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Metabolic dysfunction-associated steatotic liver disease (MASLD) is considered a
“multisystem” disease that simultaneously suffers from metabolic diseases and
hepatic steatosis. Some may develop into liver fibrosis, cirrhosis, and even
hepatocellular carcinoma. Given the close connection between metabolic
diseases and fatty liver, it is urgent to identify drugs that can control metabolic
diseases and fatty liver as a whole and delay disease progression. Ferroptosis,
characterized by iron overload and lipid peroxidation resulting from abnormal iron
metabolism, is a programmed cell deathmechanism. It is an important pathogenic
mechanism in metabolic diseases or fatty liver, and may become a key direction
for improving MASLD. In this article, we have summarized the physiological and
pathological mechanisms of iron metabolism and ferroptosis, as well as the
connections established between metabolic diseases and fatty liver through
ferroptosis. We have also summarized MASLD therapeutic drugs and potential
active substances targeting ferroptosis, in order to provide readers with new
insights. At the same time, in future clinical trials involving subjects with MASLD
(especially with the intervention of the therapeutic drugs), the detection of serum
iron metabolism levels and ferroptosis markers in patients should be increased to
further explore the efficacy of potential drugs on ferroptosis.
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1 Introduction

Metabolic dysfunction-associated fatty liver disease (MASLD), also referred to as non-
alcoholic fatty liver disease (NAFLD) or metabolic dysfunction-associated fatty liver disease
(MAFLD), encompasses both simple hepatic steatosis and metabolic dysfunction-associated
steatohepatitis (MASH), previously known as non-alcoholic steatohepatitis (NASH). Some
cases of MASLD can progress to liver fibrosis, cirrhosis, and even hepatocellular carcinoma.
In 2020, an international expert group recommended renaming NAFLD to MAFLD based
on previous research and clinical evidence (Eslam et al., 2020). However, in June 2023,
NAFLD was renamedMASLD again based onMulti-society Delphi consensus (Rinella et al.,
2023). Currently, MASLD is recognized as a “multisystem” disease that coexists with
metabolic disorders and hepatic steatosis. Metabolic diseases are characterized by at least
one of the following: obesity/overweight, type 2 diabetes mellitus (T2DM), hypertension or
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dyslipidemia. The diagnosis of fatty liver is based on liver biopsy
histology and imaging examinations indicating the presence of
hepatic steatosis. The two renames of NAFLD have gradually
expanded the diagnostic criteria for metabolic diseases (from
including at least two metabolic diseases to including at least one
of them), emphasizing the strong connection between fatty liver and
metabolic diseases, and highlighting the significance of controlling
the progression of metabolic disorders in the treatment and
management of MASLD. Currently, a combination of drugs, such
as hypoglycemic drugs, and antioxidants, has been recommended
for comprehensive control and management in clinical practice (Yin
et al., 2023).

Ferroptosis is a newly discovered form of programmed cell death
resulting from abnormal intracellular iron metabolism, which leads
to iron overload and lipid peroxidation. The main factors
contributing to the development of ferroptosis include abnormal
iron metabolism or excessive iron intake, oxidation of unsaturated
fatty acids, and impairment of antioxidant repair mechanisms (Li
J. et al., 2020). Recently, ferroptosis has gained considerable
attention in medical research due to its involvement in various
conditions such as cancer, diabetes, cardio-cerebrovascular disease,

and liver disease (Cheng et al., 2023; Miao et al., 2023; Zhang et al.,
2023). Importantly, existing evidence suggests an interrelation
between metabolic diseases, fatty liver, and ferroptosis, with the
latter playing a crucial role in their pathogenesis. Therefore,
targeting ferroptosis may serve as a common therapeutic
approach for both metabolic diseases and fatty liver, potentially
improving the progression of MASLD. Based on these
considerations, we have conducted a comprehensive review of
current research on fatty liver, metabolic diseases, and
ferroptosis, and explored the potential of relevant drugs as
therapeutic interventions, aiming to provide new insights and
references for readers in this field.

2 Ferroptosis in MASLD

Ferroptosis, is a novel cellular mechanism of damage,
characterized by iron overload and lipid peroxidation resulting
from aberrant intracellular iron metabolism. The physiological
and pathological processes involved primarily encompass the
following four aspects. We have summarized the physiological

FIGURE 1
Physiological and pathological mechanisms related to ferroptosis in MASLD. In normal cells, the intake and metabolism of iron, esterification of
unsaturated fatty acids, and clearance of peroxides are maintained in a relatively stable state. The main factors contributing to the development of
ferroptosis are abnormal iron metabolism (A), lipid peroxidation (B), as well as abnormal antioxidant defense (C and D). The red pathway indicates an
abnormality in the process. The figure was drawn by Figdraw.
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and pathological mechanisms related to ferroptosis in MASLD
(Figure 1) and summarized relevant research evidence.

2.1 Ferroptosis caused by abnormal iron
metabolism

Iron metabolism is a complex process. Under normal
conditions, transferrin (Tf) in plasma binds to transferrin
receptor 1 (TfR1), facilitating the entry of Fe3+ into the cell (Yu
et al., 2020). The six-transmembrane epithelial antigen of the
prostate 3 (STEAP3), a member of the metal reductase family,
acts as a ferrous reductase activity and converts Fe3+ to Fe2+. This
Fe2+ is transported to the cytoplasm through divalent metal
transporter 1 (DMT1) and zinc transporter 8/14 (ZIP8/14),
resulting in the formation of a labile iron pool (LIP) (Frazer and
Anderson, 2014). Free Fe2+ can be transferred to ferritin, with
ferritin heavy chain 1 (FTH1) playing a pivotal role, through
poly (rC) binding protein 1 (PCBP1), and it can be converted
back to Fe3+ to maintain intracellular iron balance or be
transported to the mitochondria for utilization (Protchenko et al.,
2021). Ferroportin 1 (FPN1) enables the export of Fe2+ to the
extracellular space. Nuclear receptor coactivator 4 (NCOA4)
regulates ferritin degradation in lysosomes during this process
(Mancias et al., 2014). Disruptions or imbalances in certain
metabolic pathways can trigger ferroptosis when iron metabolism
is disrupted. Increased ferritin degradation, elevated
TfR1 expression, or decreased FPN1 expression can lead to
intracellular Fe2+ accumulation, which generates hydroxyl
peroxides through the Fenton reaction with peroxides (Haschka
et al., 2021). Polyunsaturated fatty acid (PUFA)-phospholipids (PL)
become susceptible targets, resulting in the production of a
substantial amount of peroxides.

Multiple clinical studies have uncovered anomalies in intestinal
iron absorption and iron metabolism levels among patients afflicted
with MASLD. Hoki et al. conducted an oral iron absorption test,
which demonstrated an augmented uptake of intestinal iron
absorption in individuals with NASH. This increase is attributed
to the upregulation of DMT1 expression, regulated by iron
regulatory proteins (Hoki et al., 2015). The concentration of
serum serves as a crucial indicator of iron reserve and in vivo
iron metabolism. Real-world studies have consistently revealed a
positive correlation between serum ferritin levels and the incidence
rate of MASLD (OR:1.725, 95%CI:1.427–2.085, p < 0.001) (Wang
J-W. et al., 2022).

Furthermore, the occurrence of MASLD is significantly more
prevalent in individuals with hyperproteinemia and those adhering
to a high iron intake diet in comparison with normal individuals (p <
0.001) (Yang et al., 2019). Patients with hyperproteinemia exhibit
more severe disruptions in lipid and glucose metabolism, alongside
higher levels of transaminase levels (p < 0.05). Histopathological
analysis reveals a positive correlation between increased serum
ferritin levels and the severity of steatosis and iron staining (p <
0.05) (Wang Q. et al., 2022).

Moreover, a double-sample Mendelian randomization study
utilizing an open genome-wide association research database
substantiates the association between heightened genetic
prediction of liver iron and an elevated risk of MAFLD (odds

ratio: 1.193, 95% CI: 1.074–1.326, p = 0.001). The study also
establishes a significant connection between hereditarily predicted
elevated serum ferritin levels predicted by heredity and MAFLD
(Dataset 1: β = 0.038, 95% CI: 0.014–0.062, p = 0.002; Dataset 2: β =
0.081, 95% CI: 0.025–0.136, p = 0.004) (He et al., 2022).

Previous preclinical studies have also investigated the
potential relationship between iron intake and MASLD. In
one study, the progression of liver fat lesions in HFE mice
subjected to a high-calorie diet with iron deficiency was
compared to those on a normal iron high-calorie diet. The
findings revealed that mice with iron deficiency exhibited
lower liver weight and diminished expression of iron
transporters and iron regulatory genes (Crawford et al.,
2021). Additionally, levels of 4-hydroxynonenal (4-HNE) and
malondialdehyde (MDA), which are markers of ferroptosis, were
significantly elevated in hepatocytes induced by a high iron diet.

Furthermore, another preclinical study utilizing a hepatocyte-
specific Trf knockout mice (Trf LKO) model discovered that feeding
mice a high iron diet increased the incidence of ferroptosis-induced
liver fibrosis (Yu et al., 2020). However, the administration of a
ferroptosis inhibitor, ferrostatin-1 (Fer-1), effectively reversed liver
fibrosis in this model. In addition, relevant studies have shown that
iron overload related ferroptosis is associated with upregulation of
TfR1, DMT1 expression, and downregulation of FPN1 expression
(Wang et al., 2021a; Liu et al., 2022).

2.2 Ferroptosis induced by lipid peroxidation

The excessive synthesis of PUFA-PL can serve as a substrate for
hydroxide ion (OH−) to facilitate the generation of lipid peroxides,
inducing ferroptosis (Gan, 2022). This process primarily involves
PUFAs, PL, and crucial enzymes such as long-chain acyl CoA
synthase family member 4 (ACSL4), lysophosphatidylcholine
acyltransferase 3 (LPCAT3), lipoxygenase (LOXs), etc (Yuan
et al., 2016a; Lee et al., 2021).

Previous studies have shown that elevated arachidonic acid
metabolism promotes the occurrence of liver ferroptosis in mice
(Li X. et al., 2020; Tong et al., 2023), and upregulation of LOX15 (25)
was observed in MAFLD mice fed on a high-fat diet. Additionally,
gut microbiota metabolites also promoted the expression of
ACSL4 and induced ferroptosis. The iron chelating agent
effectively controlled this effect (Liu et al., 2022).

2.3 Abnormal antioxidant defense

The cell possesses antioxidant defense systems that regulate lipid
reactive oxygen species (ROS) and lipid peroxides to counteract
ferroptosis. These defense mechanisms include.

1. Glutathione peroxidase 4 (GPX4): an endogenous enzyme that
removes lipid peroxides. GPX4 is synthesized using glutathione
as its precursor. The Xc− System transports cystine into the cell,
which undergoes a series of reactions to generate glutathione
(GSH), further synthesizing GPX4. The Xc− System-GSH-
GPX4 axis is typically inactive during ferroptosis (Chen et al.,
2021).
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2. Kelch-like epichlorohydrin-associated protein-1 (Keap1)-nuclear
factor erythroid 2-related factor 2 (Nrf2) pathway: this
intracellular antioxidant pathway regulates the expression of
downstream antioxidant factors, including heme oxygenase 1
(HO-1), to mitigate ferroptosis (Song and Long, 2020).

3. Guanosine triphosphate cyclization hydrolase 1 (GCH1)/
tetrahydrobiopterin (BH4)/dihydrofolate reductase (DHFR)
pathway: this pathway promotes coenzyme Q (CoQ) synthesis,
inhibits lipid peroxide accumulation, and provides resistance
against ferroptosis (Kraft et al., 2020).

4. Ferroptosis suppressor protein 1 (FSP1): FSP1, as an
oxidoreductase, reduces CoQ to CoQH2, an antioxidant that
scavenges lipophilic free radicals, thus preventing lipid peroxide
accumulation (Bersuker et al., 2019).

5. Mitochondrial defense system: mitochondria have defense
mechanisms to against ferroptosis. For example, mitochondrial
ferritin reduces iron content by storing iron, GPX4 and
dihydroorotate dehydrogenase (DHODH) in the mitochondria
eliminate lipid peroxides (Mao et al., 2021), and CDGSH iron
sulfur domain 1 (CISD1) and voltage-dependent anion channel
(VDAC) regulate iron concentration and respiratory substrate
content in mitochondria, respectively (Lemasters, 2017; Lipper
et al., 2019).

Two studies evaluated the progression of NAFLD using mice fed
a high-fat diet (Qi et al., 2020; Ding et al., 2023) and a methionine-
deficient diet (Li X. et al., 2020), indicating that elevated arachidonic
acid metabolism promoted the occurrence of liver ferroptosis in
mice, with the accumulation of lipid peroxides, an increase in
mitochondrial reactive oxygen species, and changes in
mitochondrial morphology. Meanwhile, in animal models of fatty
liver, ferroptosis leads to a decrease in liver GPX4, an increase in 12/
15-LOX (34), and a decrease in Nrf2(35).

2.4 Ferroptosis induced by other pathways

Besides these primary physiological and pathological
mechanisms, recent studies have identified key factors
involved in iron metabolism significantly impact ferroptosis.
For instance, the p53 protein has been found to inhibit
ferroptosis by suppressing dipeptidyl peptidase 4 (DPP4) and
promote ferroptosis by inhibiting the solute carrier family
7—member 11 (SLC7A11) gene. This dual regulatory function
of p53 holds great potential for cancer treatment (Kang et al.,
2019). Additionally, ROS accumulation induces endoplasmic
reticulum stress, affecting the activity of peroxisome
proliferator-activated receptor (PPAR) (Yakubov et al., 2023)
and influencing iron metabolism through inflammatory signaling
pathways (Cheng et al., 2021a; Zhao et al., 2023). Moreover, as
research progresses, emerging potential targets and receptors are
being identified. The farnesoid X receptor (FXR) (Kim et al.,
2022) and AMP-activated protein kinase (AMPK) (Lee et al.,
2020; Wang et al., 2022c) have emerged as potential key targets of
ferroptosis. For example, it has been suggested that a high-fat diet
can impact Nrf2 levels by inhibiting AMPK-mediated
mechanistic target of rapamycin (mTOR) activation (Liu et al.,
2023). These findings enhance our understanding of the complex

mechanisms underlying ferroptosis and provide potential
avenues for therapeutic intervention.

3 Ferroptosis in metabolic diseases

3.1 T2DM

T2DM is primarily characterized by insulin resistance. A meta-
analysis indicates that fatty liver has a prevalence of 55.5% (95% CI,
47.3–63.7) among T2DM patients (Younossi et al., 2019a). In the
liver of T2DM patients, insulin resistance can lead to fat
accumulation and accelerate the progression of MASLD. Recent
studies have demonstrated the impact of diabetes on the liver by
examining ferroptosis. For example, a study observed the
pathological changes in the livers of male C57BL/6 mice with
diabetes. The findings revealed fibrotic symptoms, increased
levels of inflammatory and oxidative stress markers, and
weakened activity of the antioxidant system in the livers of
diabetic mice. Treatment with Fer-1 effectively reversed and
delayed the adverse liver outcomes in diabetic mice, as evidenced
by improvements in alanine transaminase (ALT) and triglyceride
levels, enhanced liver antioxidant systems such as Nrf2 and GPX4,
and reduced levels of interleukin-6 (IL-6) and tumor necrosis factor
a (TNF-α) (Younossi et al., 2019a).

In addition to insulin resistance, pancreatic β cell dysfunction
and injury are also pathological features of T2DM. Excessive iron
deposition in the cells can contribute to pancreatic dysfunction
(Coffey and Knutson, 2017). Iron metabolism in the body is
associated with the development of T2DM. A meta-analysis
summarizing the results of 12 case-control and cohort studies
found a significant correlation between elevated serum ferritin
levels and the prevalence of T2DM (OR = 1.43, 95% CI:
1.29–1.59) (Liu et al., 2020). Furthermore, conditions like
thalassemia and hemochromatosis, which can result in iron
overload, are linked to pancreatic β cell damage and insulin
resistance (Noetzli et al., 2012; Pelusi et al., 2016). Iron, an
essential component of ferrum-sulfur (Fe-S) clusters, plays a
crucial role in the mitochondrial oxidative synthesis, processing
and secretion of insulin (Marku et al., 2021). Disruption of
intracellular iron metabolism can interfere with these metabolic
processes and induce ferroptosis, leading to a decrease in insulin
secretion (Bruni et al., 2018). A study (Wei et al., 2020) suggests that
arsenic can induce ferroptosis by mediating ferritin autophagy in
pancreatic β cells . NCOA4, as a selective receptor for ferritin
autophagy, mediates intracellular iron transport to
autophagosomes by binding to FTH1, ultimately releasing Fe2+,
and this damage may depend on an increase in mitochondrial
reactive oxygen species (MtROS). The comparative experiment of
using streptozotocin (STZ) and Fer-1, the inducer of diabetes, in
male C57BL/6 mice, and the comparative experiment of using
erastin and Fer-1 in human islet cell clusters also have proved
the relationship between ferroptosis and pancreatic β cells (Li and
Leung, 2020). Meanwhile, research has found that under high
glucose conditions, the expression of GPX4 in pancreatic β cells
is inhibited, the synthesis of GSH is reduced, leading to ferroptosis
(Li D. et al., 2020; Krümmel et al., 2021). Xc− system is also necessary
for insulin synthesis and secretion (de Baat et al., 2023). Based on
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the above research, Xc− System-GSH-GPX4 axis may be crucial
for clearing lipid peroxidation and maintaining normal
homeostasis in pancreatic β cells. Additionally, high glucose,
hydrogen peroxide, and STZ induced increased intracellular
ROS, decreased activity of the Nrf2-GPX4 pathway, and
reduced mitochondrial membrane potential in Rin-5F cells
(Frey et al., 2020; Stancic et al., 2022).

3.2 Overweight/obesity

Obesity, a metabolic disorder characterized by excessive fat
accumulation and storage in the body, is closely associated with
an increased prevalence of metabolic diseases. MASLD represents a
comprehensive manifestation of obesity and metabolic syndrome in
the liver. A study in France revealed that over 20% of obese
individuals with metabolic syndrome suffered from NASH(55).
The expression of inflammatory cytokines in the liver and white
adipose tissue may play a crucial role in the molecular signaling
pathway that links obesity to fatty liver. Chronic low-level
inflammation associated with obesity contributes to the
production of inflammatory cytokines including IL-6 and TNF-
α(56), which may directly result in liver pathology via endocrine
mechanisms. Various adipokines produced by adipose tissue,
including leptin, adiponectin, and others (Britton et al., 2016;
Jorge et al., 2018), have been shown to influence the
development of MASLD. Iron homeostasis is significantly
connected to adipose factors, and high iron is an important
negative regulator of both leptin and adiponectin (Fernández-
Real et al., 2015; Harrison et al., 2023). A study using a mouse
model of iron overload induced by an iron-rich diet revealed an
upregulation of adipose factor levels associated with insulin
resistance (Dongiovanni et al., 2013). Meanwhile, the reduction
of FPN in adipocytes can lead to iron load, decreased adiponectin,
and insulin resistance, which can further affect the metabolism of
other organs (Gabrielsen et al., 2012). It was accompanied by a
notable reduction in adipocytes as well as a potential correlation
with the proliferation and hypertrophy of visceral adipose tissues.
Regarding mitochondrial function, obesity can lead to
mitochondrial dysfunction, which mainly occurs in the liver,
muscles, and adipose tissue. The morphology and quantity of
mitochondria have also changed: mitochondria in skeletal
muscles have become smaller and shorter, mitochondria in white
adipose tissue are small and slender, and cristae are irregular (Zhang
S. et al., 2022). GPX4, a crucial enzyme for the maintenance of lipid
peroxidation levels, plays a vital role in the inhibition of ferroptosis.
A recent study (Schwärzler et al., 2022) found that mice with specific
GPX4 deficiency in adipose tissue exhibited an increase in the
number of white adipocytes and the level of serum TNF-α. In
isolated adipocytes with impaired GPX4 activity, there was an
increase in the level of 4-HNE and the production of
inflammatory factors such as TNF-α, IL-1β, and IL-6.
Furthermore, obese mice fed a high-fat diet showed a significant
decrease in GPX4 expression (Schwärzler et al., 2022). In addition,
obese mice with GPX4 deficiency also displayed lipid peroxidation
in the liver (Katunga et al., 2015). Based on these findings, it could be
inferred that GPX4 may play a role in the inhibition of lipid
peroxidation, the prevention of adipose tissue inflammation, as

well as the mitigation of low-level systemic inflammation. In
addition, ACSL4 may have effects such as promoting the
participation of arachidonic acid in phospholipids, causing liver
fat accumulation, and triggering inflammation of white adipose
tissue (Chen et al., 2023). For example, specific knockout of
ACSL4 in mouse adipocytes effectively prevented obesity induced
by a high-fat diet and reduced levels of lipid peroxidation product 4-
HNE (Killion et al., 2018).

3.3 Other metabolic disorders

Recently, hypertension and dyslipidemia are also considered as
the common metabolic disorder of MASLD. Although there is less
connection between the two diseases and liver steatosis, ferroptosis
plays a role in some pathogenesis of hypertension and
atherosclerosis induced by hyperlipidemia. Targeted therapy for
ferroptosis may be a promising new therapy.

Dyslipidemia is closely associated with hepatic steatosis and can
serve as an independent predictor (Zou et al., 2021). Daily
consumption of a high-fat diet exacerbates the metabolic burden
on the liver, leading to the accumulation of hepatic lipids. Lipid-
lowering therapy and a diet aimed at reducing fat intake are
recommended management measures for MASLD. Conversely,
MASLD can contribute to the development of dyslipidemia and
is correlated with vascular calcification, significantly increasing the
risk of cardiovascular disease. Dyslipidemia impacts the function of
vascular endothelial cells and vascular smooth muscle cells, thereby
promoting the development of atherosclerosis. Furthermore, iron
overload and ferroptosis have been observed in vascular endothelial
cells within atherosclerotic lesions.

Hypertension is now recognized as a risk factor for MASLD.
Additionally, hypertension represents one of the primary
clinical outcomes of MASLD, demonstrating a strong
correlation between these two conditions. Recent studies have
revealed that angiotensin II, a key factor in the development of
hypertension, can induce astrocytes to secrete inflammatory
cytokines, promote ferroptosis, and elevate the levels of
ferroptosis markers. The involvement of angiotensin II in
various pathological processes, including cardiac remodeling,
myocardial hypertrophy, and ischemic reperfusion injury, has
been observed in hypertensive mice.

MASLD is a complex condition involving multiple systems.
Obesity, T2DM, hyperlipidemia, and fatty liver disease can interact
with each other, thereby contributing to the development of
comorbidities and collectively increasing the risk of
cardiovascular disease (Figure 2). Ferroptosis is related with the
normal functioning of pancreatic β cells, hepatocytes, vascular
endothelial cells, as well as adipocytes. The disruption in various
systems further results in the imbalance of glucose and lipid
metabolism, with multiple organs involved, promoting the onset
and progression of MASLD. It seems that ferroptosis is intricately
intertwined with the pathogenic processes of metabolic diseases and
MASLD. Metabolic diseases are often accompanied by disturbances
in iron metabolism, a condition termed dysmetabolic iron overload
syndrome (DIOS). DIOS primarily occurs in overweight individuals,
such as those with type 2 diabetes, potentially progressing to
MASLD.
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4 Research on targeted ferroptosis
related to clinical therapeutic drugs

Relevant studies primarily focus on the inhibition of ferroptosis
in MASLD. There are three main approaches. Firstly, it involves
reducing intracellular iron overload by either decreasing excessive
iron intake or regulating iron metabolism. Secondly, it entails
enhancing the defense system against lipid peroxidation and
increasing the expression of antioxidant factors. Lastly, it involves
the regulation of the activity of key enzymes implicated in the lipid
oxidation process, accompanied by the modulation of the
unsaturated fatty acid metabolism. Key proteins targeted in these
approaches include ACSL4, GPX4, and Nrf2, among others. In this
article, we provided a summary of the mechanisms of anti-
ferroptosis drugs that have demonstrated efficacy in clinical trials
for MASLD and other liver diseases. Our goal was to analyze and
explore the commonalities and potential therapeutic targets among
these drugs in MASLD treatment using different targets (Table 1).

Currently, hypoglycemic drugs, such as glucagon-like peptide-1
receptor agonists (GLP-1RA) and thiazolidinedione (TZDs), have
been recommended as treatment options for MASLD in guidelines
(Chalasani et al., 2018; Tokushige et al., 2021). Although metformin,
sodium-glucose linked transporter 2 (SGLT2) inhibitors, along with

DPP4 inhibitors have shown certain efficacy in clinical trials, their
strength of evidence has remained insufficient for first-line drugs.
TZDs have been identified as inhibitors of ferroptosis (Doll et al.,
2017; Kung et al., 2022), predominantly by inhibiting the activity of
ACSL4, thereby attenuating the enzymatic conversion of
unsaturated fatty acids. Studies have shown that rosiglitazone can
improve arsenic-induced ferroptosis in hepatocytes by targeting
ACSL4 (72). In neurons, pioglitazone exhibits anti-ferroptosis
activity in neurons by increasing the expression of PPAR-γ,
downregulating cyclooxygenase-2 (COX2) expression (Liang
et al., 2022), and cooperating with Nrf2(74). Furthermore,
pioglitazone and mitoglitazone were found to target
CISD1 through the stabilizing Fe-S clusters, thereby alleviating
mitochondrial ferroptosis (Yuan et al., 2016b; Qi et al., 2023).
Liraglutide has also demonstrated a delay in fatty liver
progression in db/db mice through various aspects, including the
improvement of ironmetabolism and GPX4 activity (Song J-X. et al.,
2022). Similar anti-ferroptosis mechanisms of liraglutide have been
observed in neurons (An et al., 2022) as well. Although the research
on the impact of metformin, DPP4 inhibitors, and SGLT2 inhibitors
on liver ferroptosis is limited, existing fundamental studies indicate
their potential influences on various cellular systems. For instance,
metformin has been demonstrated to inhibit ferroptosis in various

FIGURE 2
Risk association between MASLD and metabolic diseases. Evidence of ferroptosis in pancreatic β cells (A); Evidence of ferroptosis in adipocytes (B);
The correlation between metabolic diseases and liver steatosis (C). The figure was drawn by Figdraw.
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TABLE 1 The mechanism of targeting ferroptosis with therapeutic drugs in clinical research.

Drug Animal/Cell Effect in hepatocyte Effect in other cells

Hypoglycemic drugs

Rosiglitazone (Wei et al., 2020) Male Sprague-Dawley rats, L-02 cells ACSL4↓

Pioglitazone (Yuan et al., 2016b; Duan et al.,
2022; Liang et al., 2022; Qi et al., 2023)

Male SPF/ICR mice (Liang et al., 2022), Male SD
rats (Duan et al., 2022), neuronal cells (Duan et al.,
2022; Liang et al., 2022)

Neurons: PPAR-γ ↑ (collaborate with
Nrf2); COX2↓(73, 74)

The human HCC cell lines HepG2 and Hep3B (75) Stable Fe-S clusters in
CISD1

Male C57BL/6N mice (Qi et al., 2023) kidney tissue: GPX4↑; Stable Fe-S clusters
in CISD1

Liraglutide (An et al., 2022; Song et al., 2022a) Db/db mice and non-diabetic littermate db/mMice,
Human hepatoma HepG2 cells (Song et al., 2022a)

TfR1, NOX4↓; FPN1,
SLC7A11, Nrf2/HO-1,
GPX4, GSH ↑

Male diabetic db/dbmice and nondiabetic littermate
db/m Mice (An et al., 2022)

Neurons: mitochondrial transferrin,
FPN1, FTH1, SLC7A11, GPX4↑; ACSL4,
TfR1, mitochondrial ferritin↓

Vildagliptin (Zhang et al., 2022b) Male C57BL/6 mice Neurons: GPX4↑

Vildagliptin, alogliptin (Xie et al., 2017) Human CRC cell lines (HCT116, SW48, CACO2,
DLD1, and SW837), mice

Colorectal cancer cell: DPP4↓

Metformin (Ma et al., 2021; Yan et al., 2022a;
Sun et al., 2023a; Sun et al., 2023b; Liao et al.,
2023; Peng et al., 2023; Wu et al., 2023)

Male C57BL/6 mice, NIT-1 cells (Sun et al., 2023a) Pancreatic beta cell: GPX4↑, ACSL4↓

C57BL/6 (wild-type, WT) mice, Neonatal rat
cardiomyocytes (Liao et al., 2023); Sprague-Dawley
rats, H9c2 cells (Wu et al., 2023)

Cardiomyocyte: AMPKα2↑(80, 81)

Human colonic tissue samples, Male C57BL/6 mice
(Sun et al., 2023b)

Intestinal epithelial cells: AMPK↑

Male Sprague-Dawley (SD) rats, VSMCs (Ma et al.,
2021)

Vascular endothelial cell: Nrf2↑

C57 BL/6J female mice (Peng et al., 2023) Ovaries of mice: GPX4/mTOR/SIRT3↑

adult male C57BL/6 mice (Yan et al., 2022a) Chondrocyte: GPX4↑, ACSL4↓

Dapagliflozin (Huang et al., 2022) C57BL/6 mice Renal tubular cell: reduce ubiquitination
degradation of FPN1

Canagliflozin (Ma et al., 2022) Male DSS rats Cardiomyocyte: TfR1, ACSL4, NOX4↓;
GSH, FTH1↑

Nutraceutical approaches

Silybin (Song et al., 2022b; Yan et al., 2022b) HepG2 and HL7702 cells (Song et al., 2022b) Reverses ferroptosis

HepG2 cells (Yan et al., 2022b) Combine with TfR1 to
reduce iron intake, ACSL4↓

Vitamin E (Carlson et al., 2016; Zhang et al.,
2022c)

Male Sprague–Dawley (SD) rats (Zhang et al.,
2022c)

Neurons: 15-LOX↓; GSH, GPX4↑

Hepatocyte-specific mice (Carlson et al., 2016) 15-LOX↓ (collaborate with
GPX4)

Vitamin D (Cheng et al., 2021b; Zhao et al.,
2022a)

Male Zucker lean (ZL) rats, Islet β (INS-1) cells
(Zhao et al., 2022a)

Pancreatic beta cell: nuclear factor kappa-
B, DMT1↓

Zebrafish liver cells (Cheng et al., 2021b) Keap1-Nrf2-GPX4↑;
nuclear factor kappa-B-
hepcidin↓

Fish oil (Shi et al., 2022a; Wang et al., 2022d) Male Wistar rats (Shi et al., 2022a) Vascular endothelial cell: SLC7A11↑

PTZ kindling mice (Wang et al., 2022d) Neurons: Nrf2↑
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conditions, including pancreatic β cell injury, cardiac ischemia/
reperfusion, colitis, osteoarthritis, polycystic ovary syndrome, as
well as hyperlipidemia-associated vascular calcification. The
underlying mechanisms involve the activation of AMPK and
Nrf2 pathways (Ma et al., 2021; Yan J. et al., 2022; Sun Y. et al.,
2023; Sun SP. et al., 2023; Liao et al., 2023; Peng et al., 2023;Wu et al.,
2023). Vildagliptin has demonstrated the ability to upregulate the
expression of GPX4 and improve ferroptosis in neurons (Zhang Y.
et al., 2022), suggesting its possible inhibitory impact on
DPP4 similar to p53 (87). SGLT2 inhibitors have been found to
play an anti-ferroptosis role in renal tubular cells of diabetic
nephropathy mice by combining with FPN1 to reduce its
ubiquitination degradation (Huang et al., 2022), as well as in
cardiomyocytes of heart failure mice (Ma et al., 2022). Further
research is imperative to fully understand the potential roles and
mechanisms of these pharmaceutical agents pertaining to the
selective targeting of ferroptosis within the context of MASLD.

As reported by the International Lipid Expert Group in 2023, the
beneficial clinical evidence of various nutritional supplements in the
context of nutritional food therapy for MASLD have been highlighted
(Rizzo et al., 2023). These supplements include vitamin D, vitamin E,
silymarin, green tea extract, curcumin, fish oil, berberine, and
resveratrol, et al. These supplements have shown efficacy in

delaying the progression of MASLD and regulating ferroptosis in
basic research. Some of these supplements may also provide benefits
for individuals with both diabetes and fatty liver (Table 1).

Moreover, several endogenous target activemolecules and biological
analogues have progressed to clinical phase II-III trials. Examples
include fibroblast growth factor 21 analogues (FGF21) (Luo Y. et al.,
2022) and the FXR agonist obeticholic acid (Younossi et al., 2019b).
Research has demonstrated the involvement of FGF21 and FXR agonist
in the regulation of ferroptosis. These emerging therapeutic options hold
promise for the management of MASLD.

5 Other active substances targeting
ferroptosis in basic research

In the realm of basic research, various active components and
endogenous substances found in drugs have demonstrated potential
in improving ferroptosis associated with metabolic diseases and fatty
liver. These substances hold promise as key drug molecules, acting
on relevant targets to ameliorate symptoms of MASLD.
Additionally, the continuous discovery of novel targets further
expands our understanding in this field. We summarized the
effective active ingredients in Table 2.

TABLE 1 (Continued) The mechanism of targeting ferroptosis with therapeutic drugs in clinical research.

Drug Animal/Cell Effect in hepatocyte Effect in other cells

Nutraceutical approaches

Astaxanthin (Luo et al., 2022b; Cai et al.,
2022)

RAW264.7 cells (Luo et al., 2022b) RAW264.7cell: Nrf2/HO-1↑

Male C57BL/6 mice, human hepatic, L-02 cells (Cai
et al., 2022)

Nrf2/HO-1↑

Resveratrol (Zhang et al., 2022d; Wang et al.,
2022e)

MIN6 cells (Zhang et al., 2022d) Pancreatic beta cell: endoplasmic
reticulum stress↓; PPAR-γ↑

Male Kunming mice (Wang et al., 2022e) DMT1, TfR1↓; FPN1↑

Berberine (Bao et al., 2023; Song et al., 2023) Islet β cells (Bao et al., 2023) Pancreatic beta cell: GPX4↑

H9c2 cells (Song et al., 2023) Myocardial cell: TfR1, P53↓; Nrf2/HO-1,
FTH1, GPX4↑

Green tea extract (Kose et al., 2019; Ding
et al., 2023)

MIN6 cells (Kose et al., 2019) Pancreatic beta cell: GSH, GPX4↑

Male C57BL/6 mice (Ding et al., 2023) GSH, GPX4↑; ACSL4↓

Curcumin (Kose et al., 2019; Tang et al., 2021;
Wei et al., 2022; Sun et al., 2023c)

MIN6 cells (Kose et al., 2019) Pancreatic beta cell: GSH, GPX4↑

Male New Zealand rabbits, Rat
H9C2 cardiomyocytes (Wei et al., 2022)

Nrf2/HO-1, GPX4↑

Human bronchial epithelial cell line BEAS-2B, male
Sprague-Dawley rats (Tang et al., 2021)

Pulmonary epithelial cell: SLC7A11,
FTH1, GPX4↑; TfR1↓

TXmice, Rat normal liver cells (BRL-3A) (Sun et al.,
2023c)

Myocardial cell: Nrf2↑

Other drugs that are effective in clinical trials

Bicyclol (Zhao et al., 2022b) Male C57BL/6 mice, Normal human
hepatocytes L-O2

Nrf2, GPX4↑

Fibroblast growth factor 21 (Wu et al., 2021) C57BL/6J male mice Nrf2/HO-1↑

Obeticholic acid (Cao et al., 2023) Female C57BL/6 mice Uterus of mice: GPX4, SLC7A11↑

Note: ↑ represents target activation, increased expression, and upregulation of pathways; ↓ indicates target inhibition, reduced expression, and downregulation of pathways.
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6 Discussion and summary

In summary, it is evident that metabolic diseases and fatty liver
share a close relationship and mutually influence each other as risk
factors. Both conditions are characterized by iron overload and
ferroptosis. Consequently, ferroptosis indirectly contributes to the
interplay between metabolic diseases and fatty liver, promoting the
onset and progression of MASLD.

Regarding drug treatment, numerous clinical studies emphasize
the significance of hypoglycemic drugs as essential therapeutic
agents for managing MASLD. These drugs exhibit potential anti-
ferroptotic effects in various cell types and align with the previously
discussed key targets. As a result, they offer promise in combating
ferroptosis. Moreover, apart from their intrinsic hypoglycemic
effects, these drugs serve as an ideal option for comprehensive
control of MASLD occurrence and progression. Furthermore,
ongoing clinical research investigating nutritional supplements
and active ingredients derived from traditional Chinese medicine
has demonstrated effective anti-ferroptotic properties. These
therapeutic approaches present notable advantages and should

not be underestimated. Considering the multifaceted nature of
MASLD the identification of effective drugs, such as
hypoglycemic agents, for both metabolic diseases and MASLD
could yield promising therapeutic outcomes in controlling risk
factors and providing targeted treatment. Additionally, we
recommend an increased assessment of serum iron metabolism
markers in future clinical trials involving individuals with MASLD,
particularly when evaluating the effects of the aforementioned drugs.
This approach will enable a more thorough investigation into the
potential effectiveness of these drugs in mitigating ferroptosis.

This article summarizes the possible relationship between
MASLD and related metabolic diseases and ferroptosis. Research
has shown that ferroptosis affects multiple signaling molecules and
pathways in the body, leading to metabolic disorders and inducing
MASLD. Ferroptosis inhibitors can alleviate liver steatosis. It can be
inferred that ferroptosis may be an important pathogenesis for the
occurrence and development ofMASLD. The article summarizes the
relevant targets or pathways of MASLD therapeutic drugs acting on
ferroptosis, as well as the mechanisms and pathways of targeted
drugs/active substances inhibiting ferroptosis, in order to explore

TABLE 2 The mechanism of ferroptosis targeted by other active substances in the basic research stage.

Active substance/Drug Cell/Model Target and effect

Active substances that act on both pancreatic beta cells and liver cells

Iron chelator (Deferiprone, Deferoxamine) (Chen et al., 2022a) Chelate iron and inhibit lipid peroxidation

Ferrostatin-1 (Jiang et al., 2022a) Regulating iron metabolism

Quercetin (Li et al., 2020c; Jiang et al., 2022b) Pancreatic beta cells of C57BL/6J mice with diabetes MDA↓; GSH, VDAC2↑

COX2, ACSL4, mitochondrial ROS↓; GPX4↑ steatotic L-02 cells, C57BL/6J mice

Other active substances

Ginkgolide B (Yang et al., 2020) ApoE−/− mice, HepG2 cells Nrf2↑

Dehydroabietic acid (Gao et al., 2021) Fatty liver mice Nrf2↑

Leonine (Salama et al., 2022) Wistar rats Nuclear factor kappa-B↓; Nrf2↑

Thymosin beta 4 (Zhu et al., 2021) L-02 cells GPX4↑

dimethyl fumarate (Zhang et al., 2020) C57BL/6 mice, HepG2 cells/L-02 cells Nrf2↑

fucoidan (Xue et al., 2022) Sprague-Dawley rats DMT1, FPN1↓; p62, Nrf2, SLC7A11, GPX4↑

glycyrrhizin (Wang et al., 2019) L-02 cells Nrf2/HO-1, GPX4↑

Betaine (Li et al., 2022) C57BL/6 mice Stable ZIP14, FPN1

d-Cysteine (Homma et al., 2022) Hepa 1–6 cells GSH↑

Apigenin (Han et al., 2022) AML12 cells GPX4↑

Ulinastatin (Wang et al., 2021b) L-02 cells, C57BL/6 mice Sirt1/Nrf2/HO-1↑

VBIT-12 (Niu et al., 2022) C57BL/6J mice Inhibition of mitochondrial VDAC1 oligomerization

Taurine (Zhang et al., 2014) Male Kunming mice GSH, GPX4↑

Schisandrin B (Shi et al., 2022b) SD rats Nrf2, GPX4↑; NOX2/4↓

Gingerenone A (Chen et al., 2022b) HepG2 cells Nrf2,-GPX4↑

Oleanolic acid (Ouyang et al., 2023) C57BL/6 male mice GPX4, SLC7A11↑; TfR1↓

Atractylodin (Ye et al., 2023) C57BL/6J mice Nrf2, GPX4, SLC7A11, FTH1↑

Note: ↑ represents target activation, increased expression, and upregulation of pathways; ↓ indicates target inhibition, reduced expression, and downregulation of pathways.

Frontiers in Pharmacology frontiersin.org09

Zhu et al. 10.3389/fphar.2023.1286449

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1286449


the process and form of ferroptosis in MASLD. At present, there is
still a lack of further research to elaborate on the specific
mechanisms by which these drugs or active substances affect the
progression of MASLD through ferroptosis. The pathways of
ferroptosis-induced diseases are complex and diverse, with
different therapeutic drugs targeting different targets. Perhaps
multi-drug combinations or ferroptosis multi-pathway inhibitors
can more effectively reverse MASLD. In addition, more clinical
studies on MASLD drugs are needed to confirm that inhibition of
ferroptosis can improve MASLD in clinical practice. We believe that
more research will reveal the regulatory mechanisms of ferroptosis
in the future, providing strong evidence for targeted ferroptosis
prevention and treatment of MASLD.
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Glossary

ALT alanine transaminase

AMPK AMP activated protein kinase

BH4 tetrahydrobiopterin

CISD1 CDGSH iron sulfur domain 1

CoQ coenzyme Q

DHFR dihydrofolate reductase

DHODH dihydroorotate dehydrogenase

DIOS dysmetabolic iron overload syndrome

DMT1 divalent metal transporter 1

DPP4 dipeptidyl peptidase 4

Fer-1 ferrostatin-1

FGF21 fibroblast growth factor 21 analogues

FPN1 ferroportin 1

FSP1 ferroptosis suppressor protein 1

FTH1 ferritin heavy chain 1

FtMt mitochondrial ferritin

FXR farnesoid X receptor

GCH1 guanosine triphosphate cyclization Hydrolase 1

GLP-1RA glucagon-like peptide-1 receptor agonist

GPX4 glutathione peroxidase 4

GSH glutathione

HO-1 heme oxygenase 1

IL interleukin

keap1 kelch-like epichlorohydrin-associated protein-1

LIP liable iron pool

LOX lipoxygenase

LPCAT3 lysophosphatidylcholine acyltransferase 3

MAFLD metabolic dysfunction-associated fatty liver disease

MASH metabolic dysfunction-associated steatohepatitis

MASLD metabolic dysfunction-associated steatotic liver disease

MDA malondialdehyde

mTOR mechanistic target of rapamycin

MtROS mitochondrial reactive oxygen species

NASH non-alcoholic steatohepatitis

NCOA4 nuclear receptor coactivator 4

Nrf2 nuclear factor erythroid 2-related factor 2

OH- hydroxide ion

PCBP1 poly (rC) binding protein 1

PL phospholipid

PPAR peroxisome proliferator activated receptor

PUFA polyunsaturated fatty acid

ROS reactive oxygen species

SGLT2 sodium-glucose linked transporter 2

SLC7A11 solute carrier family 7 member 11

STEAP3 six-transmembrane epithelial antigen of the prostate 3

STZ streptozotocin

Tf transferrin

TfR1 transferrin receptor 1

TNF-α tumor necrosis factor a

TZD thiazolidinedione

T2DM type 2 diabetes mellitus

VDAC voltage dependent anion channel

ZIP8/14 zinc transporter 8/14

4-HNE 4-hydroxynonenal
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