Roth et al., 2005; Hajak
et al., 2002; Israel and Kramer, 2002; Zhang et al., 2014). However,
there are still side effects, long-term use risks, and withdrawal
reactions. Clinical trials of Zolpidem in healthy young people
have shown central nervous system side effects, including
impaired cognitive and motor function, particularly in the first

TABLE 1 (Continued) Comparison of classic benzodiazepines, non-benzodiazepines, and novel partial benzodiazepine drugs for insomnia.

Mechanism Categories Drug Structure Recommended
dosage

Characteristics Weaknesses
or risk

Zopiclone 7.5 mg Decreasing sleep
latency and the
number of night-time
awakenings;
Increasing sleep
duration

Showing residual
effects of poor
driving
performance next-
day Luzzi et al.
(2022)

Eszopiclone 2–3 mg Reducing the time to
onset of sleep;
Increasing total sleep
time

May cause daytime
drowsiness,
dizziness, and
impaired cognitive
function

Zaleplon 5–10 mg Rapid onset Not for patients
with sleep
maintenance
disorders;
Affecting next day
performance Ebert
et al. (2006)
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few hours of use (Troy et al., 2000; Swainston Harrison and Keating,
2005; Frey et al., 2011). Compared to Zaleplon, Zopiclone exhibits
higher dependence and overdose-related issues, but slightly lower
abuse and withdrawal reactions. Zolpidem, as the most commonly
used medication in the Z-drugs, is associated with intravenous
injection, high-dose use, and concomitant use of recreational
drugs. Compared to Zopiclone and Zaleplon, Zolpidem is more
prone to non-medical use, abuse, and discontinuation (Krystal,
2010). The abuse of zolpidem is also associated with an increased
risk of delusions, mania, anxiety, or depression, as well as other drug
dependence or abuse (Sabe et al., 2019). Additionally, observational
data have indicated an association between non-benzodiazepine
sedative hypnotics and fracture risk (Wang et al., 2001; Finkle
et al., 2011). However, there is limited data on their safety in
elderly patients, especially regarding posture instability, falls, and
fractures (Nishtala and Chyou, 2017).

3.4 Full agonists and partial agonists

Although BZDs and nBZDs have quick effects, they are
primarily used as short-term treatments; long-term or high-
dose use of these drugs will lead to tolerance, rebound
insomnia after drug withdrawal, and increased risks of abuse
and addiction (Lugoboni et al., 2014). The ideal hypnotic drug
should feature the following characteristics: fast absorption/
action, ideal hypnotic effect, improving abnormal sleep phase
without affecting physiological sleep, maintaining sufficient sleep
time, fast elimination, no accumulation, no drug hangover after
waking up, however so far there is no drug fully meet these
requirements. Therefore, there are considerable unmet medical
needs to develop novel compounds for insomnia that lack these
side effects. The development of partial agonists targeting
benzodiazepine sites is one of the strategies to solve the
problem of BZD receptor ligand tolerance and dependence
(Stephens and Sarter, 1988). The general concept of full and
partial BZD agonists is shown in Figure 2.

From a therapeutic viewpoint, the introduction of full GABAAR
agonists as drugs presents challenges. Full agonists cause rapid
desensitization of synaptic GABAARs. Partial agonists, however,
offer a distinct mechanism by eliciting varying receptor responses
based on the existing activation level of the GABAARs. As the
concentration of the partial agonist rises, it progressively displaces
GABA, establishing a steady activation level that reflects its own
efficacy. This shift results in the transition from phasic receptor
activation by GABA on synaptic receptors to a more tonic activation
pattern. Consequently, depending on the partial agonist’s efficacy,
there may be some level of desensitization. The functional analysis of
partial agonists has historically been challenging, often yielding
inconsistent results across different tissues for the same ligands.
It is crucial to have homogeneous receptor populations to accurately
comprehend structure-activity relationships (SARs) and distinguish
between partial and full agonism. 5-(4-piperidyl)-3-
hydroxyisoxazole (4-PIOL), a low-efficacy partial agonist, for
instance, exhibits limited capacity to maintain the ion channel in
an open state, only enabling brief channel openings. The
conductance of channels opened by 4-PIOL is identical to that of
GABA, indicating a similar conformation of the open states. These

findings were later confirmed and broadened when a correlation
between efficacy and channel open duration (with unchanged
conductance) was observed for various GABAAR ligands with
efficacies from low (4-PIOL) to full agonism in recombinant
α1β3γ2 GABAARs (Mortensen et al., 2004). Replacing the 3-
hydroxyisoxazole ring of 4-PIOL with a 3-hydroxyisothiazole ring
to create thio-4-PIOL results in a higher, yet still low, efficacy due to
slightly longer channel open durations in recombinant
α1β3γ2 GABAARs. Additionally, thio-4-PIOL shows subtype
selectivity, with greater efficacy for extrasynaptic subtypes (α5β2/
3γ2, α4β2/3δ, α6β2/3δ) of GABAARs, particularly in the presence of
β3, compared to synaptic types (α1β2/3γ2, α2β2/3γ2, α3β2/3γ2),
where it induces only low activity (Krall et al., 2015; Hoestgaard-
Jensen et al., 2013).

4 The recently approved novel partial
benzodiazepine receptor agonist

The recently approved Dimdazenil by the NMPA of China is a
first-in-class drug developed by Zhejiang Jingxin Pharmaceutical
Co., Ltd. in China under the license of Evotec for the treatment of
insomnia. The first partial positive allosteric modulator of GABAAR
at the benzodiazepine site, also called benzodiazepine receptor
partial agonists may offer better clinical performance, which
clinical data collected to date indicated that it avoids some of the
side effects caused by excessive enhancement of GABAARs
produced by “complete” or “super” agonists such as Zolpidem
and Dexzopiclone, which were approved in China in 1995 and
2007 respectively (Huang et al., 2024).

4.1 Mechanism of action

In vitro pharmacological trials have shown that Dimdazenil acts
as a partial agonist on the benzodiazepine-GABAAR complex
(Huang et al., 2024; Wang et al., 2023). The results showed that
Dimdazenil has a high affinity to the GABAAR. As a partial positive
allosteric modulator of GABAAR, Dimdazenil has been shown to
facilitate GABA currents by mild allosteric excitation. Compared to
GABAARs containing α2 and α3 subunits, Dimdazenil is only
moderately selective (~3 to 4 fold) to GABAARs containing
α1 subunits (Huang et al., 2024; Wang et al., 2023).

4.2 Pharmacokinetic characteristics and
comparison

The pharmacokinetic profile of Dimdazenil highlights its
promise as a BZR partial agonist. It reaches maximum plasma
concentration (Tmax) in approximately 1 h, facilitating a rapid
onset of action relative to full agonist medications (Wang et al.,
2023). Dimdazenil also exhibits a longer elimination half-life of 4 h
compared to short-acting BZR full agonists such as Triazolam,
which have an optimal dose half-life of 1.5–3.5 h, thereby
ensuring prolonged sleep maintenance. Additionally, Dimdazenil
has a reduced risk of residual effects when compared to intermediate
and long-acting BZR full agonists like Lorazepam, Clonazepam, and
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Diazepam, which possess average half-lives exceeding 8 h (Kienitz
et al., 2022; Wang et al., 2023).

4.3 Efficacy, safety, and potential benefits

In clinical efficacy and safety studies, Dimdazenil 1.5, 2.5, and 5 mg
improved certain objective and subjective sleep outcomes in insomnia
patients compared with placebo (Huang et al., 2024; Li et al., 2024), and
Dimdazenil 2.5 mg had significant benefits on sleep maintenance and
sleep onset in insomnia patients, with favorable safety and tolerability.
More importantly, it doesn’t affect daytime functioning (Huang et al.,
2024). In phase II and III clinical trials, Dimdazenil appears to extend
total sleep duration and increase the proportion of time spent in stage
2 sleep while also prolonging the latency to REM sleep. Conversely, it
seems to reduce the percentage of time spent in REM sleep and the
duration of stage 3 sleep, with these effects being dose-dependent
(Huang et al., 2024; Li et al., 2024). The clinical efficacy of
Dimdazenil supports its continued development for additional
insomnia disorders, with significant improvements in sleep
initiation, sleep maintenance, and sleep depth/quality. The drug was
well tolerated with no sedation or withdrawal symptoms after
withdrawal. Further, Dimdazenil has no deleterious effects on
cognitive function in clinical trials (Huang et al., 2024). Most of AEs
are mild, transient, and do not cause treatment interruption. So far, no
major safety signals or issues have been identified. Based on current
clinical data, as shown in the Table 1, the side effects of Dimdazenil
appear to be more favorable compared to full GABAA receptor
agonists, such as benzodiazepines and provides a much-anticipated
new addition for the treatment of insomnia disorder, a widespread
condition with limited effective and safe treatments.

5 Conclusion

Starting from the early sedative-hypnotic drugs, great progress
has been made in the development of effective drugs for the
treatment of insomnia especially with the emergence of
benzodiazepines and non-benzodiazepines. However, with the
increasing application of traditional benzodiazepines and non-
benzodiazepines, adverse reactions such as dependence, tolerance,
and other problems started to impact patients’ quality of life which
demanded the development of safer and better tolerated drugs. The
approval of Dimdazenil, the first partial positive allosteric modulator

of GABAAR brings more options to the patients and hopefully
inspires more novel approaches to solve the unmet medical needs of
insomnia patients.
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