
Recommendations for nutritional
supplements for dry eye disease:
current advances

Ying Cong, Yibing Zhang, Yutong Han, Yunlong Wu, Dan Wang
and Bingjie Zhang*

Department of Ophthalmology, The First Hospital of Jilin University, Changchun, China

Dry eye disease (DED) represents a prevalent ocular surface disease. The
development of effective nutritional management strategies for DED is crucial
due to its association with various factors such as inflammation, oxidative stress,
deficiencies in polyunsaturated fatty acids (PUFAs), imbalanced PUFA ratios, and
vitamin insufficiencies. Extensive research has explored the impact of oral
nutritional supplements, varying in composition and dosage, on the symptoms
of DED. The main components of these supplements include fish oils (Omega-
3 fatty acids), vitamins, trace elements, and phytochemical extracts. Beyond these
well-known nutrients, it is necessary to explore whether novel nutrients might
contribute to more effective DED management. This review provides a
comprehensive update on the therapeutic potential of nutrients and presents
new perspectives for combination supplements in DED treatment.
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1 Introduction

Dry Eye Disease (DED) is a complex, chronic ocular surface disease arising from diverse
etiologies, significantly impacting quality of life (Figure 1) (Liu et al., 2022; Coassin et al.,
2023; Craig et al., 2023; Kam et al., 2023; Montero-Iruzubieta et al., 2023; Narang et al., 2023;
Buonfiglio et al., 2024; Xiong et al., 2024). The ocular surface system consists primarily of
the cornea, conjunctiva, lacrimal glands, and meibomian glands, collaboratively maintains a
smooth refractive surface and protects the visual system. These components produce the
tear film’s three layers: lipid, aqueous, and mucin, which are crucial for ocular lubrication
and protection (Gipson, 2007). Any disruption in these structures can lead to instability or
imbalance in the ocular surface system, resulting in ocular discomfort symptoms and visual
disturbances (The definition, 2007; Craig et al., 2017). DED primarily manifests in two
subtypes: low tear production and excessive evaporation. Both subtypes lead to high
osmotic pressure, inflammation, and damage to the epithelial cells. This creates a
vicious cycle of DED (Martinez-Carrasco and Fini, 2023).

The prevalence of DED, which surged to as high as 61.0% during the COVID-19
pandemic (Ji et al., 2023), underscores the influence of increased exposure to visual display
terminals and widespread mask usage during the pandemic, which likely exacerbated the
condition by decreasing blink frequency and increasing thermal air currents over the ocular
area, thus enhancing tear evaporation rates (Uwimana et al., 2022; Schargus et al., 2023).
Early detection and management of DED are imperative to reduce both economic and
psychological impacts and to maintain visual function (Mylona et al., 2023; Zhmud et al.,
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2023). Diagnosis needs to be combined with patient history,
symptom assessment (Ocular Surface Disease Index), and
auxiliary examination [tear film stability: break-up time (BUT)
test and tear secretion: Schirmer’s test] (Schiffman et al., 2000;
Jacobi and Cursiefen, 2010; Humayun et al., 2024) to conduct a
comprehensive assessment.

At present, the treatment of DED is recommended to target the
etiology. For meibomian gland dysfunction, intense pulsed light
therapy is advocated to reduce inflammatory mediator release and
clear gland blockages (Vigo et al., 2019). Additionally, when the
aqueous layer is compromised, the use of artificial tear drops and
secretagogues, such as diquafosol sodium eye drops, is
recommended to maintain ocular surface lubrication and dilute
inflammatory cytokine concentrations. The use of tear point plugs
can also diminish the need for frequent application of eye drops in
severe cases of DED. Pharmaceutical agents that enhance
membrane-bound mucin and mucin secretion are employed to
augment the mucin layer. Furthermore, treatments targeting the
epithelium include autologous serum drops and Rebamipide
ophthalmic suspension (Kojima et al., 2020).
Immunosuppressants and low-dose steroid drops have also been
recommended as anti-inflammatory treatments (Messmer, 2015;
McCann et al., 2024). However, it is important to note that the
extended use of topical anti-inflammatory agents and
corticosteroids is limited due to their potential long-term adverse
effects, such as cataracts and steroid-induced glaucoma (Teo et al.,
2023; Wykrota et al., 2023).

Recent research highlights the significant roles of nutritional
deficiencies (Castrejón-Morales et al., 2020; Chakraborty and
Chandra, 2021; Jain et al., 2022; Markoulli et al., 2023),
inflammation (Wu et al., 2024), and oxidative stress (Li et al.,
2022a) in DED’s pathogenesis. With the rising awareness of
oxidative stress and its impact on visual function, many
Researchers are exploring the potential benefits of antioxidant

therapy through nutrient supplementation. Numerous studies
have demonstrated the value of nutrients, including Omega-3
fatty acids (ω-3FAs), vitamins, microelements, and
phytochemicals, in preventing and treating DED (Iddir et al.,
2020). This review provides an overview of effective nutrients in
the management of DED, highlighting rising beneficial nutrients
such as L-carnitine, lactoferrin, probiotics, spermidine, coenzyme
Q10, and royal jelly. We summarize the sources, primary functions,
and recommended dietary intakes for adults across ten categories
(23 subcategories) of nutrients included in this review (Table 1).
While these nutrients are available from food sources, patients with
imbalanced diets or those experiencing discomfort symptoms may
opt for commercially available nutritional supplements. However, it
is crucial to evaluate the long-term safety of these nutrients, as
extensive research indicates that nutrient supplementation can pose
risks, including gastrointestinal distress, an increased incidence of
bleeding, and a heightened prevalence of cancer and certain diseases,
particularly in immunocompromised individuals and smokers.

2 Oxidative stress in dry eye disease

Reactive oxygen species (ROS) are natural byproducts of normal
oxidative metabolism, often perceived as detrimental due to their
potential to harm biological macromolecules. The body’s
antioxidant mechanisms, which include enzymatic systems such
as superoxide dismutase (SOD), catalase, and glutathione
peroxidase, along with non-enzymatic systems like reduced
glutathione and vitamins A, C, and E, play critical roles in
mitigating ROS damage (Arslan et al., 2023). Environmental
stressors—including ultraviolet radiation, air pollution, and
ozone, as well as physiological factors such as hormonal
fluctuations, aging, exposure to pesticides, microbial antigens,
and high-sugar diets can elevate ROS levels on the ocular surface,

GRAPHICAL ABSTRACT

Frontiers in Pharmacology frontiersin.org02

Cong et al. 10.3389/fphar.2024.1388787

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1388787


triggering oxidative stress (Honisch et al., 2023). Increased ROS
levels trigger the upregulation of various antioxidant proproteins/
enzymes, initiating a negative feedback mechanism to modulate
stress signaling or ROS concentrations. Maintaining sufficient
antioxidant capacity is vital to prevent excessive stress signals
when ROS levels exceed certain thresholds. Overproduction of
ROS and impaired antioxidant defenses can lead to oxidative
stress, which may promote an inflammatory response. This
inflammatory response on the ocular surface can lead to tissue
injury, often marked by apoptosis of conjunctival goblet cells,
thereby destabilizing the tear film and increasing tear osmolarity.
Subsequently, this triggers further ROS production and reactivates
the inflammatory cycle, exacerbating apoptosis in corneal and
conjunctival epithelial cells—a process that perpetuates a vicious
circle causing the progression of DED (Dammak et al., 2023). Given
the rising awareness of health, the public is increasingly interested in
dietary approaches to health management. Numerous studies are
exploring whether nutritional supplements with antioxidant
properties can ameliorate oxidative damage and restore tear film
function, thereby offering therapeutic benefits in reducing ROS and
managing DED.

A significant link exists between oxidative stress, systemic
diseases, and DED. Conditions such as diabetes mellitus,
multiple sclerosis (MS), and systemic lupus erythematosus
have been associated with oxidative stress, potentially
exacerbating DED (Dogru et al., 2018; Bustamante-Arias
et al., 2022). Specifically, in diabetes, elevated glucose levels

increase ROS production via the PI3K/AKT signaling pathway,
aggravating oxidative stress in the ocular surface, damaging the
epithelium cells, and affecting tear film stability, thereby leading
to DED (Lu et al., 2018; Chen et al., 2022). Additionally,
diabetes-related nerve injury may decrease ocular surface
sensitivity and tear secretion, further aggravating DED
symptoms (Trindade et al., 2021). Oxidative stress is also
involved in the pathogenesis of MS, where the demyelination
of nerve cells in the central nervous system could be triggered by
ROS-mediated immune responses to the central nervous system
(Lassmann et al., 2012; Ohl et al., 2016). Patients with MS may
suffer from nerve injury affecting the ocular muscles, including
those controlling blinking, potentially decreasing blinking
frequency and aggravating tear evaporation, thereby
triggering or worsening DED (Kumaran et al., 2000).
Moreover, individuals with MS might be more developed to
DED due to other complications, like autonomic dysfunction
(Kıranatlı et al., 2024). The administration of antioxidants to
mitigate oxidative stress and protect cells shows promise in
managing DED and its associated systemic disorders (Li
et al., 2022a).

3 Literature search methodology

The primary goal of this review was to provide a detailed
overview of nutrients beneficial for DED management and to

FIGURE 1
Classification of etiologic and risk factors for dry eye disease.

Frontiers in Pharmacology frontiersin.org03

Cong et al. 10.3389/fphar.2024.1388787

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1388787


TABLE 1 Sources, functions, and recommended nutrient intake (RNI) of nutrients related to eye health.

Nutrient Sources Main functions RNI for adults

L-carnitine Lean meat, liver, heart, yeast, lamb, milk, avocado,
kiwifruit, grape, papaya

Facilitates cellular productivity, delivery of fatty acids for
their metabolic use, metabolism of eye muscle tissue, and
antioxidant

——

Lactoferrin Humans, cattle, etc., secrete milk Antibacterial, antiviral, immune-modulatory, and anti-
inflammatory

——

Probiotics Yogurt, kimchi, natto, cheese Supports immune function and digestive tract health ——

Coenzyme Q10 Meat, fatty fish, vegetable oils, nuts, and seeds Protects mitochondrial membrane proteins and DNA
from oxidative damage

——

Spermidine Whole grain food, kelp, bracken, shiitake mushrooms Cell growth, proliferation, differentiation, and
antioxidants

——

Royal jelly Bee Regulate blood pressure and blood lipids, and improve
sleep

——

Omega 3 essential
fatty acids

Fish with high-fat content include salmon,
herring, etc.

Maintaining cell membranes, anti-inflammatory,
improving eye health, anti-anxiety, and depression

0.2× to 0.5× amount of omega
6 EFA

Omega 6 essential
fatty acids

Corn, soybeans, nuts, beef, poultry, eggs, the Various
common seed oils

Maintenance of cell membranes and regulation of
metabolism

3–6% of total calories, or 6–12 g

Vitamin A Animal liver, fish, eggs, etc.; carrots, and other dark-
colored fruits and vegetables

Maintains the lining of the vision, skin, intestines, lungs,
and urinary tract, helps protect against infection

700 μg women, 900 μg men,
1300 μg for pregnant

Vitamin B1 Grains, legumes, yeast, animal liver, eggs, vegetables,
and fruits

Reduces peripheral neuropathic pain and improves skin
health

1.1 mg women, 1.2 mg men

Vitamin B6 Meat, milk, egg yolk, fish, spinach, and beans Metabolism of amino acids and fatty acids promotes
epithelial cell growth and nerve function formation

1.3 mg

Vitamin B12 Animal offal, meat, shellfish, eggs, fermented foods,
milk

Involved in fatty acids and amino acid metabolism,
myelin synthesis

2.4 μg

Vitamin D Exogenous sources such as fish, liver, and eggs;
endogenous sources are synthesized in the skin by
ultra-violet radiation

Promotes the absorption of calcium and phosphorus by
the mucous membrane cells of the small intestine and the
skin’s metabolism

15 μg 19–70 years women and men
20 μg women and men older
than 70

Vitamin C Fresh vegetables such as spinach, peppers, etc., and
fresh fruits such as oranges, kiwi, etc.

Essential cofactor for collagen, L-carnitine, and neuro-
transmitter biosynthesis, for healing wounds and burns,
anti-oxidant

75 mg women, 90 mg men, 35 mg
extra for smokers

Vitamin E Nuts and seeds include almonds, hazelnuts,
vegetables, egg yolk, and legumes

Anti-oxidation to prevent premature aging of skin cells 15 mg

Zinc Shellfish, especially oysters, fish, fresh vegetables,
wheat germ, whole grains, and nuts

Helps in the healing of burns and wounds and is a crucial
element for growth needs and promoting good organ
development

8 mg women, 11 mg men

Selenium Meats, seafood, and cereals (dependent on the
selenium content of the soil where the grain was
grown)

Antioxidant properties protect the body from free radicals
and carcinogens and protect the retina from damage

55 μg

Magnesium Beans, nuts, grains, seafood, green leafy vegetables,
and fruits

Facilitates nerve and muscle function, activates enzymes 310 mg women, 400 mg men

Anthocyanin Black goji berries, black sesame seeds, blueberry,
mulberry

A powerful antioxidant enhances blood vessel elasticity,
improves the circulatory system and skin smoothness,
inhibits inflammation

0 mg/kg~2.5 mg/kg

Curcumin Ginger, curry, mustard, carrot, tomato, pepper Antioxidant inhibits corneal neo-vascularization caused
by hypoxia and inflammation

——

Lutein &
Zeaxanthin

Orange juice, honeydew melon, kiwi, wheat, corn, egg
yolk

Anti-oxidation protects the retinal mac -ula and prevents
cataracts

——

Ginkgo biloba Ginkgo biloba tree Anti-oxidation, promotes blood circulation, and
scavenges free radicals in the body

——

Green tea Tea Antioxidant and anti-inflammatory ——
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assess potential health risks associated with their use. An
extensive literature search was conducted up to January
2024 across databases such as PubMed, Scopus, and Web of
Science. Search terms included “dry eye disease,” “lacrimal
gland,” “ocular surface health,” “ocular surface diseases,”
“nutrients,” “nutritional supplements,” “dietary supplements,”
“oxidative stress,” “anti-inflammatory,” “antioxidant,”
“intervention treatment,” “clinical studies” and among others.
This was supplemented by a thorough examination of references
in key articles to ensure comprehensive coverage of relevant
nutrients. Our findings preliminary confirmed ten essential
nutrients that show promise for DED treatment: essential
fatty acids, vitamins, trace elements, phytochemicals,
L-carnitine, lactoferrin, probiotics, coenzyme Q10,
spermidine, and royal jelly. Subsequently, these ten categories
of nutrients were applied with “definition,” “source,” “biological
function,” “use,” “mechanism of action for dry eye benefit,”
“adverse effects,” “health risks,” and other related terms were
then searched to ensure the completeness and coherence of
the review.

4 Impact of nutrients on the ocular
surface and potential risks

4.1 L-carnitine

4.1.1 Definitions, biological functions, and areas of
application

L-carnitine, a natural amino acid found primarily in animal-
based foods, plays a multifaceted role in cellular metabolism. It
regulates mitochondrial activity through modulation of
transcription factors and is a crucial cofactor in the β-
oxidation of fatty acids, which facilitates the cellular energy
production process (Iacobazzi et al., 2013). L-carnitine also
impacts lipid metabolism by influencing various transcription
factors related to lipolysis and adipogenesis, reducing lipid
synthesis and deposition (Förster et al., 2021). Moreover, it
exhibits antioxidant properties (Sahebnasagh et al., 2022),
balancing hypertonicity-induced imbalances between
oxygenase and antioxidant enzymes, reducing ROS
production, inhibiting lipid peroxidation, preventing oxidative
DNA damage, and suppressing the production of heme
oxygenase-1 and cyclooxygenase-2. Commonly used as a
dietary supplement, L-carnitine is acclaimed for its benefits in
boosting metabolic energy, aiding in weight loss (Talenezhad
et al., 2020), and improving cardiovascular (Nakajima et al.,
2024) and cognitive functions (Zhao et al., 2023).

4.1.2 Mechanism of action in dry eye disease
Lucius et al. (2023) demonstrated that L-carnitine, at

concentrations of 1–3 mmol/L, effectively controls DED by
inhibiting the activation of the transient receptor potential
vanilloid subtype 1 (TRPV1) induced by hyperosmolarity.
This occurs through the blockade of calcium ion (Ca2⁺) influx
and capsaicin-induced cell volume contraction. Notably, they
observed that 1 mmol/L of L-carnitine was more effective than
3 mmol/L, suggesting that higher concentrations may exert

nonselective cytotoxic effects, leading to increased Ca2⁺ influx
and less reduction in cell volumetric contraction (Lucius et al.,
2023). Further investigations by López-Cano et al. (2021) on
human corneal epithelial cells (CECs) under varying
osmolarities (350–500 mOsm/L) indicated that L-carnitine
(50 mmol/L) and taurine at an unspecified concentration
exhibited higher inhibitory activity against Tumor Necrosis
Factor α (TNF-α).

4.1.3 Advantages associated with the condition of
dry eye disease

Recent research has uncovered dissimilarities between DED
patients and controls by examining carnitine levels in the tears of
DED patients, indicating a possible link between the onset of
DED and insufficient carnitine in the tear film. Some experts
suppose that L-carnitine can be a metabolic biomarker for ocular
diseases (Theodoridis et al., 2022). Khanna et al. (2022) utilized
metabolomics to validate the role of L-carnitine in the
pathogenesis of DED. They hold that L-carnitine can prevent
damage to the ocular surface by regulating tear film osmolarity.
Studies by Pescosolido et al. (2009); Yamaga et al. (2021) further
confirmed its effectiveness in alleviating symptoms in DED
patients. Ma et al. (2021) formulated a levocarnitine
thermosensitive in situ gel (LCTG) to evaluate its efficacy in
treating DED in animal models. The study demonstrated that
LCTG significantly increased tear secretion, promoted the repair
of CECs, as well as downregulated the expression levels of matrix
metalloproteinase-3 (MMP-3) and MMP-9. In addition, the
authors reported minimal stimulation and highly effective
treatment of DED by LCTG in animal models. They
concluded that the overall therapeutic effect of LCTG was
superior to that of conventional L-carnitine solution (Ma
et al., 2021).

4.1.4 Possible side effects and potential health risks
While L-carnitine is recognized for its energy-enhancing

properties and potential to decrease appetite, prolonged use
might lead to reduced nutrient intake, potentially resulting in
malnutrition and decreased physical function.

4.2 Lactoferrin

4.2.1 Definitions, biological functions, and areas of
application

Lactoferrin (LF) is a glycoprotein that mainly consists in
mammalian milk and exhibits a wide range of biological
functions. It plays a vital role in regulating iron metabolism
by chelating iron, thereby inhibiting microbial growth through
iron deficiency and interacting with lipopolysaccharide (LPS) to
develop bactericidal effects (Zarzosa-Moreno et al., 2020). LF
also enhances the host cell’s antiviral defenses, blocking viral
replication (Ikeda et al., 2000). Additionally, it modulates
inflammatory responses by reducing key cytokines such as
TNF-α and interleukin 1β (IL-1β) (Asaad and Mostafa, 2022),
and acts as a free radical scavenger, reducing oxidative stress and
protecting cellular integrity (Ibuki et al., 2020). Due to its
antibacterial, anti-infective, and immunomodulatory
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characteristics, LF has been incorporated into infant formula
(Colombo et al., 2023) and utilized in adjunct anti-infective
treatment (Jiang et al., 2014).

4.2.2 Mechanism of action in dry eye disease
LF’s antioxidant properties on the ocular surface, where it

chelates free iron and prevents the formation of harmful
hydroxyl radicals, thus protecting CECs from oxidative stress
(Pastori et al., 2015). A Randomized controlled trial (RCT) has
demonstrated that LF supplementation enhances the integrity of
the tear film, improves the morphology of conjunctival epithelial
cells, and increases the lipid layer thickness, contributing to
overall tear stability (Dogru et al., 2007). Moreover, as an
antioxidant, it has demonstrated inhibitory effects on
cytokine production, and it effectively attenuates the
hyperinflammatory response of pathogens (Berthon et al.,
2022). Additionally, LF can suppress excessive inflammation
by inhibiting complement activation and reducing inflammatory
mediators (Samuelsen et al., 2004).

4.2.3 Advantages associated with the condition of
dry eye disease

The concentration of LF in the tears of patients with DED is
low, and there is a belief that LF concentration can serve as a
biomarker for diagnosing DED. This belief is supported by
Ponzini et al. (2020)’s meta-analysis. Innovative diagnostic
technologies, such as the use of nanophotonic metasurfaces
(Ye et al., 2024) and fluorescence polarization-based
aptasensors (Zhang et al., 2023b), have been developed to
detect LF in tear fluid, offering new approaches for accurate
DED diagnosis and classification.

LF’s therapeutic effects include mitigating CECs damage and
promoting cellular repair, as demonstrated in animal models of
DED (Pattamatta et al., 2013; Regueiro et al., 2023). Connell
et al. (2021) also observed that LF can increase tear secretion,
inhibit the expression of inflammatory factors, and induce a
short-lasting effect on tear secretion by modulating the gut
microbiota to stimulate the production of short-chain FAs in
a mouse model of DED. However, it should be noted that in this
experiment, vancomycin, a type of antibiotic, caused LF
ineffective in treating DED by impacting the gut flora
(Connell et al., 2021). With the growing research on the
efficacy of LF in DED, many researchers have developed LF-
loaded liposomes using nanomaterials. This addresses the poor
aqueous stability of LF and its high excretion through the
nasolacrimal duct, which can affect its therapeutic efficacy.
López-Machado et al. (2021) have developed liposomes with
LF that exhibit good anti-inflammatory properties, effectively
alleviating discomfort without irritation.

4.2.4 Possible side effects and potential health risks
According to the data, LF demonstrates minimal side effects,

particularly in bovine LF. While LF is generally well-tolerated,
some side effects such as temporary fecal loosening have been
noted, particularly with oral administration, necessitating
careful monitoring during extended use (Dogru et al., 2007).
Long-term administration must be managed to avoid issues such
as excessive iron absorption, which could lead to digestive

disturbances and potentially interfere with the absorption of
other vital nutrients.

4.3 Probiotics

4.3.1 Definitions, biological functions, and areas of
application

Probiotics are live microorganisms that offer health benefits.
These include the ability to suppress or eliminate harmful bacteria,
balance the intestinal microecology, promote digestion and nutrient
absorption, improve the intestinal environment, stimulate immune
cell function, and strengthen the body’s immune response (da Silva
et al., 2024). Probiotics exhibit antibacterial and anti-inflammatory
properties and are commonly used in fermented dairy products,
beverages, and other functional foods. They are also employed in
managing intestinal disorders and as a supplemental therapy to
enhance immune functions (Abouelela and Helmy, 2024).

4.3.2 Mechanism of action in dry eye disease
Recent studies have advanced our understanding of the ocular

surface microbiota, identifying key bacterial groups such as
Firmicutes (such as Staphylococcus and Streptococcus),
Actinomycetes (specifically Corynebacterium), and Proteobacteria
(including Acinetobacter and Pseudomonas). These groups are
crucial for pathogen defense and play significant roles in
regulating the ocular immune response, thus maintaining ocular
health (Li et al., 2020).

The Gut-Eye Axis concept suggests intestinal dysbiosis may
significantly impact the onset and progression of eye diseases,
including autoimmune DED. Patients with autoimmune DED
often experience damage to ocular surface tissues such as the
cornea, conjunctival goblet cells, and lacrimal glands. This
damage is frequently associated with alterations in gut microbial
diversity and abundance (Bai et al., 2023), which can trigger systemic
inflammation and contribute to a range of ocular disorders,
including age-related macular degeneration, uveitis, diabetic
retinopathy, and glaucoma (Bai et al., 2023; Campagnoli et al., 2023).

According to Donabedian et al. (2022), autoimmune uveitis
induced by gut flora may be attributed to four factors. Firstly, the gut
flora regulates the levels of microbial metabolites, such as butyric
acid and short-chain FAs, which have anti-inflammatory properties.
Secondly, Imbalances caused by gut dysbiosis can disturb immune
homeostasis, affecting various body organs. Thirdly, an imbalance
between helper T-cells 17 (Th17) and regulatory T-cells (Treg) can
lead to excessive IL-17 production, exacerbating inflammation.
Lastly, microbial recognition in the gut can activate autoantigenic
T cells in the uvea, contributing to autoimmune reactions
(Donabedian et al., 2022). These four factors are closely
associated with the ocular manifestations of systemic
autoimmune disease, and it is highly probable that uveitis
directly contributes to the development of DED. Schaefer et al.
(2022) also discovered that the gut microbiota can influence the
health of the ocular surface by impacting CD4+ FOXP3+ Tregs in the
lymph nodes of the eye.

Studies have also shown that imbalances in gut microbiota can
amplify the inflammatory response to LPS, a component of gram-
negative bacteria, aggravating DED (Bertani and Ruiz, 2018; Wang
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et al., 2019). Such disruptions have been associated with worsened
DED symptoms, decreased corneal barrier function, and reduced
epithelial cell density, indicating a negative correlation between
microbial diversity and DED severity (Mendez et al., 2020).

Research by Qi et al. (2021) highlighted differences in gut
microbiota between individuals with autoimmune disease-
mediated DED and those with non-autoimmune DED. Findings
included variations in bacterial populations like Corynebacterium,
Streptococcus, and Prevotella, correlating with DED severity.
Additionally, a separate study reported an elevated presence of
Veillonella in individuals with DED compared to the gut
microbiota of the Sjögren syndrome and healthy population.
Meanwhile, the Subdoligranulum was significantly reduced in
patients with DED (Moon et al., 2020a). Additionally, research
has substantiated the significance of Prevotella in the modulation
of tear secretion among individuals suffering from DED and
demonstrated a positive correlation between the severity of DED
and the presence of Prevotella (Zhang et al., 2023a).

Research has indicated that dietary choices, particularly high-fat
diets, significantly influence the gut microbiota, exacerbating DED
symptoms through mechanisms such as decreased tear secretion,
increased oxidative stress, and heightened apoptosis (Wu et al.,
2020). Furthermore, research by Zhang et al. (2022a) observed that a
high-fat diet led to excessive growth of intestinal Deferribacterota in
a mouse model of desiccation syndrome, closely correlating with
increased severity of DED.

4.3.3 Advantages associated with the condition of
dry eye disease

Recent research underscores the potential of optimizing gut
microbiota to treat DED effectively. Tavakoli et al. (2022)
highlighted that both probiotic and prebiotic therapies have
shown promising results in treating DED. Specific strains such as
Bifidobacterium lactis and Bifidobacterium bifidum have been
documented to improve tear secretion and BUT (Chisari et al.,
2017b). Additionally, Saccharomyces boulardii MUCL 53837 and
Enterococcus faecium LMG S-28935 have been effective in alleviating
subjective symptoms of DED (Chisari et al., 2017a). Further research
has demonstrated the efficacy of a complex of five probiotics in
enhancing tear production in both autoimmune and dry-stress DED
mouse models, suggesting a broader therapeutic potential across
different DED types (Moon et al., 2020b; Choi et al., 2020). Another
study revealed that an oral formulation of Bifidobacterium and
Lactobacillus plantarum not only increased tear secretion but also
repaired CECs and reduced inflammatory markers like TNF-α and
IL-1β (Yun et al., 2021).

In an RCT with 60 participants, a group receiving a probiotic
preparation of Enterococcus faecalis and S. boulardii along with
routine eye drops showed significant improvement in DED
symptoms compared to the control group, which received only
eye drops (Chisari et al., 2017a). Another RCT investigating a
combination of Lactobacillus, Bifidobacterium, and Streptococcus
with NutriKaneD confirmed its effectiveness in increasing tear
secretion and reducing discomfort (Tavakoli et al., 2022).
Building upon these studies, Lee et al. (2023) conducted a
detailed investigation on the effects of Lactobacillus fermentum
HY7302 in a benzalkonium chloride-induced mouse model of
DED and found that it reduced corneal fluorescein scores,

increased tear secretion, and repaired CECs. It also decreased
oxidative stress and inflammatory cytokine production in the
DED model. Concerning the utilization of probiotics, Heydari
et al. (2023) evaluated the effectiveness and safety of
administering Latilactobacillus sakei both orally and topically in
DED patients. The study found that while both methods were safe,
topical administration was more effective at reducing inflammation
(inhibition of inflammatory factors such as IL-6, TNF-α, and
Interferon-gamma) and improving tear stability (Heydari
et al., 2023).

Aside from the orally administered probiotic preparations, there
is a novel medical therapy called intestinal flora transplantation
(FMT) that aims to reinstate the equilibrium of intestinal flora in
patients through the transfer of fecal flora from healthy individuals
to the patient’s intestines. This therapy has already proven effective
in treating various conditions, including Clostridium difficile
infections (Hui et al., 2019), Crohn’s disease (Fehily et al., 2021),
irritable bowel syndrome (El-Salhy et al., 2021), and psychiatric
disorders (Pascale et al., 2020). Initial studies have confirmed its
safety and efficacy in a small cohort of patients with immune-
mediated DED (Watane et al., 2022).

4.3.4 Possible side effects and potential health risks
While probiotics are generally safe, they can cause adverse

reactions, including bacterial and fungal sepsis, immune system
hyperstimulation, microbial resistance, and gastrointestinal issues,
especially in vulnerable populations like premature infants and
immunocompromised individuals (Sotoudegan et al., 2019). It is
critical to monitor patients closely when using probiotics in clinical
settings. Furthermore, challenges remain regarding the colonization
capacity of probiotic strains and the standardization of probiotic
preparations (Donabedian et al., 2022).

4.4 Coenzyme Q10

4.4.1 Definitions, biological functions, and areas of
application

Coenzyme Q10, also known as ubiquinone, is a lipid-soluble
compound found predominantly in mitochondria and cell
membranes. It is critical for cellular functions (Hargreaves et al.,
2020), particularly in energy production through adenosine
triphosphate synthesis (Aussel et al., 2014), acting as an
antioxidant to combat free radicals (Bentinger et al., 2007), and
inhibiting lipid peroxidation to protect cell membranes from
oxidative damage (Zhang et al., 2013). Clinically, CoQ10 is
utilized in the management of heart failure and myocarditis,
owing to its ability to preserve the morphology and structure of
mitochondria in ischemic cardiomyocytes (Alarcón-Vieco et al.,
2023). Moreover, it is also used in the treatment of antioxidants
(Samimi et al., 2024) and maintenance of muscle function (Talebi
et al., 2024).

4.4.2 Mechanism of action in dry eye disease
A causal relationship exists between oxidative stress and

mitochondrial dysfunction, as the copious amount of free
radicals produced by oxidative stress can cause damage to
mitochondrial complex I. Conversely, suppressing mitochondrial
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complex I results in an escalation in the generation of free radicals. It
is, therefore, imperative to safeguard the function of mitochondria
and prevent any potential dysfunction to effectively treat diseases
such as DED (López-Lluch, 2021). CoQ10 also inhibits apoptosis by
specifically safeguarding mitochondrial DNA and inhibiting
mitochondrial depolarization. In cases of oxidative stress, it
scavenges oxygen free radicals and keeps mitochondrial DNA
deletion mutations in check, maintaining the whole respiratory
chain. Additionally, CoQ10 binds to the mitochondrial
permeability transition pore, preventing mitochondrial
depolarization and cytochrome C release to lower cysteine
protease-3 activation and reduce apoptosis (Bentinger et al., 2007;
Hseu et al., 2018; Fatima et al., 2021).

4.4.3 Advantages associated with the condition of
dry eye disease

Research indicates that CoQ10 significantly improves lacrimal
gland function and reduces inflammation due to its antioxidant
properties. Studies using animal models also have demonstrated its
effectiveness in mitigating mitochondrial damage linked to oxidative
stress in the lacrimal gland (Uchino et al., 2012). Clinical trials using
combinations of CoQ10 with cross-linked hyaluronic acid (XL-HA)
have shown enhanced treatment outcomes in DED patients,
attributed to CoQ10’s antioxidant effects and HA’s inherent water
retention and viscoelasticity properties, which are essential for
repairing ocular tissues (Postorino et al., 2018; Posarelli et al.,
2019). In another study, researchers concluded that including
CoQ10 in treatment reduced all cytokine levels and a notable
elevation in total antioxidant status levels. The efficacy of
CoQ10 in enhancing protection against oxidative damage and
safeguarding the lacrimal gland was established through
histopathological and tissue cytokine level analyses (Yakin et al.,
2017). Serrano-Morales et al. (2022) conducted a prospective study
using a double-blind approach to assess the effectiveness of a
combination supplement containing XL-HA, CoQ10, and vitamin
E in women experiencing menopausal DED symptoms while
undergoing antidepressant treatment. The study’s results indicated
that patients who received the intervention experienced
improvements in DED symptoms, as well as increased tear film
stability (measured by the BUT test) and higher tear production
(measured by the Schirmer test). It is worth noting that HA exhibits
favorable lubricating properties, particularly when cross-linked, as it
forms a liquid matrix on the ocular surface. Moreover, CoQ10 and
vitamin E in this combination supplement act as antioxidants,
improving ocular repair (Serrano-Morales et al., 2022).
Additionally, Tredici et al. (2020) demonstrated that applying this
complex can protect the ocular surface of professional swimmers
frequently exposed to chlorinated water for extended periods.

4.4.4 Possible side effects and potential health risks
When evaluating potential drug interactions, it is imperative to

consider the impact of CoQ10 on warfarin metabolism. Due to its
structural similarities with vitamin K, CoQ10 may selectively interact
with cytochrome P450 enzymes, reducing response to warfarin (Sharma
et al., 2016). This could introduce challenges for patients with lifelong
anticoagulation needs, such as those with heart failure and atrial
fibrillation (Ayers et al., 2018). Additionally, CoQ10’s strong
antioxidant properties might reduce the effectiveness of pro-oxidant

chemotherapies (Yasueda et al., 2016) and could interact with
antihypertensive drugs to cause an excessive drop in blood pressure,
necessitating careful monitoring and dose adjustments (Zhao
et al., 2022).

4.5 Spermidine

4.5.1 Definitions, biological functions, and areas of
application

Spermidine is a naturally occurring polyamine found in all living
organisms, playing essential roles in cellular metabolism (Hofer
et al., 2021), including cell proliferation and division (Luo et al.,
2023). It is critical for maintaining DNA stability and synthesis
(Wang et al., 2018) and supports processes such as apoptosis and
autophagy, crucial for removing damaged cells and maintaining
cellular health (Hofer et al., 2021). Due to its extensive biological
roles, spermidine is used to reduce inflammatory responses (Mao
et al., 2023), improve cardiovascular health (Wu et al., 2022), and
enhance cognitive functions (Pekar et al., 2021).

4.5.2 Mechanism of action in dry eye disease
Spermidine helps regulate the immune system’s balance, crucial in

conditions like DED, where inflammation plays a key role. M1/
M2 macrophage polarization and the Treg/Th17 cell balance, are
processes integral to modulating inflammation (Shapouri-
Moghaddam et al., 2018; Zhang et al., 2021). DED is associated with
an imbalance in Th17/Treg cells, leading to increased Th17 polarization
and secretion of pro-inflammatory cytokines like IL-17, causing
epithelial damage (Ratay et al., 2017). As we all know, Macrophage-
induced inflammation promotes the differentiation of CD4 T cells into
Th17 cells, which inhibits Treg cell function. Spermidine regulates
immune cell number and function by inducing macrophage
polarization and CD4 T cell differentiation in an autophagy-
dependent manner (Liu et al., 2020; Carriche et al., 2021). It also acts
as an antioxidant and specific calcium chelator, safeguarding cells from
oxidative stress-induced calcium overload and preventing apoptosis
when exposed to oxidative or endoplasmic reticulum stress (Kim
et al., 2021). Meanwhile, it is primarily found in the brain and retina
and is an endogenous scavenger for free radicals. It also exhibits potential
inhibitory effects against ROS, as observed in previous studies (Ha
et al., 1998).

4.5.3 Advantages associated with the condition of
dry eye disease

Spermidine has shown potential in inhibiting the production of pro-
inflammatory cytokines in microglia activated by LPS and protecting
fibroblasts from oxidative damage induced by hydrogen peroxide
(Horrocks and Yeo, 1999; Rider et al., 2007). These properties
contribute to enhanced tear film stability and reduced ocular surface
inflammation in DED models. In mouse studies, spermidine treatment
resulted in decreased IL-17 levels in the corneas and lacrimal glands,
stabilizing the tear film and mitigating ocular surface inflammation (Lee
et al., 2021).

4.5.4 Possible side effects and potential health risks
While spermidine offers therapeutic benefits, its use in treating

ocular conditions must be approached with caution due to potential
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cytotoxic effects. These include the risk of excessive proliferation
and migration of retinal pigment epithelium cells, which may lead to
complications such as hyperproliferative retinopathy (Han
et al., 2022).

4.6 Royal jelly

4.6.1 Definitions, biological functions, and areas of
application

Royal Jelly (RJ) is a creamy secretion produced by the glands of
worker bees (Wang et al., 2023), known for its antibacterial,
antifungal, anti-inflammatory, and antioxidant properties
(Ghadimi-Garjan et al., 2023). It supports cell renewal, wound
healing, and blood pressure and lipid regulation (Zamami et al.,
2008). Given its nutrient richness and biofunctional diversity, RJ is
widely used as a dietary supplement and for antibacterial and anti-
inflammatory treatments (Baptista et al., 2023).

4.6.2 Mechanism of action in dry eye disease
RJ exhibits natural antioxidative characteristics, significantly

reducing ROS and nitric oxide production in macrophages and
boosting activities of antioxidant enzymes like SOD and
glutathione (Gu et al., 2018). Major Royal Jelly Protein 2, a
key RJ component, diminishes oxidative stress and inhibits
apoptosis in microbial cells, enhancing cell survival under
oxidative conditions (Abu-Serie and Habashy, 2019).
Additionally, RJ has shown efficacy in reducing oxidative
stress in diabetic animal models by enhancing antioxidant
enzyme activities and reducing oxidative damage markers
(malondialdehyde levels) (Ghanbari et al., 2016).

RJ’s anti-inflammatory effects are mediated through its fatty acid
analogs, including 10-hydroxy-2-decanoic acid, 10-hydroxy
decanoic acid, and sebacic acid, which effectively inhibit the
release of pro-inflammatory cytokines and other inflammatory
mediators (Yang et al., 2018b). These compounds influence
critical inflammatory pathways, such as mitogen-activated
protein kinases and NF-κB signaling pathways, and promote
the production of anti-inflammatory cytokines IL-1ra (You
et al., 2020).

4.6.3 Advantages associated with the condition of
dry eye disease

RJ has been used in conventional ophthalmic remedies like
honey eye drops for corneal wound healing (Azmi et al., 2021)
and propolis for protecting retinal neurons (Abd Rashid et al.,
2022). Studies have demonstrated that RJ enhances tear
secretion by promoting Ca2+ mobilization and conserving
ATP in lacrimal glands through muscarinic signaling
pathways (Inoue et al., 2017). Yamaga et al. (2021)
investigated the impact of various bioactive components in RJ
on tear production. To determine the critical component
responsible for increasing tear production, they utilized a
mouse model of stress DED. Their research discovered that a
combination of three FAs and acetylcholine played a pivotal role
in enhancing tear production (Yamaga et al., 2021). An extensive
study comparing various bee products (including raw honey,
propolis, RJ, pollen, and bee larvae) found RJ most effective in

restoring tear secretion and maintaining mitochondrial health in
lacrimal glands (Imada et al., 2014).

A clinical trial also confirmed that oral RJ supplementation
significantly improved tear secretion in DED patients without
adverse effects (Inoue et al., 2017). Further, systematic reviews
have validated RJ’s therapeutic impact on improving DED
symptoms (Prinz et al., 2023).

4.6.4 Possible side effects and potential health risks
Despite its benefits, RJ may cause allergic reactions, including

skin rashes and pruritus, particularly in sensitive individuals (Li
et al., 2021). Due to its estrogenic properties, RJ is not recommended
for children under 10 years and pregnant women (Ishida et al.,
2022). However, no significant adverse reactions have been reported
in clinical studies.

4.7 Nutrients are currently recognized as
beneficial for dry eye disease

Nutrient therapy is a significant component in the holistic
management of DED, supplementing medical treatments. Various
studies have highlighted the therapeutic benefits of diverse nutrient
compositions such as ω-3FAs (Roncone et al., 2010; Rosenberg and
Asbell, 2010), vitamins (Gorimanipalli et al., 2023), trace elements,
and phytochemicals (Pellegrini et al., 2020) for treating DED. Given
that the efficacy of these nutrients in treating DED has been
thoroughly explored through reviews and meta-analyses, this
review will focus on elucidating their mechanisms of action and
potential health risks. This approach aims to underscore the
importance of ensuring the effectiveness of nutritional supplements
in alleviating DED symptoms while ensuring their safety.

4.7.1 Essential fatty acids
4.7.1.1 Definitions, biological functions, and areas of
application

Essential fatty acids (EFAs), including linoleic acid and α-linolenic
acid from the ω-6 and ω-3 series respectively, are crucial to the
structure and function of human cell membranes. They play vital roles
in maintaining membrane integrity and fluidity, which is essential for
cell viability and function (Mason et al., 2016). EFAs are also
indispensable for growth and development, particularly in brain
and nervous system development (Lin et al., 2024). The cognitive
benefits of α-linolenic acid and the role of Docosahexaenoic Acid
(DHA) in visual maintenance are well-documented (Sala-Vila et al.,
2009; Horrocks and Yeo, 1999). Additionally, EFAs contribute to
lowering blood cholesterol and triglyceride levels, thereby reducing
the risk of cardiovascular disease (Sherratt et al., 2024). Their anti-
inflammatory properties are beneficial in alleviating symptoms of
inflammatory diseases such as DED (Lorente-Cebrián et al., 2015).
The widespread recognition of the health benefits associated with
EFAs has led to the availability of various health foods and
supplements containing these compounds.

4.7.1.2 Mechanism of action in dry eye disease
EFAs, specifically ω-3FAs, are critical in preventing and

managing DED. Their mechanism of action involves several
facets: initially, they inhibit the production and release of
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inflammatory mediators such as prostaglandins, leukotrienes, and
tumor necrosis factor, which are pivotal in the pathogenesis of DED
(Sheppard et al., 2013). By diminishing the activity of these
inflammatory factors, ω-3FAs mitigate the inflammatory response
in ocular tissues, thereby alleviating symptoms of DED. Moreover,
ω-3FAs positively influence eye cell repair and regeneration,
promoting the healing of damaged corneal epithelial and lacrimal
gland cells, thus aiding in tissue integrity and function restoration
(Roncone et al., 2010).

4.7.1.3 Possible side effects and potential health risks
Short-term gastrointestinal disturbances are the most reported

adverse reactions in the EFAs correlation reports. Of the studies that
evaluated the administration of ω-3FAs as complementary agents
versus placebo and reported adverse reactions, most disclosed
gastrointestinal disturbances, including diarrhea, in the ω-3FAs
group (Bhargava et al., 2016; Deinema et al., 2017; Dry Eye
Assessment and Management Study Research Group et al., 2018).
While these side effects were relatively rare, and there was not a
significant observable difference between ω-3FAs and placebo, it is
imperative to consider the safety of systemic replenishment of ω-
3FAs as a crucial aspect. Patients with atrial fibrillation, liver disease,
or bleeding disorders are preferably advised against ω-3FAs
supplements (Jones et al., 2017). Although dietary therapy is
generally deemed safe for healthy adults, high doses of ω-3FAs
supplementation (>2,000 mg/d) have been linked to a slight increase
in bleeding risk in specific populations (Buckley et al., 2004). At the
same time, exceeding a certain threshold of ω-3FAs concentration
may enhance the risk of bleeding and arrhythmias (Kapoor et al.,
2021). Further investigations are needed to confirm the safety of ω-
3FAs. The composition, dose, course, and application method of
EFAs preparations (diet, capsules, eye drops) are essential
considerations for effectively treating DED.

4.7.2 Vitamins
4.7.2.1 Definitions, biological functions, and areas of
application

Vitamins are essential organic compounds that serve as crucial
micronutrients for maintaining vital bodily functions and overall
health. They significantly influence growth, development, and
physiological processes. Vitamin A is vital for vision and immune
system support (Dewett et al., 2021), while Vitamin D enhances bone
health and facilitates calcium absorption (Rizzoli et al., 2014).
Vitamins C and E are known for their antioxidant properties,
which help combat oxidative stress (Myhrstad and Wolk, 2023).
Typically used to meet the nutritional needs of various
populations, including children, pregnant women, and the elderly,
vitamins also play a role in preventing and treating deficiencies.

4.7.2.2 Mechanism of action in dry eye disease
Vitamins are integral in modulating immune responses within

the body, including the ocular system. For example, Vitamin D
receptors research found within the human eye suggest that Vitamin
D plays a significant role in eye cell functions and may reduce ocular
surface inflammation associated with DED, thereby improving
symptoms (Caban and Lewandowska, 2022). Similarly, Vitamin
D supplementation has shown to improve serum Vitamin levels,
enhancing ocular surface health and tear quality (Yang et al., 2018a).

Vitamin A supports ocular surface repair and maintenance
(Samarawickrama et al., 2015), and Vitamins C and E, both
potent antioxidants, help alleviate symptoms of DED by reducing
oxidative stress (Huang et al., 2016).

4.7.2.3 Possible side effects and potential health risks
While vitamins are essential for health, excessive intake can

lead to adverse effects (Fassier et al., 2019). High doses of Vitamin
A may increase the risk of lung cancer among high-risk groups,
such as smokers and asbestos workers (O’Connor et al., 2022).
Furthermore, excessive Vitamin A intake has been linked to
teratogenic effects and an increased risk of birth defects when
consumed at high levels (over 10,000 IU/d) during pregnancy
(Hunt, 1996). It can also negatively impact bone quality and
increase fracture risks, such as retinoic acid can inhibit
osteoblast activity, stimulate osteoclast formation, induce bone
resorption, and negatively impact bone quality (Li et al., 2019). A
single or short-term dose of approximately 50,000 IU can provoke
toxic conditions such as vomiting, increased cerebrospinal fluid
pressure, blurred vision, and impaired muscle coordination
(Bendich and Langseth, 1989). Symptoms of hypervitaminosis
A may typically resolve within a week of discontinuation,
though long-term or irreversible effects may include cirrhosis
and bone changes (Eldredge et al., 2022).

Vitamin D pre-supplementation to prevent illnesses is gaining
traction among the general population. Meanwhile, it is essential to
note that administering vitamin D without proper scientific guidance
may lead to elevated serum concentrations of 25-hydroxyvitamin D
and free 1,25-dihydroxy vitamin D, as well as an array of chronic toxic
effects, such as hypercalcemia and hypercalciuria, that can result in
renal calcium deposition. Employing non-hydroxylated vitamin D
forms that are effectively maintained in conjunction with the body’s
self-regulation of vitamin D activation may help minimize the risk of
toxicity (Pludowski et al., 2018).

In a recent large-scale Mendelian randomized analysis, based on
the European population cancer GWAS, the authors found that
circulating vitamin E was significantly associated with an increased
risk of bladder cancer (Xin et al., 2022). It has also been reported that
consuming 400 IU/d of vitamin E did not prevent cancer or vascular
disease and may even raise the danger of heart failure in those with
underlying conditions (Lonn et al., 2005). A meta-analysis of
19 RCTs involving 135,967 subjects with daily vitamin E intake
between 16.5 and 2000 IU. The authors concluded that there was a
dose-response relationship between vitamin E supplementation and
all-cause mortality and that high doses of vitamin E (>/ = 400 IU/d)
should be avoided (Miller et al., 2005). At the same time, we must be
aware that hypervitaminosis E status may cause abnormal bleeding
events by suppressing the synthesis of vitamin K-derived
coagulation factors (Abrol et al., 2023).

Throughout various studies, high doses of vitamin C have
generally been observed to be well-tolerated. However, there have
been indications that regular doses of ≥1 g over extended periods,
such as months or years, may reduce bactericidal activity in
leukocytes and increase the risk of stone formation caused by
temporary urate excretion elevation. In addition, it is essential to
consider the destructive effect of elevated levels of vitamin C on
erythrocytes and the potential occurrence of hemolysis (Shilotri and
Bhat, 1977; Doseděl et al., 2021).
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4.7.3 Trace elements
4.7.3.1 Definitions, biological functions, and areas of
application

Trace elements are chemical elements present in minute
quantities within organisms yet are crucial for their normal
physiological functions. Their biological roles are manifold.
Primarily, trace elements serve as constituents of enzymes,
enhancing their catalytic actions. For example, zinc is vital for
protein synthesis, gene expression, and cell signaling (Kamińska
et al., 2021), while copper plays a significant role in gene expression
and cell differentiation (Kersey et al., 2024). Selenium is known for
its antioxidant properties, helping to eliminate free radicals and
protect cells from oxidative damage (Rayman, 2012). The utilization
of trace element supplements is widespread for managing and
preventing deficiencies in these elements, such as iron deficiency
anemia and zinc inadequacy (Moradveisi et al., 2019; Sonmez
Ozkarakaya et al., 2021).

4.7.3.2 Mechanism of action in dry eye disease
Zinc is critical in activating numerous enzymes and cell

signaling pathways (Kamińska et al., 2021). It supports cellular
repair and regeneration, which is crucial for restoring
functionality in damaged ocular surface cells, thus alleviating
DED symptoms. It also modulates immune responses, potentially
reducing inflammation and mitigating immune-mediated damage
in DED (Gilbert et al., 2019). Selenium, as an antioxidant, plays a
crucial role in minimizing cellular damage caused by oxidative
stress, safeguarding the structure and function of the ocular
surface (Higuchi, 2019).

4.7.3.3 Possible side effects and potential health risks
While essential for health, it is critical to maintain optimal

concentrations of trace elements. Excessive zinc can interfere with
copper absorption, potentially leading to copper deficiency, which is
critical for erythropoiesis and can increase the risk of anemia
(Duncan et al., 2015). According to the latest study, there
appears to be a strong correlation between hyperselenemia and
non-alcoholic fatty liver disease (NAFLD). Wang et al. (2021)
conducted a linkage analysis that examined the relationship
between serum selenium concentration, alanine
aminotransaminase activity, and the incidence of NAFLD in US
adults. Results from this study indicate that serum selenium
concentration and alanine aminotransaminase activity are
nonlinearly dependent on the incidence of NAFLD. Specifically, a
positive correlation was observed at serum selenium levels above
130 μg/L, while no association was observed below this level (Wang
et al., 2021). Recent observational studies and RCT evidence suggest
high selenium exposure may negatively impact cardio metabolism,
especially hypertension, dyslipidemia, and type 2 diabetes (Vinceti
et al., 2018; Zhang et al., 2022b; Li et al., 2023).

4.7.4 Phytochemicals
4.7.4.1 Definitions, biological functions, and areas of
application

Phytochemicals are natural compounds found in plants that
enhance plant defenses against pathogens (Zaynab et al., 2018) and
have various beneficial effects on human health. These include anti-
inflammatory and antioxidant properties, boosting the immune

system, and promoting cardiovascular health (Choudhary et al.,
2024; Muscolo et al., 2024; Weerawatanakorn et al., 2024). A diet
rich in phytochemicals is crucial for deriving these health benefits, as
exemplified in Table 1.

4.7.4.2 Mechanism of action in dry eye disease
Phytochemicals exhibit potent antioxidant properties by

eliminating free radicals, thereby reducing oxidative stress and
protecting ocular tissues from damage (Ozawa et al., 2015). They
also possess anti-inflammatory characteristics that alleviate eye
inflammation and improve the inflammatory response associated
with DED (Yoon et al., 2023). Additionally, these compounds
enhance microcirculation within the eyes, improving the delivery of
nutrients and oxygen to ocular tissues, thus mitigating symptoms of
DED (Harris et al., 2019). Among the things to keep inmind is Lutein, a
carotenoid abundant in the macula, shields the eyes by absorbing and
filtering detrimental blue light, safeguarding the retina, and mitigating
the impact of blue light-induced damage (Widomska et al., 2023).

4.7.4.3 Possible side effects and potential health risks
While many phytonutrients can aid in disease prevention due to

their immune-boosting, antitumor, antioxidant, antibacterial, and
cardiovascular properties, excessive dosing can have potential risks.
A study suggests that long-term intake of β-carotene, retinol, and
lutein nutritional supplements alone to prevent diseases, especially
in patients with underlying conditions and smokers, is not
recommended. Although β-carotene, retinol, and lutein
supplements theoretically have beneficial health impacts, the
study’s authors found, in a review of the long-term consumption
of these nutrients and cancer risk, that it may lead to an increased
risk of lung cancer (Satia et al., 2009). Meanwhile, Ginkgo biloba has
been observed to contribute to hemodilution, inhibit thrombosis,
and enhance circulation. Therefore, it is recommended that
individuals at an elevated risk of bleeding, those taking specific
anticoagulants and antiplatelet agents, and those undergoing
surgical or other invasive operations should avoid it (Rosenblatt
and Mindel, 1997). The potential impact of green tea on tear
composition has garnered attention. A recent study investigated
the influence of green tea on tears in individuals with good health.
The researchers observed a decline in Phenol red thread readings
and an elevation in tear ferning test grades following green tea
consumption. Specifically, the Phenol red thread test, a conventional
method for assessing tear production, indicated reduced readings,
implying decreased tear output. Additionally, the tear ferning test, a
diagnostic process that assesses tear quality through the examination
of tear crystalline morphology, in patients with DED, tear ferning
test grades up, and tears fern-like crystals are reduced or fragmented.
Based on these findings, the authors postulate that green tea might
compromise tear quality and advocate further investigation into this
phenomenon (Masmali et al., 2019).

5 Conclusion and future perspectives

With the increase in the use of digital devices and the population
aging, DED has become a common concern in contemporary
society. Exploring treatment modalities for this condition has
attracted considerable attention in the field of ophthalmology.
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Through an enhanced comprehension of the pathophysiological
mechanisms underlying DED and the conduct of numerous clinical
investigations, it has been discerned that antioxidants and
alternative dietary supplements hold promise for preventing and
managing DED. The present review has collated the foremost
categories of nutrients known to offer advantages in managing
DED, encompassing EFAs, vitamins, trace elements, and
phytochemicals, along with six additional groups of emerging
nutrients supported by studies demonstrating their efficacy in
alleviating symptoms of DED. This study is intended to provide
some perspective on the composition of the ideal nutrient for DED
treatment in terms of its efficacy and safety.

This review has detailed the biological functions, benefits, and
mechanisms of action of these six emerging nutrients in DED, but
much future research exists that could be conducted within this
context. Specifically, these are as follows: While current research on
L-carnitine in DED is limited, its potential effects on energy
metabolism, antioxidant capabilities, and cell signaling pathways
could enhance lacrimal cell health and function. Future studies
should aim to clarify the role of L-carnitine in ocular health,
particularly how it affects lacrimal gland function. Future
research could investigate potential dietary adjustments to
enhance L-carnitine consumption, considering the elevated levels
of L-carnitine found in meat and dairy items. This may offer a
supplementary approach for managing DED conditions.

Although LF is known for its extensive biological functions, its
specific interactions within the ocular surface microenvironment
need deeper exploration. The potential of peptides derived from LF,
which may have heightened biological efficacy, deserves further
investigation in DED management (Yen et al., 2024).

Given the health benefits of probiotics, more clinical trials are
necessary to evaluate the effects of different probiotic
strains on DED.

Innovation in the administration of CoQ10, such as sustained-
release ocular drops and nanoparticle systems, could significantly
improve its effectiveness by enhancing absorption. This offers a
promising direction for further research and development in
optimizing CoQ10 therapy for ocular surface diseases.

While research on the therapeutic and preventive effects of
spermidine on DED conditions is limited, it remains considerable to
investigate the potential of spermidine to enhance tear film stability
through its impact on the lipid layer, thereby reducing excessive tear
evaporation.

It is essential to emphasize not only the importance of
determining the optimal dosage of various nutrients for
therapeutic purposes while avoiding potential health risks and
ensuring cautious administration across the population but also

to consider the mode of administration (be it capsules, tablets, or eye
drops) and the synergistic therapeutic effects when combining them
with other treatment modalities. For instance, the specific EPA to
DHA ratio in EFAs, the bioavailability of different forms of zinc, and
the potential utilization of innovative delivery systems like
liposomes and nanoparticles warrant thorough investigation.
These research areas aim to meet the individualized needs of
DED patients, thus paving the way for more efficient, safer, and
personalized treatment approaches.
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