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Pterostilbene (PTS), a naturally occurring analog of resveratrol (RSV), has garnered
significant attention due to its potential therapeutic effects in treating
inflammatory and oncological diseases. This comprehensive review elucidates
the pharmacological properties, mechanisms of action, and therapeutic potential
of PTS. Various studies indicate that PTS exhibits anti-inflammatory, antioxidant,
and antitumour properties, potentially making it a promising candidate for clinical
applications. Its influence on regulatory pathways like NF-κB and PI3K/Akt
underscores its diverse strategies in addressing diseases. Additionally, PTS
showcases a favorable pharmacokinetic profile with better oral bioavailability
compared to other stilbenoids, thus enhancing its therapeutic potential. Given
these findings, there is an increased interest in incorporating PTS into treatment
regimens for inflammatory and cancer-related conditions. However, more
extensive clinical trials are imperative to establish its safety and efficacy in
diverse patient populations.
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Introduction

Pterostilbene (PTS), identified as trans-3,5-dimethoxy-4-hydroxystilbene, is a natural
substance mainly discovered in blueberries and the wood of pterocarpus marsupium
(Rimando et al., 2004). Stilbenes, including resveratrol (RSV), PTS, and pinostilbene,
are plant compounds known for their potential health benefits, but the low bioavailability of
RSV can limit its effectiveness (Salehi et al., 2018). RSV exhibits environmental instability,
particularly its sensitivity to ultraviolet radiation, oxygen, alkaline pH, and elevated
temperatures, leading to diminished bioavailability and biological activity.
Consequently, numerous RSV derivatives, especially methylated compounds, are under
investigation for enhanced stability and efficacy (Liu et al., 2011; Mamalis and Jagdeo,
2017). Compared to other stilbene compounds, pterostilbene boasts higher bioavailability,
potentially amplifying its nutritional advantages and leading to noteworthy clinical
outcomes (Kapetanovic et al., 2011). Stilbenoids are naturally occurring phenolic
chemicals found in various plant species, among which resveratrol is a well-known
derivative. RSV belongs to the group of phytoalexins, which are antimicrobial
substances produced by plants to combat infections (Akinwumi et al., 2018). In the
metabolism of stilbenoid compounds, RSV undergoes methylation to produce PTS.
This biotransformation adds methyl groups to the hydroxyl moieties of RSV. PTS, once
formed, can be further metabolized in vivo. The combined action of phase II metabolic
enzymes and gut microbiota leads to the demethylation of PTS, creating pinostilbene with a
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singly methylated hydroxyl group. Pinostilbene, PTS, and RSV all
possess the foundational framework of a stilbene configuration (C6-
C2-C6), highlighting a commonality in their chemical frameworks.
These phytoalexins are antimicrobial substances synthesized by
plants when they come under attack by pathogens, thereby
playing a significant role in the plant’s defense mechanism
(Ahuja et al., 2012; Jeandet et al., 2013).

PTS is a prominent nonflavonoid polyphenolic compound
naturally found in various plants. Characterized by its
lipophilicity, PTS appears in cis and trans isomeric structures,
with the trans isomer being more dominant. Although first
discovered in the heartwood of sandalwood, later research has
discerned its occurrence in blueberries and grapes (Kosuru et al.,
2016) (Figure 1A). While both share structural similarities, adding
two methyl groups to PTS grants it unique pharmacological
properties distinct from RSV (Estrela et al., 2013). A notable
characteristic of PTS distinguishing it from other phytoalexins is
its broad spectrum of pharmacological traits, including anti-
inflammatory, antioxidant, and anticancer effects (Mccormack
and Mcfadden, 2013; Akinwumi et al., 2018). Moreover, scientific
studies have demonstrated that, compared to its parent compound,
RSV, PTS exhibits superior bioavailability and metabolic stability,
thus showing potential for further therapeutic applications (Yun
et al., 2014; Peng et al., 2018). Throughout time, PTS has
demonstrated advantages across multiple areas, including
neuroprotection, antioxidation, and anti-inflammatory and
anticancer properties, positioning it as a promising subject for
continued studies in health prevention. (Hougee et al., 2005;
Chen et al., 2017; Abd-Elmawla et al., 2023).

Inflammation acts as a core reaction of the immune system to
harm or infections. This defensive response incorporates immune

cells, blood vessels, and cellular agents to address the primary source
of cellular damage, remove harmed cells and tissues, and start the
process of cellular and tissue recovery (Antonelli and Kushner, 2017;
Roy et al., 2022). Research indicates that PTS exhibits anti-
inflammatory attributes via various pathways. Experiments with
animal subjects and cellular models have highlighted the
inflammation-reducing capabilities of PTS, pointing to its
prospective utility in addressing inflammation-related conditions
(Lim et al., 2020; Lin et al., 2020; Nagarajan et al., 2022). The use of
PTS in cancer treatment is just starting, but it represents a
potentially sensitizing therapy that could improve the outcome of
numerous oncology treatments (Obrador et al., 2021). PTS has
exhibited potential benefits in hindering and treating multiple
cancer forms, such as those of the breast, prostate, colon, lung,
liver, and skin (Dhar et al., 2016; Kumar et al., 2017; Ma et al., 2019).
Its action pathways include controlling cell cycle dynamics,
triggering programmed cell death, impeding the creation of new
blood vessels, and curbing the spread of cancer cells (Estrela et al.,
2013; Tzeng et al., 2021). This review aims to provide a
comprehensive overview of the current knowledge and
applications of PTS in inflammatory and oncological diseases.

Pharmacokinetics

PTS, a compound sourced naturally from the diet, has garnered
attention because of its expansive medicinal properties (Nagarajan
et al., 2022). Compared to RSV, PTS has a more stable metabolism
and enhanced pharmacological activity (Wang and Sang, 2018),
owing to the presence of two methoxy groups, which are absent in
RSV (Kapetanovic et al., 2011) (Figure 1B). The systemic clearance

FIGURE 1
Pterostilbene is derived from natural plants and transforms within the organism. (A) Pterostilbene is sourced from various natural plants. (B)
Pterostilbene, along with resveratrol and pinostilbene, undergoes specific methylation processes within the physiological environment of the organism,
leading to potential metabolic changes.
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rate of PTS, reflected by its half-life, is consistent across different
administration methods, indicating a swift process of absorption,
distribution, metabolism, and excretion (Wang and Sang, 2018). The
pharmacokinetic comparison between PTS and RSV in rats, as
conducted by Kapetanovic, demonstrated that PTS’s peak plasma
level was significantly higher than that of RSV, also exhibiting a
notably increased oral bioavailability (Kapetanovic et al., 2011).
ADME, an acronym for absorption, distribution, metabolism,
and excretion, serves as a crucial framework in pharmacology to
assess how drugs interact within the body. This model is particularly
useful in understanding the behavior of compounds such as PTS.

Absorption of pterostilbene

After ingestion, PTS is rapidly absorbed, contributing to its
superior oral bioavailability of approximately 80%–95% (Lin et al.,
2020). This rapid absorption facilitates its availability for systemic
circulation. The compound’s low molecular weight and two
methoxy groups enhance its lipophilic nature, aiding its
penetration through the blood-brain barrier and offering
potential benefits to the central nervous system (Deng et al.,
2015). The ability of PTS to cross the blood-brain barrier
efficiently not only broadens its therapeutic scope but also makes
it a promising candidate for treating a range of neurological
conditions, where effective drug delivery across this barrier is
often a significant challenge.

Distribution of pterostilbene

Following absorption, PTS exhibits a distinct distribution across
various tissues in C57BL/6 mice. Within 20 min of oral intake, PTS
primarily concentrates in the stomach, liver, and testes, indicating
significant absorption and metabolic activity. It also appears notably
in the kidneys, intestines, and lungs, suggesting potential effects on
excretion, digestion, and respiratory functions. Additionally, PTS is
present in the brain, spleen, skeletal muscles, and heart, highlighting
its systemic reach and possible impacts on neurological, immune,
muscular, and cardiovascular health. This pattern reveals PTS’s
diverse interactions across various organs in a descending
concentration order (Wang et al., 2022). The brain’s unique
metabolic response to PTS highlights its potential in
neurotherapeutic applications. This compound is selectively
utilized by brain tissue, suggesting efficacy in treating
neurological conditions. Its ability to cross the blood-brain
barrier and engage in brain metabolism underscores its suitability
for targeting brain-related disorders. This selective uptake suggests
Pterostilbene’s promise in developing more focused and effective
neurological treatments (Azzolini et al., 2014).

Metabolism of pterostilbene

PTS undergoes significant first-pass metabolism in the liver,
which is vital for its systemic clearance. This metabolism primarily
involves phase II detoxification reactions, predominantly
glucuronidation, and sulfation, transforming PTS into more

water-soluble forms suitable for excretion (Kapetanovic et al.,
2011; Gómez-Zorita et al., 2021; Li et al., 2023). Compared to
RSV, PTS has a much lower glucuronidation efficiency in the
liver, affecting its human metabolism (Dellinger et al., 2014). In
comparison to RSV, its structural counterpart, PTS exhibits a
considerably lower efficiency in glucuronidation within the liver.
This difference in glucuronidation efficiency plays a significant role
in the metabolic fate of PTS in human bodies, influencing its overall
metabolism and bioavailability. The lower glucuronidation rate of
PTS, as opposed to RSV, potentially allows for a longer systemic
presence and a prolonged therapeutic window. This characteristic of
PTS metabolism is pivotal in understanding its pharmacokinetics
and pharmacodynamics, providing insights into its potential
advantages over RSV in clinical applications.

Excretion of pterostilbene

The majority of Pterostilbene’s glucuronide-conjugated
metabolites are excreted within 12 h post-administration,
indicating rapid renal and total serum clearance (Remsberg et al.,
2008). This swift elimination reduces the chances of PTS
accumulation, enhancing its suitability as a therapeutic agent.
The rapid clearance is particularly beneficial for treatments
requiring regular dosing, ensuring stable therapeutic levels
without the risk of toxicity from accumulation. This attribute
allows precise control over the drug’s pharmacokinetics, enabling
adjustments in dosage or frequency to suit individual patient needs
while maintaining safety and efficacy. The extent of Pterostilbene’s
binding to plasma proteins can significantly impact its free
concentration in the bloodstream and its subsequent distribution
to tissues, affecting both its efficacy and clearance rate. Overall,
Pterostilbene’s pharmacokinetic profile makes it a promising
candidate for safe and effective therapies, especially in cases
requiring frequent administration.

Antioxidant activity

Oxidative stress is a condition characterized by an imbalance
between the generation of reactive oxygen species (ROS) and the
body’s capacity to counteract or eliminate these detrimental
molecules (Schieber and Chandel, 2014). This imbalance can lead
to oxidative damage to cells and tissues, triggering various health
issues, including inflammation, aging, and chronic diseases. To
maintain physiological balance, the human body relies on
antioxidant systems to neutralize ROS, such as antioxidant
enzymes and antioxidants like vitamin C and vitamin E. Major
ROS include hydrogen peroxide (H2O2), superoxide anion (O2

−),
and hydroxyl radicals (Baskaran et al., 2021). These highly reactive
molecules can be produced through endogenous metabolic
processes or as a result of exposure to environmental stressors.
Antioxidant therapy aims to counteract oxidative stress by either
neutralizing ROS or enhancing the body’s antioxidant defense
mechanisms (Rahman et al., 2020). PTS, a derivative of RSV,
exhibits antioxidant activity through direct and indirect
mechanisms. It acts as a ROS scavenger, neutralizing harmful
free radicals and preventing cellular damage linked to chronic
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diseases. Additionally, PTS indirectly enhances the body’s
antioxidant defenses by upregulating enzymes, providing
comprehensive protection against oxidative stress. This dual
action of directly combating free radicals and boosting internal
defense mechanisms underscores PTS’s potential as an effective
compound in antioxidant therapies and chronic disease
management.

PTS can reduce oxidative stress and counteract ROS like H2O2

and O2
−(Mccormack and Mcfadden, 2013). PTS has been found to

proficiently diminish the production of ROS in human retinal
endothelial cells (HREC), particularly under high-glucose
environments. PTS exerts its indirect antioxidant effects by
modulating cellular pathways and enhancing the expression of
crucial antioxidant enzymes. Zhou et al. showed that PTS
activates the phosphorylation of AMPK and AKT, prompting the
shift of Nrf2 from the cytoplasm into the nucleus. This action then
heightens the expression of Nrf2-regulated genes, NQO1 and HO-1,
underscoring pterostilbene’s robust antioxidant capabilities (Zhou
et al., 2019). Additionally, it aids in boosting the expression of
several peroxidase enzymes in diverse cellular systems, especially
total glutathione, glutathione peroxidase, glutathione reductase, and
superoxide dismutase (Mccormack and Mcfadden, 2013).
Furthermore, as an antioxidant, PTS can neutralize harmful free
radicals in the body, thereby preventing cellular damage that can
lead to chronic inflammation and potential cancer (Jayakumar et al.,
2021). Following the administration of PTS at a dosage of 40 mg/kg
over 6 weeks, it exhibited a pronounced capability to neutralize free
radicals within the system of diabetic rats, resulting in a marked
decrease in oxidative stress (Amarnath Satheesh and Pari, 2006). In
an in vitro investigation utilizing the H2O2-induced intestinal
porcine enterocyte cell line (IPEC-J2), it was found that both

RSV and PTS significantly ameliorated oxidative stress-induced
intestinal damage. This therapeutic effect was achieved by
regulating mitochondrial redox balance and functionality through
the SIRT1 signaling pathway. Notably, PTS exhibited a markedly
enhanced efficacy in affording this protective action in comparison
to RSV (Chen et al., 2021). The antioxidant mechanism of PTS is
shown in Figure 2.

Anti-inflammatory effects of
pterostilbene

Inflammation is a complex and highly orchestrated biological
response that serves as a fundamental component of the body’s
defense mechanism. When the body encounters harmful stimuli,
including pathogens, injured cells, or irritants, a sophisticated
cascade of events is triggered to protect and restore tissue
integrity (Arulselvan et al., 2016). At its core, inflammation is a
protective response aimed at eliminating the source of injury or
infection and initiating the healing process. This multifaceted
process involves the activation of immune cells, the release of
signaling molecules, and the recruitment of various cellular
components to the site of inflammation (Henao-Mejia et al.,
2012). It is an essential part of the immune response that
facilitates the healing process and repairs injured tissues. While
these processes are vital for healing and defense against further
damage, prolonged or widespread inflammation can be a driving
force behind the emergence and advancement of many diseases
(Libby et al., 2018; Sochocka et al., 2019). PTS has garnered
significant attention in multiple preclinical researches for its
potent anti-inflammatory properties. By targeting various stages

FIGURE 2
The antioxidative mechanism of pterostilbene in the physiological environment. Pterostilbene promotes the phosphorylation of AMPK and AKT,
facilitates the nuclear translocation of Nrf2, and mitigates ROS, thereby alleviating oxidative stress.
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of the inflammatory cascade, PTS effectively reduces the immediate
symptoms and concurrently plays a role in averting the long-term
complications typically linked with chronic inflammation. These
studies suggest that the principal mechanism behind PTS’s
effectiveness lies in its ability to modulate various signaling
pathways intricately associated with inflammation (Kosuru et al.,
2016; Wu et al., 2019).

PTS mitigates inflammation by decreasing inflammatory
indicators, notably tumor necrosis factor-alpha (TNF-α), and
obstructing NF-κB activation, a primary orchestrator of
inflammation (Lin et al., 2016; Liu et al., 2019). By suppressing
the production of TNF-α, PTS can effectively reduce the extent of
the inflammatory response (Yi et al., 2022). By inhibiting the
activation of NF-κB, PTS prevents this sequence of events and
reduces the inflammatory response (Zhang et al., 2023). In vitro
studies have indicated that PTS inhibits the activation of NF-κB,
leading to the downregulation of proinflammatory cytokines,
including TNF-α, interleukin-1beta (IL-1β), and interleukin-6
(IL-6) (Zeng et al., 2020). Utilizing its antioxidative mechanisms,
PTS curbs the emergence of inflammatory markers like TNF-α, IL-
1β, IL-6, MMP-2, and MMP-9 in corneal epithelial cells under
hyperosmotic stress, thus shielding them from inflammation (Li
et al., 2016). Overproduction of these cytokines, essential for
immune reactions to pathogens and damage, often instigates
excessive inflammatory responses.

In animal models of inflammation, PTS has been shown to
reduce edema, inflammatory cell infiltration, and cytokine
production (Park et al., 2010). Edema, or swelling caused by
excess fluid trapped in body tissues, is a common symptom of

inflammation (Liu et al., 2019). The anti-edematous characteristics
of PTS can assist in reducing swelling and, as a result, lessen the
physical discomfort brought on by inflammation (Yan et al., 2021).
Another pivotal aspect of inflammation is the infiltration of
inflammatory cells into the affected area, leading to tissue
damage and furthering the inflammatory response (Mack, 2018).
Evidence from animal studies suggests that PTS can attenuate this
cell infiltration, thus helping to limit tissue damage and the
propagation of the inflammatory response (Liu et al., 2016). The
potential anti-inflammatory mechanism of PTS is depicted
in Figure 3A.

Pterostilbene surpasses resveratrol in
alleviating inflammation

Compared to RSV, PTS exhibits stronger anti-inflammatory
activities. Rats were divided into five groups to investigate the impact
of PTS (15 or 30 mg/kg/d) and RSV (30 mg/kg/d) on the progression
of non-alcoholic fatty liver disease (NAFLD). One group was fed a
standard diet, while the other four were given a high-fat, high-
fructose diet supplemented with either PTS or RSV for 8 weeks. The
study focused on the effects of these compounds on oxidative stress,
inflammation, fibrosis, and pre-carcinogenic stages. The results
demonstrated that PTS, particularly at a dose of 30 mg/kg/d,
effectively alleviated liver oxidative stress and inflammation
caused by the high-fat, high-fructose diet (Gómez-Zorita et al.,
2020). Following lipopolysaccharide (LPS) injection, weaned
piglets exhibited activated inflammatory responses and severe

FIGURE 3
Pterostilbene attenuates inflammatory and fibrotic processes. (A) Pterostilbene mitigates inflammation by inhibiting the NF-κB pathway, thereby
alleviating conditions such as diabetes, myocardial ischemia, and Parkinson’s disease. (B) Pterostilbene alleviates systemic fibrosis (heart, liver, lungs, and
kidneys) by inhibiting the TGF/Smad pathway and several other mechanisms.
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oxidative stress, as well as enhanced nuclear translocation of NF-κB
and increased protein expression of NLRP3 and cleaved caspase.
PTS is more effective than RSV in reducing liver damage by
targeting the NF-κB/NLRP3 signaling pathway and mitigating
inflammation and oxidative stress (Li et al., 2022).

Anti-inflammatory effect of
pterostilbene in diabetes

Inflammation is a crucial factor in the progression of numerous
diseases, particularly diabetes, where it serves not only as a hallmark
of the disease but also as a driving force for its development and
complications (Rohm et al., 2022). In diabetes, sustained high blood
glucose levels can induce oxidative stress and inflammatory
responses, thereby exacerbating insulin resistance and impacting
pancreatic function, further deteriorating the condition (Hurrle and
Hsu, 2017). Research has validated the role of PTS in managing
diabetic inflammation. Obesity is closely related to diabetes; ómez-
Morita found that PTS, at a dosage of 15 mg/kg, was more effective
than RSV in reducing weight in rats fed a high-fat diet (Gómez-
Zorita et al., 2014). The enhanced performance of PTS is linked to its
increased liposolubility, stemming from the substitution of a
hydroxyl group with a methoxy group, which boosts its
absorption. PTS modulates blood sugar levels, improves insulin
response and lipid profiles, and reduces inflammation and oxidative
damage in rats with diet-driven obesity and STZ-triggered diabetes
by utilizing the PI3K/Akt signaling route (Sun et al., 2019). In
addition to effectively controlling high blood sugar, PTS offers
potential protective benefits against the complications often
associated with diabetes. These complications can range from
cardiovascular disease, due to the persistent strain on the heart
and blood vessels, to kidney disease, resulting from the body’s
struggle to filter blood without sufficient insulin (Millán et al.,
2019; Dodda et al., 2020).

Anti-inflammatory effect of
pterostilbene in nervous system
disorders

In neurodegenerative diseases, inflammation is a critical factor in
disease progression and symptom severity. Neuroinflammation,
characterized by the activation of microglial cells and the release of
inflammatory cytokines, contributes significantly to neuronal damage
and death (Muzio et al., 2021). This inflammatory process is a common
pathological feature in conditions such as Alzheimer’s and Parkinson’s
disease (King et al., 2019). PTS exhibits neuroprotective effects, as
evidenced by its capacity to improve neurological function, lower
neurological scoring, and enhance neuronal survival in vivo. It has
also been shown to boost the number of mature neurons, augment cell
vitality, and limit neuronal apoptosis. Pterostilbene’s protective
function further extends to the reduction of infarct volume in the
brain, the alleviation of cerebral edema, a decrease in the number of
activated microglial cells, and the suppression of eNOS and IL-1β
expression (Liu et al., 2020). Through attenuating the levels of oxidative
stress markers such as 4-hydroxynonenal and 8-hydroxyguanosine,
reducing lactate dehydrogenase leakage, reversing elevated MDA

concentrations in the ischemic brain hemisphere, and restoring
depleted SOD activity, PTS effectively neutralizes oxidative stress,
highlighting its influential role as an antioxidant agent (Zhou et al.,
2015). PTS has demonstrated neuroprotective effects in preclinical
models of Alzheimer’s disease and Parkinson’s disease, potentially due
to its anti-inflammatory, antioxidant, and anti-apoptotic properties
(Millán et al., 2019; Liu et al., 2020). PTS effectively suppresses
neuroinflammation, one of the key pathological features of
neurodegenerative diseases, by inhibiting the activation of microglial
cells (Zhou et al., 2015). Elevated cholesterol and triglyceride levels
heighten the risk of heart-related ailments, such as heart attacks and
strokes. Pterostilbene’s potential to enhance lipid markers might serve
as a preventive measure against these conditions. Specifically, it’s
believed to reduce LDL cholesterol, commonly deemed as harmful,
while boosting the levels of the beneficial HDL cholesterol (Brenner
and Boileau, 2019).

Antifibrotic effect of pterostilbene

Fibrosis involves an overaccumulation of fibrous connective
tissue, stemming mainly from abnormal extracellular matrix
buildup. This leads to the creation of scar tissue, potentially
causing organ malfunctions and affecting various organs
throughout the body (Wynn, 2007). Lee et al. explored the
potential of PTS in counteracting inflammation and cell
overgrowth effects from dimethylnitrosamine (DMN) in liver
fibrosis using male SD rats. Rats were categorized into a control
DMN model and two groups receiving different PTS doses.
Following a month of DMN injections and PTS treatment, the
DMN model group displayed elevated liver enzyme levels and
noticeable liver tissue harm. On the other hand, rats treated with
20 mg/kg of PTS showed a decline in these liver enzyme levels and
lessened liver damage. This suggests that PTS could potentially
enhance liver health, mitigate DMN-triggered liver harm, and
decelerate liver fibrosis by targeting hepatic stellate cells (Lee
et al., 2013). Gu et al. discovered that PTS and pirfenidone could
significantly inhibit the TGF-β1/TbR/Smads signaling pathway in
the rat renal cortex. This intervention suppressed fructose-induced
epithelial-mesenchymal transition (EMT) in rat proximal tubular
epithelial cells, contributing to a reduction in renal tubulointerstitial
fibrosis. Moreover, PTS was shown to elevate the expression of pIR,
pIRS-1, and pAkt within the rat renal cortex (Gu et al., 2019).

TGF-β1 triggers EMT and ECM buildup, reducing autophagy
and cell apoptosis in A549 and AECs cells. Remarkably, PTS at
30 μmol/L lessened the impact of TGF-β1 on pulmonary fibrosis.
PTS effectively counteracts EMT and ECM buildup and bolsters cell
apoptosis and autophagy in comparison to TGF-β1. Transcriptome
sequencing demonstrates a marked decline in ASIC2 protein levels
due to PTS. Enhancing ASIC2 expression through plasmid
introduction reverses pterostilbene’s effects, accelerating EMT
and ECM buildup while suppressing cell apoptosis and
autophagy. It is inferred that pterostilbene’s role in alleviating
pulmonary fibrosis is linked to ASIC2 downregulation (Peng
et al., 2021). KANG et al. explored the effects of PTS on
fructose-induced myocardial fibrosis in rats and discovered that
it reduced serum markers of cardiac damage, including CK-MB,
cTn-T, and M.B. The study implies that PTS may alleviate fructose-
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induced myocardial injury by inhibiting the TGF-β1/Smad signaling
pathway, thereby potentially protecting the heart (Kang et al., 2019).
The potential antifibrotic mechanism of PTS is illustrated
in Figure 3B.

Pterostilbene in tumor therapy

Cancer is a complex disease caused by genetic and
environmental factors, commonly including genetic mutations,
chronic inflammation, lifestyle aspects like smoking and diet, and
environmental exposures such as radiation and chemicals (Jin
et al., 2019). At its core, the disease often involves genetic
mutations, which can be either inherited or acquired over a
person’s lifetime. These mutations disrupt the normal cell cycle,
leading to uncontrolled cell growth and tumor formation
(Nussinov et al., 2022). Chronic inflammation is another key
factor, serving as both a cause and a consequence of cancerous
growth, creating a vicious cycle that exacerbates the disease.
Lifestyle choices play a crucial role as well; habits such as
smoking and unhealthy dietary patterns have been strongly
linked to increased cancer risk. These lifestyle factors can act as
catalysts, accelerating the onset and progression of the disease.
Moreover, environmental exposures, notably to radiation and
harmful chemicals, can directly damage DNA or create
conditions conducive to cancer development. These elements
collectively contribute to the complexity of cancer, making it a
challenging disease to understand and treat (Jardim et al., 2023).
Current treatment modalities primarily consist of surgery,
radiotherapy, chemotherapy, and immunotherapy, each with
limitations like side effects and drug resistance (Miller et al.,
2019). In oncology, traditional chemotherapy agents, while
effective, often come with a hefty price tag and a host of
adverse effects. PTS emerges as a beacon, both economically
viable and associated with reduced side effects. PTS
demonstrates superior bioactivity when compared to RSV.
Highlighting its potency, PTS, with an impressive IC50 value of
22.4 μmol/L, has shown a remarkably more robust inhibitory
impact on the HT-29 colon cancer cell line than RSV, which
displays an IC50 value of 43.8 μmol/L (Paul et al., 2009). Such
merits have not gone unnoticed, attracting a burgeoning
community of researchers eager to unlock its potential further.
Empirical studies have highlighted pterostilbene’s impressive
anticancer properties prowess, with efficacy demonstrated
across a spectrum of malignant neoplasms (Ma et al., 2019).
There is growing interest in the prospect of utilizing PTS as a
stand-alone therapeutic agent or synergistically alongside existing
FDA-approved anti-cancer treatments. Such novel therapeutic
strategies underscore a promising horizon for its clinical
integration. Delving into its mode of action, it becomes evident
that pterostilbene’s antitumor mechanisms are intricate and
operate on multiple cellular and molecular fronts. PTS inhibits
cancer cell migration and invasion, critical steps in cancer
metastasis. PTS may regulate specific enzymes associated with
aging and lifespan, which could impact its anticancer properties (Li
et al., 2018). This effect has been noted in studies involving breast,
lung, and colorectal cancer cells. The tumor-fighting capabilities of
PTS can mainly be traced back to several key factors.

DNA methylation and histone
modification

Cancer develops from a complex mix of genetic and
environmental influences, involving aberrations in DNA
methylation, histone modifications, and the expression of
microRNAs (miRNAs) (Saleh et al., 2020). DNA methylation, a
key epigenetic mechanism, involves the addition of a methyl group
to the DNA molecule, typically at cytosine bases in CpG
dinucleotides, which can lead to the silencing of tumor
suppressor genes (Haghani et al., 2023). Histone modifications,
including acetylation and methylation, change the structure of
chromatin, influencing gene expression. PTS and RSV, other
dietary phytochemicals with chemopreventive properties, can
achieve anticancer effects by altering DNA methylation,
modulating histone modifications, or regulating miRNA
expression (Lee et al., 2018). Stilbenoid compounds like PTS and
RSV canmodify the DNAmethylation patterns in breast cancer cells
through epigenetic mechanisms. This alteration reduces the activity
of cancer-boosting NOTCH signaling, limiting the growth and
spread of breast cancer cells (Lubecka et al., 2016). When used
together, RSV and PTS gradually restore the expression of estrogen
receptor-alpha (ERα) in ERα-negative breast cancer cells. This
restoration arises from the adjustment of DNA methylation and
histone acetylation in these cells, profoundly influencing the
functions of DNMT, HDAC, and HAT(Kala and Tollefsbol,
2016). In ovarian carcinoma, PTS potently modulates the
phosphorylation of STAT3, subsequently impeding cell cycle
advancement and initiating apoptosis, thereby manifesting its
pronounced antineoplastic effects (Wen et al., 2018).

Suppression of cell growth and
enhancement of cell apoptosis

PTS impacts several mechanisms linked to cancer advancement.
Both in vitro and in vivo examinations have shown that PTS can
restrain tumor cell expansion and trigger apoptosis by influencing
different signaling routes, including the PI3K/Akt, MAPK, and NF-
κB pathways (Mak et al., 2013; Hsiao et al., 2014; Tong et al., 2021).
Perecko et al. found that PTS induced apoptosis in leukemia cells
through the MAPK pathway (Hsiao et al., 2014). Increased activity
of cyclooxygenase-2 (COX-2) has been noted in lung cancer, and
PTE has been identified to regulate the growth and apoptosis of
NSCLC cells by focusing on COX-2 (Wang et al., 2023). In
conjunction with the HDAC inhibitor vorinostat, PTS
proficiently modulates the MTA1/HIF-1α pathway, curbing both
cellular proliferation and angiogenesis. This combined action
notably hinders the advancement of prostate tumors in murine
models, all while showcasing a more favorable toxicity profile.
Distinctively, PTS attenuates MTA1 expression within
hepatocellular carcinoma cells and concurrently reduces the
enzymatic activities of HDAC1 and HDAC2. Such interference
destabilizes the intricate MTA1/HDAC molecular assembly,
culminating in the heightened acetylation of phosphatase and
tensin homolog (PTEN) and the tumor suppressor P53. As a
result, a cascade of cellular responses ensues, characterized by
inhibited cellular proliferation, amplified apoptotic initiation, cell
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cycle stagnation, and a marked reduction in cellular migratory and
invasive capabilities (Butt et al., 2017; Qian et al., 2017; Qian et al.,
2018a). Several studies have shed light on these mechanisms. PTS
inhibited the proliferation of prostate cancer cells by modulating the
PTEN/Akt pathway (Dhar et al., 2015; Qian et al., 2018b). PTS acts
through a unique biochemical process, enhancing the acetylation
and reactivation of the tumor suppressor gene PTEN. This effect is
achieved by suppressing the MTA1/HDAC complex, which usually
deacetylates proteins, thus altering their function. By inhibiting this
complex, PTS ensures PTEN remains active, playing a key role in
regulating the Akt pathway. The Akt pathway is involved in cell
growth and survival, and its overactivity can lead to cancer.
Therefore, Pterostilbene’s ability to reactivate PTEN and regulate
the Akt pathway highlights its potential as a therapeutic agent in
cancer treatment. This mechanism offers a new perspective on
targeting cellular pathways for disease therapy, particularly in
cancer, where cell growth and survival pathways are often
dysregulated.

Pterostilbene modulates miRNA
in tumors

Cancer development is deeply influenced by microRNAs
(miRNAs), which are crucial in regulating gene expression post-
transcription. They can function as oncogenes, promoting cancer by
downregulating tumor suppressors, or as tumor suppressors
themselves, inhibiting cancer by targeting oncogenes. This duality
in cancer biology makes miRNAs significant for both understanding
cancer mechanisms and developing targeted therapies. Their
regulation of key cellular processes like cell growth and apoptosis
underscores their potential as biomarkers for cancer diagnosis and
targets for innovative treatments (Peng and Croce, 2016). PTS
exhibits a dose-dependent inhibitory effect on the vitality of
endometrial cancer cells, notably inducing apoptosis in vitro
through the downregulation of miR-663b (Wang et al., 2017).
Regarding prostate cancer, the anticancer effects of PTS are
manifested through the reduction of miR-17 family members, a
phenomenon observed in both experimental and biological settings
(Kumar et al., 2017). PTS enhances PTEN expression in liver cancer
cells by directly inhibiting miR-19a, which leads to reduced cell
growth, cell cycle halt at the S phase, increased apoptosis, and
decreased cell invasion (Qian et al., 2018b). Given the
importance of miRNAs in cancer diagnosis and outcome
prediction, influencing these molecules might be a pivotal feature
of pterostilbene’s cancer-fighting capabilities.

Pterostilbene modulates endoplasmic
reticulum stress in tumor

Endoplasmic reticulum stress (ERS) and the subsequent
unfolded protein response (UPR) are crucial in the evolution and
advancement of cancer. They act as a protective mechanism against
physiological stress and can initiate apoptosis if the stress continues
(Wang et al., 2012). Consequently, modulation of E.R. stress and
manipulation of the UPR present promising methods for novel
anticancer therapies. PTS induces the ROS-mitochondria-

dependent apoptosis mechanism mediated by ERS, contributing
to its anti-cancer activity in human esophageal cancer cells and
inhibiting cell proliferation, invasion, and adhesion (Feng et al.,
2016). PTS administration can activate ERS and elevate levels of
ERS-associated molecules like p-PERK, ATF4, and CHOP. This
action facilitates the transfer of Ca2+ from the endoplasmic
reticulum to the cytoplasm, boosts reactive oxygen species (ROS)
signaling, fosters cell apoptosis, and curtails the movement and
adhesion of non-small cell lung cancer cells (Ma et al., 2017). Recent
studies indicate that PTS enhances the vulnerability of triple-
negative breast cancer cells to TRAIL-driven apoptosis by
triggering the ROS/ERS signaling route and amplifying DR4 and
DR5 expression (Hung et al., 2017). The ability of PTS to modulate
ERS could have profound implications for cancer therapy,
representing a promising avenue for future research.

Pterostilbene promotes the autophagy
in tumors

Autophagy is a cellular self-digestion process in which a cell
recycles portions of its components to maintain homeostasis and
adapt to metabolic stress. In terms of cancer, autophagy can play a
dual role by promoting cancer cell survival under pressure and
preventing tumor progression by maintaining cellular integrity and
reducing inflammation and genome instability (Amaravadi et al.,
2019). Following exposure to PTS, cell contraction, membrane
disruption, and autophagic vesicle genesis are conspicuous in
cisplatin-resistant oral cancer cells. Concurrently, an
augmentation in the expression of proteins integral to autophagy
is observed, thus alluding to the potent autophagy-inducing efficacy
of PTS. Importantly, PTS exerts inhibitory control over cell vitality
and fusion, a characteristic that is both time and concentration-
dependent (Chang et al., 2018). PTS demonstrates its antitumor
efficacy through the induction of autophagy, and intriguingly, it
does not exert apparent toxic effects on the heart, liver, and kidneys
of tumor model mice. This safety profile underscores its potential as
a promising antitumor agent (Mei et al., 2018). PTS exhibits its
anticancer effects by inducing autophagy, presenting high
therapeutic efficacy with minimal side effects. Its effectiveness
and safety profile suggest a promising potential for development
into an effective anticancer drug and its application in
clinical settings.

Pterostilbene inhibits epithelial-
mesenchymal transition and apoptosis
in tumors

EMT is a pivotal mechanism facilitating cell migration and
invasion, enabling the spread of tumor cells from their origin.
PTS interacts with this mechanism, potentially thwarting or
dampening EMT (Song et al., 2019). In triple-negative breast
cancer cells, PTS hinders their migratory and invasive traits,
characterized by a rise in the EMT marker E-cadherin and a
decline in Snail, Slug, Vimentin, and ZEB1 (Su et al., 2015).
Furthermore, PTS triggers apoptosis in vascular endothelial cells,
a crucial strategy to combat cancer spread. Its action is linked to
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fostering autophagy via a surge in intracellular calcium
concentration, leading to the activation of AMPKα1 (Zhang
et al., 2013). A research piece from 2018 by Chen and others
highlighted pterostilbene’s capacity to curtail lung cancer cell
metastasis by stimulating autophagy (Chen et al., 2012). In their
study, varying PTS dosages reduced tumor size and burden in mice
by notable percentages. Pterostilbene’s interaction with the EMT
process offers promising avenues in cancer therapies. Specifically, it
downregulates NFκB, Twist1, and Vimentin and amplifies
E-cadherin expression, markedly reducing tumorigenesis and
metastasis in MDA-MB-231 cells when co-cultured with
M2 TAMs (Mak et al., 2013).

Pterostilbene exerts a regulatory role in
tumor stem cells

Cancer stem cells (CSCs) form a unique subset within the
broader population of cancer cells, characterized primarily by
their remarkable ability to self-renew and differentiate into
various cell types. These cells are pivotal in the hierarchy of
tumor cells due to their distinct characteristics. CSCs are known
to be the primary contributors to the resilience of tumors, playing a
significant role in drug resistance, recurrence, and metastasis of

cancers. Their ability to evade traditional treatments and regenerate
the tumor population makes them critical targets in cancer therapy
(Zhao et al., 2018). PTS exhibits dose-dependent inhibition of self-
renewal capacities and the gene expression of cancer stem cells in
lung cancer cells cocultured with M2-TAMs (M2 phenotype tumor-
associated macrophages). This effect appears to be mediated
through the downregulation of the cancer-promoting gene,
MUC1, which suppresses polarization towards M2 and reduces
the accumulation of cancer stem cells (Huang et al., 2016).
Through an array of signaling pathways, RSV and PTS can target
CSCs in various malignancies, including but not limited to breast
cancer, colorectal cancer, leukemia, glioblastoma, and lung cancer
(Zhang et al., 2018).

Pterostilbene improves tumor drug
resistance

The intricate nature of cancer often gives rise to the emergence
of drug resistance, greatly impeding the effectiveness of numerous
chemotherapy agents. This resistance can be attributed to diverse
mechanisms, such as modifications in drug targets, heightened drug
efflux, enhanced DNA repair, and evasion of drug-induced
apoptosis (Cree and Charlton, 2017). PTS also reverses multidrug

FIGURE 4
Pterostilbene inhibits tumor cell proliferation and promotes both cell apoptosis and autophagy. Pterostilbene effectively enhances endoplasmic
reticulum Ca2+ efflux, leading to stimulation of the endoplasmic reticulum stress response and subsequent activation of the PI3K-AKT pathway, which
effectively inhibits cell apoptosis. Moreover, it exerts suppressive effects on cell proliferation by inhibiting the NF-κB pathway and modulating the
expression of specific microRNAs, including miR-17, miR-19a, and miR-663b. Additionally, pterostilbene promotes tumor cell autophagy by
activating the Atgs/Beclin-1/lc3 pathways.
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resistance in cancer cells, suggesting its potential role in overcoming
chemotherapy resistance (Wang et al., 2023). PTS amplifies cisplatin
resistance by elevating LC3-II and Atg12 mRNA levels and boosting
Atgs/Beclin-1/lc3-associated signals. This increased autophagy
activity hinders the anti-cancer efficacy against human oral
cancer CAR cells (Chang et al., 2018). The combined use of PTS
and autophagy inhibitors has been shown to improve the
therapeutic efficacy of chemotherapy drugs against both
chemotherapy-sensitive and chemotherapy-resistant cancer cells.
This beneficial effect likely stems from pterostilbene’s capability
to trigger autophagy, a cellular recycling process that cancer cells
often exploit for survival, especially under stress conditions such as
chemotherapy (Hsieh et al., 2014). The possible mechanisms of
antitumor pterostilbene are shown in Figure 4.

Comparative efficacy of resveratrol and
pterostilbene in tumor treatment

RSV and PTS, both exhibiting low IC50 values, have been
found to downregulate the viral oncogene E6 and tumor protein
VEGF levels. In mice treated with pterostilbene, a reduction in
tumor size was observed, which was associated with apoptosis.
This apoptotic process was indicated by the upregulation of
activated caspase-3. On the other hand, resveratrol treatment in
mice resulted in cell cycle arrest as evidenced by the
downregulation of PCNA. These findings suggest that both
resveratrol and pterostilbene have the potential to act as
antineoplastic agents in treating HPV E6-positive tumors. They
may suppress tumor growth through two distinct mechanisms:
pterostilbene inducing apoptosis and resveratrol causing cell cycle
arrest (Chatterjee et al., 2019). PTS demonstrated superior efficacy
over RSV in suppressing HeLa cell growth, colony survival, and
metastasis, and notably inhibiting tumorphere formation and
migration in cancer stem-like cells. Its superior inhibitory effect
is attributed to enhanced activation through multiple mechanisms,
including cell cycle arrest at S and G2/M phases, induction of ROS-
mediated caspase-dependent apoptosis, and inhibition of matrix
metalloproteinase (MMP)-2/-9 expression (Shin et al., 2020).

Specific functions of pterostilbene and
resveratrol

Obstructive sleep apnea (OSA) is typified by frequent episodes
where the upper air passage experiences complete or partial
blockage, lasting at least 10 seconds during sleep (Stöwhas et al.,
2019). This disorder is widespread among sleep-related health
issues. These occurrences trigger a cycle of chronic intermittent
hypoxia (CIH), a rise in oxidative stress, and an increase in the levels
of cytokines that promote inflammation (Kheirandish-Gozal and
Gozal, 2019). The study explored the impact of RSV on lung damage
due to CIH, a condition commonly associated with OSA. Following
12 weeks of CIH exposure, rats displayed heightened levels of
inflammatory cytokines and increased apoptosis in lung tissues.
Treatment with RSV led to reduced inflammation and cell death, as
well as enhanced levels of Nrf2 and HO-1 proteins, suggesting that
RSV could alleviate lung inflammation and apoptosis related to CIH

by triggering the Nrf2/ARE pathway (Lian et al., 2020). Sun et al.
demonstrated that resveratrol effectively mitigates myocardial
damage associated with CIH by reducing oxidative and
endoplasmic reticulum stress and suppressing the
NLRP3 inflammasome (Sun et al., 2020).

This study explored the role of PTS, structurally similar to and
more active than RSV. In exploring the effects of PTS on brain
oxidative stress induced by CIH, a key factor in sleep disorders, the
study revealed significant neurological improvements in a CIH
mouse model. PTS was found to boost neuronal health, enhance
antioxidant levels, and diminish both apoptosis and inflammation
within the brain (Liu et al., 2023). Furthermore, it effectively
modulated immune responses, increasing anti-inflammatory cells
and cytokines, while reducing pro-inflammatory agents. The study
highlights Pte’s role in alleviating oxidative stress and correcting
immune imbalances in neural cells, achieved through the activation
of the p-ERK signaling pathway. Pterostilbene’s effectiveness in
tackling the intricate combination of oxidative stress and
immune imbalances in OSA showcases its potential as a highly
targeted and efficient therapeutic approach. This promising natural
compound’s ability to address multiple facets of OSA—from
reducing oxidative damage in brain cells to balancing immune
responses—signifies a substantial leap forward in developing
effective treatments for this widely prevalent sleep disorder. Such
multifaceted therapeutic action positions PTS as a noteworthy
candidate in the future landscape of OSA management,
potentially revolutionizing treatment protocols with its unique
and powerful properties.

Safety and tolerability

The safety of PTS has been extensively studied in preclinical
trials. Remarkably, even at a high dose of 3,000 mg/(kg·d), no
observable toxic side effects were detected in animal subjects
(Ruiz et al., 2009). Furthermore, the current human trials
conducted to evaluate the safety of PTS have also yielded positive
results. These trials suggest that when administered at therapeutic
doses, PTS is safe for human consumption. This is particularly
important as it indicates that PTS could be administered to patients
without causing severe side effects that could potentially outweigh its
benefits (Yang et al., 2017; Sun et al., 2023). However, long-term
safety data are lacking, and some studies have raised concerns about
potential liver toxicity at high doses (Lacerda et al., 2018). Therefore,
further research is needed to determine the optimal dosing and
duration of PTS treatment.

Conclusion

Growing evidence points to pterostilbene’s strong anti-
inflammatory and anti-cancer capabilities, highlighting its
potential as a treatment for inflammatory and cancer-related
conditions. Its antioxidant and neuroprotective attributes further
amplify its therapeutic promise. While preliminary clinical studies
are encouraging, comprehensive and rigorous trials are imperative
to thoroughly assess its therapeutic benefits and safety. As studies
progress, delineating the mechanisms of pterostilbene’s actions and
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determining the best dosage and delivery techniques for various
medical uses will be essential.
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