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The scientific and medical community faced an unprecedented global health
hazard that led to nearly 7million deaths attributable to the rapid spread of severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In spite of the
development of efficient vaccines against SARS-CoV-2, many people remain at
risk of developing severe symptoms as the virus continues to spread without
beneficial patient therapy. The hyper-inflammatory response to SARS-CoV-2
infection progressing to acute respiratory distress syndrome remains an unmet
medical need for improving patient care. The viral infection stimulates alveolar
macrophages to adopt an inflammatory phenotype regulated, at least in part, by
the cluster of differentiation 36 receptor (CD36) to produceunrestrained inflammatory
cytokine secretions. We suggest herein that the modulation of the macrophage
response using the synthetic CD36 ligand hexarelin offers potential as therapy for
halting respiratory failure in SARS-CoV-2-infected patients.
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Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic caused over
773 million infections and nearly 7 million deaths globally (WHO, 2023) between 2019 and
2023. Most infected patients were either asymptomatic or manifested mild to moderate flu-
like symptoms common among viral respiratory tract infections. Some individuals, notably
the elderly and those presenting comorbidities, often developed a rapid deterioration of
respiratory functions and lower airway infection progressing to acute respiratory distress
syndrome (ARDS) and in many instances, death (Ramadori, 2022; Zheng et al., 2022). In
severe cases, COVID-19 (coronavirus disease 2019)-related ARDS has been typically
associated with hyper-cytokinemia, so-called “cytokine storm,” featuring macrophage
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activation (Tao et al., 2023). Hyper-cytokinemia is initiated by
different macrophage subsets in the lungs including interstitial,
alveolar, and monocyte-derived macrophages, in particular
(Merad and Martin, 2020; Gustine and Jones, 2021), which
contribute to ARDS development in SARS-CoV-2-infected
patients (Kosyreva et al., 2021).

The cluster of differentiation 36 receptor (CD36) is an
extensively glycosylated class B2 scavenger receptor, that sits at
the crossroad between lipid metabolism and innate immune
response. Largely expressed in immune and non-immune cells,
CD36 plays important immunomodulatory roles in health and
disease (Silverstein and Febbraio, 2009). First identified as a long
chain fatty acid transporter, CD36 has been later shown to mediate
inflammatory signaling in response to damage-associated molecular
pattern signals (DAMPs), such as oxidized phospholipids (oxPLs)
(Miller et al., 2011; Chen et al., 2022; Dunigan-Russell et al., 2023).
The binding domain for oxPLs has been identified in the
CD36 protein (Ashraf et al., 2009). As a co-receptor of Toll-like
receptor (TLR) heterodimer complexes TLR2/6 (Mellal et al., 2019)
and TLR4/6 (Stewart et al., 2010), CD36 is implicated in triggering
nuclear factor-kappa B (NF-κB) inflammatory signaling following
exposure to oxPLs (Park, 2014). Moreover, CD36 was found to
modulate pro-inflammatory macrophage phenotype (Sun et al.,
2022). Appropriately, the pulmonary hyper-inflammation
associated with SARS-CoV-2 infection was shown to rely, in part,
upon the stimulation of the pro-inflammatory NF-κB signaling
pathway by oxPL accumulation in the lungs and activation of
monocyte-derived macrophage TLRs (Merad and Martin, 2020).
Furthermore, CD36 was found to bind SARS-CoV-2-E (envelope)
protein, which is a major viral structural protein having central roles
in cytokine secretion, progression to ARDS-like symptoms and
thrombosis in mice (Tang et al., 2023). Accordingly, CD36 has
been proposed as target for severe COVID-19 patients (Vlasov et al.,
2021; Alghanim et al., 2022).

Ligands of CD36 derived from growth hormone-releasing
peptides (GHRPs) such as hexarelin [H-His-2-methyl-D-Trp-Ala-
Trp-D-Phe-Lys-NH2] and azapeptide analogs were reported to
exhibit high binding affinity to CD36 in murine cardiac
membranes (Bodart et al., 2002) and to exert anti-inflammatory
effects (Bodart et al., 2002; Bessi et al., 2012; Huynh et al., 2017;
Proulx et al., 2020). For example, azapeptide MPE-001 [H-His-D-
Trp-Ala-azaTyr-D-Phe-Lys-NH2] was shown to palliate
inflammation in response to photo-oxidative stress in mice by
attenuating NF-κB and NOD-like receptor family, pyrin domain
containing 3 (NLRP3) inflammasome pathways and concomitantly,
by activating peroxisome proliferator-activated receptor gamma
coactivator 1-alpha (PPAR-γ-PGC1α) signaling, to promote
macrophage polarization towards an anti-inflammatory phenotype
(Mellal et al., 2019). Various cellular responses to stimuli have been
modulated by such peptide-based CD36 ligands (Proulx et al., 2020).
For example, hexarelin has demonstrated cardioprotective effects
in rodent models of cardiovascular dysfunction after daily
subcutaneous administrations for up to 5 weeks (Ghigo et al.,
1999; Locatelli et al., 1999). Cardiotropic activity has also been
observed after acute administration of hexarelin to normal and
growth hormone-deficient humans as well as during by-pass
surgery (Bisi et al., 1999; Ghigo et al., 1999; Mao et al., 2014).
In this perspective, evidence is provided to suggest that the

pharmacologic modulation of CD36 response could attenuate
the macrophage-driven hyper-inflammatory response observed
in SARS-CoV-2-infected patients.

Pro-inflammatory macrophage phenotype
and COVID-19

Activated macrophages release cytokines [e.g., interleukin (IL)-
1β, IL-6, and tumor necrosis factor (TNF)-α] and chemokines [e.g.,
C-X-C ligand 8 (CXCL8) and C-C ligand 2 (CCL2)] (Atri et al.,
2018; Knoll et al., 2021). Cytokines and chemokines recruit
leukocytes to the lungs, leading to injury of endothelial and
epithelial tissues with heightened inflammation in COVID-19
patients (Ragab et al., 2020). Moreover, COVID-19 induces
endothelial and epithelial alveolar damage coupled to enhanced
interstitial and alveolar permeability to proteins and fluids, reduced
endothelial nitric oxide, and increased reactive oxygen species
(ROS) production (Chernyak et al., 2020; Yuan et al., 2021;
Otifi and Adiga, 2022). Prevention of the cytokine storm in
SARS-CoV-2-infected patients remains relevant and of high
priority (Kosyreva et al., 2021).

Current therapies for SARS-CoV-2-
infected patients

Vaccination programs against SARS-CoV-2 have been effective
but have suffered from inequality in global distribution and
administration (Bayati et al., 2022). Furthermore, vaccination
rates against COVID-19 are decreasing globally (Mathieu et al.,
2020). In spite an apparent decline in viral burden, the risk of future
coronavirus outbreaks is a major healthcare concern (Cui et al.,
2023). Current COVID-19 therapeutics function typically as
antiviral and anti-inflammatory agents (Niknam et al., 2022;
Yuan et al., 2023). For example, patients presenting mild to
moderate COVID-19 symptoms are treated with Paxlovid, which
features the viral 3C-like protease inhibitor nirmatrelvir boosted by
ritonavir, an inhibitor of cytochrome P450 CYP3A4 to prolong
activity (Shah et al., 2022). Paxlovid should however be initiated
within 5 days of onset of symptoms in patients at risk of progressing
to a severe state, but not to those requiring hospitalization due to
severe COVID-19 (Komorowski et al., 2022) nor to those with severe
hepatic impairment (Chaplin, 2022; Chen et al., 2023). Anti-
inflammatory therapy includes timely administration of steroidal
and nonsteroidal agents such as dexamethasone which, despite
reducing mortality by ~30% in ventilated patients, was associated
with severe side effects (Noreen et al., 2021) and with worsened
clinical outcomes (De Stefano et al., 2020; Noreen et al., 2021).
Inhibitors of Janus kinase (JAK1 and 2), such as baricitinib, have
been approved for use against SARS-CoV-2 in emergency situations
in the European Union and the USA (Bellino, 2022; Huang et al.,
2022; Rubin, 2022). The recovery collaborative group (2022)
reported that baricitinib reduced mortality in severe COVID-19
by about one-fifth (Abani et al., 2022). The humanized monoclonal
antibody against IL-6, tocilizumab has been approved in Canada,
Europe, and the USA (Bellino, 2022; Canada, 2022; FDA, 2022;
Mohseni Afshar et al., 2023). Despite elevation of IL-6 in the
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cytokine storm of SARS-CoV-2-infected patients, caution has been
expressed on the use of anti-IL-6 therapy because conditions
worsened in some patients (Montazersaheb et al., 2022).
Moreover, IL-6 blockade may not be sufficient in critically ill
COVID-19 patients and may increase the risks for severe
infection (Montazersaheb et al., 2022). In addition, cell-based
strategies have been proposed to mitigate the abundance of
infection fighting neutrophils and neutrophil extracellular traps
during the progressive pulmonary dysfunction of critically ill
COVID-19 patients (Mozzini and Girelli, 2020; Narasaraju et al.,
2020; Veras et al., 2023). New therapeutic avenues are needed to
safeguard vulnerable populations against a persistent incidence of
COVID-19 infection.

Hexarelin attenuates lung cytokine levels
and improves survival

Transgenic mice possessing the human ACE2 protein, which is
expressed under regulation of the human cytokeratin-18 promoter
in epithelial cells (K18-hACE2), were treated with a subcutaneous
injection of hexarelin (10 μmol/kg) or 0.9% NaCl vehicle 30 min
prior to intranasal infection with 250 TCID50 of SARS-CoV-2
(strain Delta, B.1.617.2, National Microbiology Laboratory,
Winnipeg, Manitoba, Canada). Thereafter, mice were treated
daily with 0.9% NaCl or hexarelin for 9 days. The experimental
protocol was approved by the institutional animal care committee of
Université Laval (CPAUL, 2020-594), in accordance with the
guidelines for the care and use of laboratory animals of the
Canadian Council on Animal Care and the US National Institute
of Health.

Daily treatment with the CD36 ligand increased survival of the
infected mice relative to vehicle-treated mice (Figure 1A). Hexarelin
treatment also reduced the accompanied weight loss of infected mice
relative to the placebo-treated group (Figure 1B). Moreover, lung
homogenates from the hexarelin-treated infected mice exhibited
decreased cytokine levels relative to placebo-treated mice: e.g.,
CCL2, CCL4, interferon (IFN) α and IFN γ, were significantly
reduced by 44%, 59%, 43% and 35%, respectively (Table 1).

Discussion

The SARS-CoV-2 epidemic represents an unprecedented
medical challenge worldwide (WHO, 2020). Disease course
during SARS-CoV-2 infection features a similar profile to that of
other highly pathogenic coronaviruses such as SARS-CoV and
MERS-CoV, characterized by extensive leukocyte infiltration

FIGURE 1
Treatment with hexarelin improves the survival of SARS-CoV-2-
infected mice. (A) Kaplan Meier curve of K18-hACE2 mice infected
with SARS-CoV-2. (B) Daily mean body weight of SARS-CoV-2-
infected mice expressed as a percentage of body weight at day 0
(n = 7 mice per group).

TABLE 1 Hexarelin decreased cytokine levels in lung homogenates at day
3 after SARS-CoV-2 infection.

Cytokines Group (n = 3) pg/mg ± SEM p values

CCL2 0.9% NaCl 131 ± 5 0.0082*

Hexarelin 73 ± 11

CCL3 0.9% NaCl 6.9 ± 0.5 0.1066

Hexarelin 5.0 ± 0.8

CCL4 0.9% NaCl 12.1 ± 1.4 0.0084*

Hexarelin 5.0 ± 0.5

CXCL9 0.9% NaCl 431 ± 84 0.7000

Hexarelin 383 ± 12

GROα 0.9% NaCl 7.5 ± 0.8 0.0978

Hexarelin 5.3 ± 0.7

IFNα 0.9% NaCl 23 ± 1 0.0463*

Hexarelin 13 ± 3

IFNβ 0.9% NaCl 13 ± 2 0.2978

Hexarelin 9 ± 2

IFNγ 0.9% NaCl 1.7 ± 0.2 0.0477*

Hexarelin 1.1 ± 0.1

IL-1β 0.9% NaCl 1.5 ± 0.1 0.0698

Hexarelin 1.2 ± 0.1

IL-6 0.9% NaCl 32 ± 4 0.1632

Hexarelin 24 ± 3

IP-10 0.9% NaCl 96 ± 9 0.7891

Hexarelin 91 ± 14

RANTES 0.9% NaCl 167 ± 11 0.1413

Hexarelin 144 ± 7

TNFα 0.9% NaCl 7.5 ± 0.8 0.0978

Hexarelin 5.3 ± 0.7
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dominated by macrophages in post-mortem lungs of infected
patients (Zhang et al., 2022). Mortality from SARS-CoV-2 has
been mainly associated with the so-called cytokine storm creating
a hyper-inflammatory state in infected patient lungs, leading to
ARDS, compromised respiratory function, and multiple organ
failure. The CD36 receptor has been associated with acute lung
injury, contributing to the hyper-inflammatory response of lung
macrophages after animal exposure to hydrogen peroxide,
lipopolysaccharide, and malaria (Alghanim et al., 2022; Sun et al.,
2022). As a co-receptor, CD36 regulates the assembly of TLR2/6 and
TLR4/6 heterodimers for activating the transcription of pro-
inflammatory cytokines, inflammasome priming, and production
of reactive oxygen species in response to endogenous oxidized lipids
(Sheedy et al., 2013; Mellal et al., 2019). Moreover, the E protein of
SARS-CoV-2, which plays a central role in cytokine secretion and
progression towards ARDS, was found to bind to CD36 and shown
to be involved in COVID-19-induced thrombosis (Tang et al., 2023).

Hexarelin was previously shown to mitigate the development of
HCl-induced ARDS-like symptoms in the bronchus and
hypothesized to be able to attenuate lung inflammation and
cytokine release in SARS-CoV-2-infected mice (Zambelli et al.,
2021). We theorized that CD36 ligands, which modulate
macrophage-driven inflammation, may curb the overreactive
inflammatory response in a SARS-CoV-2-infected transgenic
mouse model. We have found that the CD36 ligand hexarelin
dampened many pro-inflammatory pathways, reducing type I
interferon activity, chemokine levels and NLRP3 inflammasome
priming. A limitation of our study is the unselective, dual binding of
hexarelin towards CD36 and the ghrelin receptor (GHS-R1), both of
which are expressed on macrophages. Future studies using selective
azapeptide ligands are mandatory; nonetheless, the promise of
modulating monocyte- and macrophage-driven hyper-
cytokinemia by targeting CD36 suggests potential for mitigating
SARS-CoV-2-mediated activation of inflammatory responses
responsible for disease severity.
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