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Efficiently circumventing the blood-brain barrier (BBB) poses a major hurdle in the
development of drugs that target the central nervous system. Although there are
several methods to determine BBB permeability of small molecules, the Parallel
Artificial Membrane Permeability Assay (PAMPA) is one of themost common assays in
drug discovery due to its robust and high-throughput nature. Drug discovery is a long
and costly venture, thus, any advances to streamline this process are beneficial. In this
study, ~2,000 compounds from over 60 NCATS projects were screened in the
PAMPA-BBB assay to develop a quantitative structure-activity relationship model
to predict BBB permeability of small molecules. After analyzing both state-of-the-art
and latest machine learning methods, we found that random forest based on RDKit
descriptors as additional features provided the best training balanced accuracy (0.70±
0.015) and amessage-passing variant of graph convolutional neural network that uses
RDKit descriptors provided the highest balanced accuracy (0.72) on a prospective
validation set. Finally, we correlated in vitro PAMPA-BBB data with in vivo brain
permeation data in rodents to observe a categorical correlation of 77%, suggesting
that models developed using data from PAMPA-BBB can forecast in vivo brain
permeability. Given that majority of prior research has relied on in vitro or in vivo
data for assessing BBB permeability, our model, developed using the largest PAMPA-
BBBdataset to date, offers anorthogonalmeans to estimate BBBpermeability of small
molecules. We deposited a subset of our data into PubChem bioassay database (AID:
1845228) and deployed the best performing model on the NCATS Open Data ADME
portal (https://opendata.ncats.nih.gov/adme/). These initiatives were undertaken with
the aim of providing valuable resources for the drug discovery community.
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1 Introduction

The brain contains a highly restrictive interface known as the blood-brain barrier (BBB)
(Alahmari, 2021). The BBB comprises of endothelial cells which form tight junctions
inhibiting the passage of certain molecules to provide optimal central nervous system
(CNS) functioning (Dotiwala et al., 2023). One of the major hurdles in CNS drug discovery is
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developing a BBB-penetrant drug (Pardridge, 2005; Pardridge, 2012;
Khawli and Prabhu, 2013). High passive BBB permeability is
beneficial for CNS drug candidates, enabling rapid establishment
of distribution equilibrium between plasma and brain (Di et al.,
2013). In addition to playing a critical role for brain penetration,
passive permeability is translatable across tissues and different
species including humans (Di et al., 2020).

BBB permeability can be assessed in three general ways; in vivo
in lab animals, cell based in vitro, and non-cell based in vitro assays.
Some common in vitro assays include Madin-Darby Canine Kidney
cells (MDCK-MDR1), human colon adenocarcinoma derived Caco-
2 cells, and Organ-on-chip assay. Both MDCK-MDR1 and Caco-2
cells form confluent monolayers that model active and passive
transport (Volpe, 2011). Organ-on-chip is an innovative assay
that involves the use of microfluidic chips containing miniature
tissues that mimic the structure and function of natural organs
(Leung et al., 2022). Utilizing induced pluripotent stem cell (iPSC)-
derived brain microvascular endothelial-like cells (iBMECs), the
human BBB-Chip replicates marker-specific brain vasculature and
physiologically relevant transendothelial electrical resistance. This
platform effectively predicts BBB-permeability of pharmacological
compounds (Vatine et al., 2019). Although routinely used for
assessing brain penetration, these assays are laborious, time-
consuming, low-to-moderate throughput, expensive and several
aspects of these assays are not amenable to automation. A
popular non-cellular in vitro assay used to assess permeability is
the Parallel Artificial Membrane Permeability Assay (PAMPA). This
assay is simple, low cost, high-throughput, and the entire assay from
start to finish is amenable to automation. Due to its non-cellular
nature, this assay cannot assess active efflux transport however, this
is offset by the fact that majority of CNS drugs are passively diffused
(Banks, 2009; Mikitsh and Chacko, 2014). Furthermore, PAMPA’s
adaptability to measuring permeability across different membranes
such as BBB, gastrointestinal tract (GIT) and skin, makes it an
exceptional screening tool especially in early drug discovery.

During preclinical discovery, many compounds, often in the
thousands, are screened for their potential as drug candidates.
However, it is estimated that only about 10 out of every
1,000 screened compounds become optimized leads, which then
proceed to preclinical in vivo testing (Markossian et al., 2004;
Hughes et al., 2011; Siramshetty et al., 2021). This highlights the
rigorous and selective nature of the drug discovery process, where
only a small fraction of initial compounds show promise for further
development. Studies have estimated that ~90% of drug candidates fail
after entering phase I clinical trials, indicating the significant challenges
involved in drug development (Sun et al., 2022). Moreover, the failure
rate tends to be even higher for drugs targeting the CNS (Morofuji and
Nakagawa, 2020). Due to the high attrition rates and escalating costs
associated with drug discovery, there is a growing need to streamline
and optimize the drug discovery process. Quantitative structure-activity
relationships (QSAR) combined with machine learning approaches,
have been successfully employed inmultiple stages of the drug discovery
process (Muratov et al., 2020; Shah et al., 2020; Siramshetty et al., 2020;
Gonzalez et al., 2021; Kabir et al., 2022; Williams et al., 2022).

In this study, we aim to develop and optimize a robust QSARmodel
that can accurately predict BBB permeability using experimental
PAMPA-BBB data. The PAMPA-BBB model was developed using a
diverse dataset of ~2,000 compounds representing >60 small molecule

drug discovery projects at the National Center for Advancing
Translational Sciences (NCATS). We evaluated both classical
and advanced machine learning techniques to develop prediction
models and the best predictive model with training and
validation accuracies over 70% was made publicly accessible
on the NCATS Open Data ADME portal (https://opendata.
ncats.nih.gov/adme/). Additionally, we found a 77%
categorical correlation between in vitro PAMPA-BBB data and
in vivo brain/plasma (B/P) ratios demonstrating the value of the
PAMPA-BBB assay as a rapid rank ordering tool for novel
discovery compounds.

2 Materials and methods

2.1 Materials

Dimethyl sulfoxide (DMSO, high performance liquid
chromatography (HPLC) grade), caffeine, progesterone, and
carbamazepine were purchased from Sigma-Aldrich (St. Louis,
MO). Brain sink buffer (Catalog #110674), BBB-1 lipid solution
(Catalog #110672), 96-well stirwell sandwich plates (Catalog
#110243), and preloaded support plate [for use with 96-well
stirwell sandwich plate (Catalog #120551-Supp)] were purchased
from Pion Inc. (Billerica, MA). UV plates (Catalog #675801) were
purchased from Greiner BIO-ONE (Monroe, NC). 0.5 M potassium
phosphate buffer solution, pH 7.4 (Catalog #J61413) was purchased
from Thermo Fisher Scientific (Waltham, MA).

2.2 PAMPA-BBB permeability assay

The stirring Double-Sink™ PAMPA-BBB method patented by
Pion Inc. (Billerica, MA) was employed to determine the
permeability of compounds (Mandic, 2013). The PAMPA lipid
membrane, which consists of porcine brain lipid extract dissolved
in alkane (Pion Inc.), was optimized to predict BBB passive
permeability. This membrane was immobilized on a PVDF
matrix of a 96 well “acceptor” filter plate placed on top of a
96 well “donor” plate containing coated magnetic stirrers. The
test articles, stocked in 10 mM DMSO solutions, were diluted to
0.05 mM in aqueous phosphate buffer and the concentration of
DMSO was 0.5% in the final solution. During the 60-min
permeation study period, conducted at room temperature, the
test samples in the donor compartment were stirred using the
Gutbox technology (Pion Inc.) to reduce the aqueous boundary
layer to 60 µm. The test article concentrations in the “donor” and
“acceptor” compartments were measured using a UV plate reader
(Nano Quant, Infinite® 200 PRO, Tecan Inc., Männedorf,
Switzerland). Permeability (Pe) calculations were performed using
Pion Inc. Software and were expressed in units of 10−6 cm/s.

2.3 Permeability data

Data for more than 2,000 compounds were generated;
however, after standardization and removal of duplicates, the
final dataset consisted of 1,958 unique compounds. Among them,
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1,794 were considered as internal compounds and were used to
train the machine learning models. For the purpose of internal
validation, the training set was further divided into internal
training set and internal test set that comprise 80% and 20%
of the training set compounds respectively. An independent set of
164 compounds were treated as the validation set to validate the
trained models. An overview of the training and validation
compound sets is provided in Table 1. A permeability cutoff
value of 10 × 10−6 cm/s was employed to assign binary class labels:
compounds with a permeability value less than or equal to 10 ×
10−6 cm/s were categorized as class 1 or “low permeability”
compounds, while compounds with a permeability value
greater than 10 × 10−6 cm/s were designated as class 0 or
“moderate to high permeability” compounds. Our study deals
with a significantly imbalanced dataset, with roughly 70% of the
training data belonging to class 0.

2.4 Molecular descriptors

Molecular descriptors derived from chemical structures were
employed as features when building QSARmodels. Descriptors were
generated using two different software in this study. We employed
the RDKit toolkit to create a comprehensive set of 212 descriptors.
Subsequently, descriptors with over 15% missing values and those
exhibiting constant values were eliminated. After filling any data
gaps with the corresponding column’s mean value, the final
descriptor count was 197. These descriptors describe different
properties of a molecule as an array of real values rather than
directly encoding chemical structure information. Molecular
fingerprints on the other hand encode chemical structure
information in a bit string where each bit corresponds to a
substructure. Again, RDKit toolkit was used to generate Morgan
fingerprints with a radius of 2 and a total of 1,024 bits per fingerprint.
RDKit’s Morgan fingerprint (radius = 2) is equivalent to the
extended connectivity fingerprint ECFP4 and both
implementations have been popularly employed in drug discovery
tasks such as virtual screening and target activity predictions. These
fingerprints represent the presence of specific circular substructure
features around individual atoms in a molecule. Molecular
Operating Environment (MOE) software from Chemical
Computing Group197 was employed to calculate 2D descriptors.
These constitute a total of 209 numeric properties calculated from
the atoms and connection table of the molecule. The RDKit and
MOE descriptors were standardized using Scikit-learn’s standard
binary nature (i.e., 1 s and 0 s) before passing to themachine learning
models, while the fingerprints were used as is. Overall, models were
built using three sets of descriptors: 197 RDKit descriptors, 209MOE
descriptors and Morgan fingerprints (1,024 bits).

2.5 Predictive models

2.5.1 Random forest
Random Forest (RF) model is a classification and regression

method based on an ensemble (or a forest) of multiple decision trees
(Breiman, 2001). The large number of independent trees allows RF
to make a prediction based on the majority of votes from individual
trees. Each decision tree is built using a bootstrapped sample of data
comprising a subset of the training features. The trained forest can
then be used to predict data that was not seen before. RF calculations
are considered computationally inexpensive and the method is
relatively robust against overfitting. RFs have been popularly
applied in development of machine learning models for
predicting a range of drug discovery tasks and has been proven
to perform on par with newer architectures such as deep neural
networks and graph convolutional neural networks (Yang et al.,
2019). In this study, we used “RandomForestClassifier” from Scikit-
Learn, a Python framework for machine learning. Hyperparameter
tuning was performed using the “GridSearchCV” method from
Scikit-Learn.

2.5.2 XGBoost
XGBoost stands for “eXtreme Gradient Boosting”. Although it is

a classification and regressionmethod based on an ensemble of trees,
it is different from RF because it uses gradient boosting algorithm
instead of bagging (Chen and Guestrin, 2016). Boosting allows the
model to learn from errors after each round of boosting. XGBoost
has been used in a variety of data science tasks and is known for
speed and performance even when trained on large datasets as it
supports distributed and parallel computing (Sheridan et al., 2020).
In this study, we used the “XGBClassifier” method from XGBoost
Python module. Similar to RF, hyperparameter tuning was
performed using Scikit-Learn’s “GridSearchCV” method.

2.5.3 Histogram gradient boosting
Histogram gradient boosting (HGB) is another ensemble

classification and regression method that uses the boosting
technique (Friedman, 2002; Ke et al., 2017). Compared to
XGBoost, histogram gradient boosting is faster when dealing with
large datasets. Since our project doesn’t have missing values, during
training, the tree growers learn at each split point, and samples are
mapped to whichever child has the most samples. We used the
“HistGradientBoostingClassifier”module from Scikit-Learn Python
package. Hyperparameter tuning was performed and class weights
were applied when training the models, in a manner similar to RF
and XGBoost models.

2.5.4 Graph convolutional neural network (GCNN)
Due to the smaller size of the PAMPA-BBB permeability dataset

as compared to our ADME Tier I endpoints (Siramshetty et al.,
2021) (rat liver microsomal stability, PAMPA-GIT
pH 7.4 permeability and kinetic aqueous solubility), we decided
not to pursue building predictive models using deep neural
networks. However, since GCNN demonstrated superior
performance in predicting PAMPA permeability at pH 5 as
compared to RF, XGBoost, and deep neural network methods
(Williams et al., 2022), we decided to build a GCNN model for
our PAMPA-BBB dataset. Briefly, the GCNN method takes

TABLE 1 Summary of datasets employed for model development in this study.

Internal training set Validation set

Class distribution Class 1 Class 0 Class 1 Class 0

554 1,240 33 131

Total 1,794 164
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chemical structures as input and transforms them into molecular
graph representation where the nodes represent atoms and the edges
represent bonds between the atoms. The network constructs a
learned molecular representation by operating on graph
structures in two phases: a message passing phase in which
information is transmitted across the molecule and a read-out
phase on which the learned representation is used to make
predictions. In this study, we used Chemprop (https://github.
com/chemprop/chemprop), a GCNN implementation in Python
for prediction of molecular properties by retaining default
parameters from the package.

2.6 Model evaluation

In order to identify the best performing model and validate its
performance on a test set, we divided the original training set into an
internal training set and an internal test set at 80:20 ratio, following a
k-fold cross-validation scheme, and kept the validation set
completely independent. The “train_test_split” method from
Scikit-Learn was used to partition the training set for a total of
five times and model performances were averaged over the five
individual runs. For model evaluation, we used balanced accuracy
(BACC) and AUC-ROC. BACC, calculated by averaging sensitivity
and specificity, is an evaluation metric that is preferred when the
dataset is imbalanced. Sensitivity is the probability of the true
positive results, while specificity is the probability of the true
negative results. AUC-ROC is the area under the ROC curve,
where ROC stands for receiver operating characteristic curve
which plots true positive rate (i.e., sensitivity) against false
positive rate (i.e., 1-specificity). AUC-ROC estimates the ability
of a model to distinguish between class 1 and class 0. The higher
the value, the better the model is at separating class 1 and class 0. The
model evaluation metrics have a numeric value between 0 and 1 and
can be calculated using the four elements of confusion matrix,
i.e., true positives (TP), false positives (FP), true negatives (TN),
and false negatives (FN).

sensitivity � TP

TP + FN

specificity � TN

TN + FP

BalancedAccuracy BACC( ) � sensitivity + specificity

2

TP = True Positive, FP = False Positives, TN = True Negatives,
FN = False Negatives.

3 Results

3.1 Assay performance, description of
dataset and distribution of molecular
properties

Three control compounds, caffeine (low permeability),
carbamazepine (moderate permeability), and progesterone (high
permeability) were utilized in each plate for over 50 plates to
provide evidence of assay quality. The minimum significant ratio

(MSR) for all control compounds was below 3.5 as shown in Table 2,
suggesting good assay reproducibility over a wide range of
permeability values. Since all values for our low permeability
control were below limit of quantification, S. D and MSR values
were not calculated.

The majority of compounds in our dataset (70% of total) fell into
the moderate to high category, while only 30% of compounds were
classified as low permeability compounds. Molecular properties,
SLogP [RDKit toolkit’s open source implementation of Wildman
and Crippen’s logP, known as SLogP (Wildman and Crippen,
1999)], total polar surface area (TPSA), molecular weight (MW),
hydrogen bond donors (HBD) and hydrogen bond acceptors (HBA)
were calculated as described previously (Williams et al., 2022) to
observe any inherent trends in the dataset. A significant portion of
compounds from both permeability categories exhibited molecular
weights ranging from 250 to 650 g/mol, had Log p values between
2 and 6, 0–2 HBD, 3-8 HBA, and possessed TPSA values below 100
(Figure 1). Interestingly, compounds with a moderate to high BBB
permeability were observed to have higher SLogP values whereas,
these compounds tended to have lower HBD and TPSA. No
significant trends were observed with regard to HBA or MW.

3.2 Correlation between PAMPA-GIT and
PAMPA-BBB

NCATS utilizes high-throughput PAMPA assays pH 5 and
pH 7.4 (PAMPA-GIT) for predicting gastrointestinal permeability
(Sun et al., 2017; Williams et al., 2022). These assays are routinely
employed as a component of the Tier I ADME assay suite. We
attempted to establish correlations by comparing the Tier I
PAMPA-GIT and PAMPA-BBB data to identify any visible
trends. As the count of shared compounds between PAMPA-GIT
pH 7.4 and PAMPA-BBB (750 compounds) were notably higher in
contrast to the shared compounds between PAMPA-GIT pH 5 and
PAMPA-BBB (37 compounds), we focused exclusively on
conducting correlations for the former set. No discernable linear
(Figure 2) or categorical/rank ordering (data not shown) trends were
observed.

3.3 Correlating in vitro PAMPA-BBB data
with in vivo B/P ratios

To underscore the significance of the PAMPA-BBB assay, we
correlated log PAMPA-BBB values with in vivo B/P ratios. From our
in-house pharmacokinetic database, which primarily consists of

TABLE 2 Assay reproducibility data for control compounds, comprising mean
and S.D of PAMPA-BBB permeability and the calculated minimum significant
ratio (MSR) values. Since all values for caffeine were below limit of
quantitation, S.D and MSR values were not calculated.

Compound Pe (x 10−6 cm/sec) MSR (102√2*S.D.)

Caffeine <1 N/A

Carbamazepine 21 ± 2.3 2.2

Progesterone 87 ± 10.1 3.4
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studies conducted in mice (90%) and rats (10%), we extracted a
subset of 74 compounds that had available B/P ratios. While no
linear correlation was observed, a 77% categorical correlation using
B/P and PAMPA-BBB cut-off values at 5% and 10 × 10−6 cm/sec
respectively was identified (Figure 3). In addition to passive
diffusion, other major mechanisms of transport into the brain
involve paracellular transport, carrier mediated transport and
receptor mediated transport. The paracellular transport routes
primarily pertain to the movement of small hydrophilic
compounds (Barar et al., 2016). Carrier mediated transport is
primarily responsible for the transportation of glucose, amino
acids, nucleic acids, ions, prostaglandins, and various other small
polar molecules. While more than 20 carrier mediated transporters

have been identified, the major ones include glucose transporter 1
(GLUT1), monocarboxylate transporters 1/2 (MCT1/2), L-system
neutral amino acid transporter 1 (LAT1) (Saunders et al., 2013;
Sweeney et al., 2019) and organic anion transporting polypeptides
(OATP) 1A2/OATP2B1 (Roth et al., 2012). Receptor-mediated
transport serves as the primary mechanism for the transportation
of larger molecules such as peptides, proteins, and lipids (Yang et al.,
2020). Despite the limitation of the PAMPA-BBB assay in modeling
these transport mechanisms, we observed a remarkably strong
categorical correlation. It is well known that efflux, primarily by
P-glycoprotein (Pgp) is a major barrier for xenobiotic compounds to
penetrate the BBB. To understand if a better correlation could be
observed between PAMPA-BBB and B/P ratios, we tested

FIGURE 1
Distribution of the PAMPA-BBB dataset based on (A) TPSA, (B) SLogP, (C) Molecular Weight, (D) HBD, and (E) HBA.
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74 compounds from our in vivo dataset in our in-house MDCK-
MDR1 assays, with the aim of identifying potential Pgp substrates.
While 14 compounds were identified to have moderate efflux ratios,
i.e., efflux ratios >5 and 4 compounds were identified to have high
efflux ratios, i.e., efflux ratios >20, no significant change in the
categorical correlation was observed after removal of these
compounds (data not shown).

Breast Cancer Resistance Protein (BCRP) is another extensively
recognized efflux transporter, and recent research has indicated that
while its expression in rodents is 2–3 folds lower than in non-human
primates and humans, its expression in the human brain surpasses that
of Pgp (Feng et al., 2018). Many isoforms of Multidrug Resistance-
Associated Proteins (MRPs) have been found to be expressed on the
BBB and are believed to play a significant part in BBB transport (Zhang
et al., 2000; Zhang et al., 2022). Hence, even though we took into
account the influence of the primary efflux transporter at the rodent
blood-brain barrier (Pgp), it did not exhibit a substantial effect in our in
vitro-in vivo correlation. Nonetheless, different transporters might
exhibit diverse levels of influence on this correlation.

3.4 Performance of prediction models

The ability of machine learning methods to learn the prediction
task was first evaluated in a five-fold cross-validation (5-CV) based
on the internal training and test sets. Figure 4; Supplementary Table
S1 show the 5-CV performance of the baseline models. Among the
12 models based on four different methods and three different
chemical descriptors, RF based on RDKit descriptors performed the
best, followed by XGBoost and HGB models based on MOE
descriptors. The models based on Morgan fingerprints
consistently performed poorly compared to the models based on
RDKit and MOE descriptors. Due to the superior performance of
RDKit descriptors in 5-CV, we evaluated Chemprop’s GCNN
method by using RDKit and MOE descriptors as additional
features and compared with the RF models based on RDKit and
MOE descriptors. To identify the most suitable model, all four
models underwent validation using the validation set, and the model
exhibiting the highest balanced accuracy on this validation set would
be selected as the most optimal. Results identified the GCNN model
with RDKit descriptors as the best performing model (Table 3). The
complete validation set results can be found in Supplementary
Table S2.

Due to the lack of publicly accessible PAMPA-BBB data, from
both literature and compound bioactivity databases such as
ChEMBL, we were unable to evaluate our models on completely
unseen data. However, our validation set was derived from most
recent drug discovery projects, which mimics a practical real-time
scenario. Several compounds from recent projects belong to newer
chemical spaces explored by medicinal chemists in the pursuit of
novel drugs. However, this observation may not be applicable to all
validation set compounds as can be seen in the chemical space
distribution (Supplementary Figure S1).

3.5 Boiled-Egg to predict PAMPA-BBB
permeability

Lipophilicity and polarity are two physicochemical properties
that are relevant for absorption of small molecules through
biological membranes. Egan et al. (2000), developed a descriptive
representation using these two properties in order to distinguish
well-absorbed and poorly absorbed compounds. Lipophilicity and
polarity were described using n-octanol/water partition coefficient
[ALOGP98; which is an implementation of LogP, originally
proposed by Ghose and Crippen (Ghose and Crippen, 1986)]
and TPSA, respectively. When the two computed properties were
plotted against each other, a favorable region for gastrointestinal
absorption delineated, and as the region populated with most of the
well-absorbed molecules was elliptical in shape, it was called Egan
Egg. Unlike rule-based models and machine learning models, this
representation not only provides thresholds for lipophilicity and
polarity but also an estimate of how far a molecule is from the
favorable region. In a 2016 study, Daina and Zoete extended Egan’s
Egg concept by amending the methodological aspects and assessed
the predictive power of the model (Daina and Zoete, 2016). In
addition to predicting gastrointestinal absorption, this model also
predicts the brain permeability of small molecules by passive
diffusion. A BOILED-Egg (Brain Or IntestinaL EstimateD

FIGURE 2
Correlating Tier I PAMPA-GIT pH 7.4 and PAMPA-BBB data.

FIGURE 3
Categorical correlation of in vitro PAMPA-BBB permeability
versus in vivo Brain/Plasma Ratio.
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permeation predictive model) was constructed by plotting Wildman
and Crippen log P (WLOGP) (Wildman and Crippen, 1999) against
TPSA for: 1) a total of 660 molecules with human intestinal
absorption data collected from literature, patents, and other
databases, and 2) a total of 260 molecules with brain
permeability data. From both plots, they identified the best
elliptical regions with the highest number of well-absorbed and
permeable molecules which were combined to yield the BOILED-
Egg predictive model. Molecules that fall within the white region are
those with highest probability to be absorbed in the gastrointestinal
tract and those that fall within the yellow region (yolk) are those with
highest probability to permeate into brain. The BOILED-Egg model
was implemented and made publicly available on the Swiss-ADME
prediction portal.

We aimed to evaluate this approach using our internal data. For
brain penetration, we used all molecules from the PAMPA-BBB
dataset. As our Tier I PAMPA permeability might not completely
translate to intestinal absorption of small molecules, we combined
data from all our Tier I endpoints (rat liver microsomal stability,
PAMPA-GIT permeability, and kinetic aqueous solubility) as a loose
approximation for intestinal absorption/bioavailability. In the final
dataset comprising a total of 18,461 molecules, a molecule was
assigned to the “High Absorption” class if it passes all Tier I criteria,
i.e., high liver microsomal stability, high PAMPA permeability and
high kinetic aqueous solubility. If a molecule did not satisfy any of
these three criteria, it was assigned to the “Low Absorption” class.
Another slight methodological modification was to use SLogP

instead of WLogP as the latter was not available in the
commonly used open-source molecular descriptor calculation
tools. Figures 5A, B represent the SLogP versus TPSA
distributions for the two datasets. Although the upper and lower
thresholds vary and the “High Permeability” compounds do not fall
within the boundaries of the “High Absorption” region, the
respective elliptical distributions obtained with our internal data
closely match with those from the BOILED-Egg model. It must be
noted that in their original work, Daina and Zoete minimized the
number of poorly absorbed molecules in the human intestinal
absorption data which is a reason for overrepresentation of the
well absorbed compounds leading to the formation of white region
of the boiled egg. This analysis suggests that it might not be
straightforward to develop a BOILED-Egg like model for
predicting PAMPA-BBB permeability.

4 Discussion

Owing to its many advantages including high-throughput
nature, speed, and low cost, PAMPA-BBB assay is routinely used
for rank ordering compounds in drug discovery. Using a
combination of basic and advanced machine learning techniques,
we aimed to develop and validate a QSAR model for predicting
passive BBB permeability using our in-house ~2,000 compound
PAMPA-BBB dataset. Out of the multiple methods analyzed,
GCNN exhibited the highest validation set accuracies >72%. The

FIGURE 4
Cross-validation performance (balanced accuracy, BACC) of RF, XGBoost, HGB, and GCNN models, each based on RDKit descriptors, MOE
descriptors and Morgan fingerprints.

TABLE 3 Performance of RF and GCNN models using RDKit and MOE descriptors in cross-validation and on the validation set.

Models Descriptors 5-fold CV BACC Validation set BACC

Random forest RDKit 0.698 ± 0.015 0.708

MOE 0.688 ± 0.019 0.659

GCNN RDKit 0.683 ± 0.018 0.723

MOE 0.684 ± 0.021 0.693
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best model along with a subset of our PAMPA-BBB dataset has been
made publicly available to benefit the drug discovery community.

By comparing in vitro PAMPA-BBB data with in vivo B/P ratios,
we identified a categorical correlation of 77%, emphasizing the
usefulness of this assay. Despite its inability to simulate active
transport, the PAMPA-BBB assay was able to achieve a
significant correlation with in vivo results. The presence of efflux
transporters, primarily Pgp, at the BBB is widely recognized as a
substantial hurdle for drug penetration into the brain. To
understand the impact of Pgp efflux on compound brain
penetration, we tested 74 compounds from our in vivo dataset in
MDCK-MDR1 assays and found only 4 compounds with high efflux
ratios. The lack of compounds with high efflux in our dataset could
be one of the factors as to why we achieved such a strong correlation
between PAMPA-BBB permeability and B/P ratios in our dataset.
We plan to routinely monitor these correlations as our in vivo
datasets expand. In addition, we performed a correlation analysis of
750 overlapping compounds from our PAMPA-BBB dataset and our
Tier I PAMPA-GIT pH 7.4 dataset. No linear or categorical
correlation was observed indicating their individual assay relevance.

Due to the uneven distribution of compounds between the two
classes, RF, XGBoost and HGB models were trained using class
weights. We attempted to increase the model performance by
generating a more balanced dataset using a different cutoff value
for BBB permeability. When PAMPA-BBB permeability cutoff of
40 × 10−6 cm/sec was used as the threshold to classify compounds,
the balanced accuracy for the training set (5-CV) and validation set
increased to 75% and 74% respectively. Moreover, the AUC-ROC
increased to 81% for both datasets. In addition to GCNN, simple
decision trees, logistic regression and multi-layer perceptron models

were also built and compared with the already developed models,
however, none of them performed better than the GCNN model
based on RDKit descriptors. Dataset size and limited coverage of
chemical space can be a confounding factor in modeling and can
cause the model to have low predictive performance. Despite this,
the GCNN model based on the default parameters performed well
compared to other classifiers. On the other hand, sparse molecular
descriptors such as molecular fingerprints did not provide
competitive predictive performance when compared to whole
molecular properties like RDKit descriptors. They are limited by
their inefficiency in projecting complex multidimensional objects
such as molecules onto a single dimension (i.e., a bis string
representation) where there is no meaningful relationship
between two bits that are next to each other (Feinberg et al.,
2020). Although the differences in cross-validation balanced
accuracy values between GCNN and RF were not significant,
GCNN performed better on the validation set compounds.

Concurrently, we assessed feature importance using the RF
model based on RDKit descriptors and identified the top five
importance features: partition coefficient, octanol/water partition
coefficient, total polar surface area (TPSA), quantitative estimation
of drug-likeness (qed), and van der Waals surface area Estate 5
(VSA_Estate5). The pH-partition hypothesis states that only
uncharged molecules can permeate through lipophilic
membranes (Shore et al., 1957; Williams et al., 2022) and that
permeability of a molecule would be the greatest when it is least
charged, making ionization status a very important factor in
determining compound permeability. This is substantiated by the
observation that various descriptors employed in the construction of
our model, such as partition coefficient, octanol/water partition

FIGURE 5
Overview of BOILED-Egg like analysis based on two distributions: (A). SLogP versus TPSA for Tier I dataset where green dots are “High Absorption”
molecules and blue dots are “Low Absorption” molecules. (B) SLogP versus TPSA for PAMPA-BBB dataset where green dots are “High Permeability”
molecules and brick red dots are “Low Permeability” molecules.
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coefficient, molecular charge, electronegativity, atomic charges,
bond type, and molecular connectivity, are either directly or
indirectly related to ionization. In our analysis of the dataset, we
demonstrated that, in contrast to acidic compounds, basic
compounds exhibited higher PAMPA-BBB permeability values
(Supplementary Figure S2). Consequently, it is not surprising
that partition coefficient and octanol/water partition coefficient;
two properties that rely heavily on ionization state of the
molecule rank high in the feature importance list. It is interesting
to see SLogP and TPSA as important features since both properties
show trends in the physicochemical property distribution graphs in
Figure 1.

Several models that predict BBB permeability have been
reported in literature. Wang et al. (2015) summarized several of
these efforts (up to 2016) in their work where they compiled a total
of 439 compounds from multiple resources to develop a consensus
QSAR model. Although they started developing models using MOE
descriptors alone, they demonstrated that combining them with
biological descriptors improved model performance. In this case,
biological descriptors including bioassays on membrane
transporters were extracted from PubChem. Due to the direct
dependence of small molecules on these transporters to pass
through the BBB, the transporter activities served as biological
descriptors and thereby helped improve predictive performance.
We further extended the list to include the most recent studies that
reported models based on both classical machine learning methods
(RF, SVM, etc.) and neural network-based methods. Supplementary
Table S3 in the supporting information provides a summary of these
studies in addition to those summarized by Wang et al. (2015).
Majority of datasets from prior publications typically encompass
around 400 compounds within their training sets, whereas we
possess a comparably larger dataset of approximately
2,000 compounds. An exception to this is the dataset compiled
by Shaker et al. (2021) which comprises a total of 7,162 compounds
collected from several literature reports and data repositories. Shaker
et al. (2021), reported a classification model based on light gradient
boosting machine algorithm that provided an accuracy of 89% on a
test set derived from the same dataset. While our dataset is smaller
than the dataset from Shaker et al. (2021), we would like to highlight
that our dataset was generated using the same protocol, at a single
laboratory and is based on a high throughput PAMPA-BBB assay.
Although we could only disseminate a subset of this dataset, our best
model based on the full dataset is publicly available on the NCATS
Open Data ADME portal.

It has been widely recognized that unbound drug concentration
at the site of action is the main driver for eliciting a pharmacological
response (Kalvass and Maurer, 2002; Kalvass et al., 2007; Watson
et al., 2009). Unbound B/P partition coefficient or Kp,uu,brain

describes the unbound drug concentrations in brain relative to
plasma at equilibrium. Some of the mainstream methods for
Kp,uu,brain determination include microdialysis sampling (Ooie
et al., 1997; Friden et al., 2007), brain slice assays (Friden et al.,
2007; Friden et al., 2009) and equilibrium dialysis using brain tissue
homogenates (Friden et al., 2007; Wan et al., 2007; Liu et al., 2009).
Since microdialysis and brain slice assays are complicated and costly,
equilibrium dialysis method using brain homogenate is the most
common method used in the pharmaceutical industry (Wan et al.,
2007; Watson et al., 2009). A recent survey among scientists from

14 top pharmaceutical companies was conducted with the aim of
understanding how Kp,uu,brain values are utilized in their respective
companies. The researchers strive to establish a correlation between
the measured Kp,uu,brain and in vitro assays such as MDCK-MDR1
and MDCK-BCRP efflux assays, with the aim of utilizing these
in vitro assays to screen and prioritize compounds (Loryan et al.,
2022). Although our in vivo PK dataset is comprised of drugs
encompassing diverse therapeutic areas, only a small fraction of
compounds target the CNS. However, with the advent of the NIH
Helping to End Addiction Long-term (HEAL) initiative (https://
heal.nih.gov), there has been an influx of projects at NCATS that
target the CNS and we plan to develop correlations between
experimental Kp,uu,brain values and our in-house PAMPA-BBB
assays.

5 Conclusion

In conclusion, our research has yielded successful predictive
models using by far the most extensive PAMPA-BBB dataset, with
the highest-performing model now accessible on our Open Data
ADME portal. Through a comprehensive evaluation, we compared
state-of-the-art machine learning methods with recent
architectures like graph neural networks, utilizing diverse
molecular descriptors as features. Notably, a subset of our
compiled PAMPA-BBB dataset has been shared as a PubChem
bioassay record (AID: 1845228). Moreover, we identified a
significant 77% correlation between our in vitro PAMPA-BBB
data and in vivo brain permeation data, highlighting the
considerable promise inherent in the PAMPA-BBB assay and
the models derived from this data for evaluating the BBB
permeability of small molecules. This strong correlation will
instill confidence among medicinal chemists in applying these
models to efficiently prioritize compounds for preclinical testing.
By providing valuable insights into blood-brain barrier
permeation, our research contributes significantly to advancing
drug discovery efforts. Ultimately, the successful implementation
of these in silico tools holds the promise of revolutionizing the drug
discovery process, leading to considerable time savings and
improved efficiency.
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