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Cancer is the world’s leading cause of human death today, and the treatment
process of cancer is highly complex. Chemotherapy and targeted therapy are
commonly used in cancer treatment, and the emergence of drug resistance is a
significant problem in cancer treatment. Therefore, the mechanism of drug
resistance during cancer treatment has become a hot issue in current
research. A series of studies have found that lipid metabolism is closely related
to cancer drug resistance. This paper details the changes of lipid metabolism in
drug resistance and how lipid metabolism affects drug resistance. More
importantly, most studies have reported that combination therapy may lead to
changes in lipid-related metabolic pathways, which may reverse the development
of cancer drug resistance and enhance or rescue the sensitivity to therapeutic
drugs. This paper summarizes the progress of drug design targeting lipid
metabolism in improving drug resistance, and providing new ideas and
strategies for future tumor treatment. Therefore, this paper reviews the issues
of combining medications with lipid metabolism and drug resistance.
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1 Introduction

Lipid metabolism is a fundamental and intricate biochemical process within the human
body. The primary biochemical process of lipid metabolism involves phospholipid and
cholesterol metabolism, which are regulated by various factors such as insulin, glucagon,
dietary nutrition, and enzymatic activities. Through this complex process, lipids are
converted into essential components that are necessary for a wide range of biochemical
reactions within the body (Liu et al., 2022).

The significance of lipid metabolism extends to the development, of cancer (Li et al.,
2023), as cancer cells heavily rely on it to acquire the energy, biofilm constituents, and
signaling molecules essential for their proliferation, survival, invasion, and metastasis (Bian
et al., 2021). Unlike normal cells, cancer cells undergo a series of modifications in lipid
metabolism, which can have a profound impact on the increased efflux of anti-tumor drugs
and the modulation of apoptotic signaling pathways. These modifications consequently
influence the development of tumor drug resistance.

Chemotherapy and targeted therapies currently serve as the primary treatment for
cancer (Tse et al., 2021). These interventions hold the potential to improve the overall
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survival and prognosis of cancer patients (Chen et al., 2023).
However, the emergence of drug resistance presents a substantial
clinical challenge that needs to be overcome. This challenge applies
not only to the conventional chemotherapeutic agents commonly
used in the initial stages but also to the targeted agents that are
currently undergoing active development and investigation (Zeng
et al., 2019).

The development of drug resistance in cancer is influenced by
various factors, and its mechanisms can be broadly categorized into
mutations in drug targets and metabolism, inhibition of apoptosis,
activation of intracellular survival signaling pathways, enhanced
DNA repair, immune evasion by cancer stem cells (CSCs), and
metabolic abnormalities, and so on (Ramos and Bentires-Alj, 2015;
Pan et al., 2016). While previous studies on cancer drug resistance
mainly focused on genetic mutations and external factors, cancer
metabolism have been as a new research focal point in recent years
(Zhao et al., 2013; Ma and Zong, 2020). An increasing number of
studies suggest that the development of resistance to chemotherapy
and targeted therapies is closely linked to metabolic alterations,
including lipid metabolism, which can affect the sensitivity of cancer
cells to drugs.

Studies have indicated that the utilization of combination
therapies targeting multiple pathways may effectively delay the
development of therapeutic resistance (Fitzgerald et al., 2006).
Combination drug therapy represents an emerging and more
potent approach to treatment administration. By employing
different mechanisms, drug combinations can collectively work
towards achieving therapeutic objectives. Additional drugs can
sequentially intervene in disease-related signaling pathways,
either through the same or different routes, thereby producing
synergistic effects (Yin et al., 2014). Moreover, synergistic drug
combinations have the potential to reduce the required dosage of
individual drugs within the mixture, consequently diminishing drug
toxicity and mitigating the risk of drug resistance.

To further understand enhance our understanding of lipid
metabolism and its connection to drug resistance and to
investigate the relevance of drug combination, this review will
focusconcentrate on five aspects: alterationkey areas: the
modification of lipid metabolism in cancer cells, the association
between phospholipid metabolism and drug resistance, the impact
of cholesterol metabolism andon drug resistance, the involvement of
microRNA andin lipid metabolism and drug resistance, and the
significance of drug combination and lipid metabolism andin
relation to lipid metabolism and drug resistance. Through
exploring these aspects, we aim to gain deeper insights into the
intricate relationship between lipid metabolism and the
development of drug resistance.

2 Alteration of lipid metabolism in
cancer cells

Extensive researches have been dedicated to exploring the
intricate relationship between lipid metabolism and cancer
development. Lipid metabolism plays a crucial role in providing
signaling molecules (Boroughs and DeBerardinis, 2015), essential
substrates for phospholipid synthesis (Zaidi et al., 2013), and
metabolic fuels for mitochondrial oxidation (An et al., 2022). By

modulating these pathways, lipid metabolism exerts control over the
growth and proliferation of cancer cells. Cancer cells exhibit distinct
patterns of nutrient uptake and utilization compared to normal cells,
leading to a series of modifications in lipid metabolism. These
metabolic alterations drive the growth and proliferation of cancer
cells and even contribute to the development of resistance against
conventional anticancer therapies.

Most normal cells primarily generate energy through
mitochondrial oxidative phosphorylation, a process that involves
the transfer of electrons from NADH or FADH2 to O2 via a series of
mitochondrial electron carriers (Viña et al., 2009). However, in
contrast to normal cells, many cancer cells rely on high-rate
glycolytic and lactic acid fermentation pathways, a phenomenon
known as the Warburg effect (Koppenol et al., 2011). Although
aerobic glycolysis is less efficient in producing ATP compared to
oxidative phosphorylation, it generates other metabolites that
support tumor growth (Ashrafian, 2006). Lipid supply is crucial
for the proliferation and survival of various cancer cells (Liang and
Dai, 2022), and previous studies have demonstrated that cancer cells
predominantly acquire lipids through the de novo fatty acid
synthesis pathway (Baron et al., 2004). Activation of this pathway
is believed to be necessary for carcinogenesis (Zhou et al., 2007).

Due to limited oxygen and extracellular nutrients, most cancer
cells synthesize fatty acids de novo. The process of fatty acid
synthesis occurs in the cytosol, with acetyl CoA serving as the
starting material. However, acetyl CoA, although present in the
mitochondria (Guertin and Wellen, 2023), cannot directly traverse
the mitochondrial membrane, necessitating a transport mechanism
to enter the cytosol. In contrast, citric acid produced in the
tricarboxylic acid cycle (TCA) can cross the mitochondrial
membrane and enter the cytosol. Within the cytosol, acetyl CoA
is released from citrate by citrate lyase (ACLY) and participates in
fatty acid synthesis. Acetyl CoA is subsequently converted to
malonyl CoA by acetyl-CoA carboxylase (ACC), followed by the
action of fatty acid synthase (FASN) in synthesizing lipids (Tanosaki
et al., 2020) (Figure 1). Key regulators such as FASN and ACC are
significantly upregulated in various human cancers, such as cervical
cancer and breast cancer (Menendez and Lupu, 2017; Du et al.,
2022).

Nevertheless, certain cell types, including proliferating
fibroblasts, HeLa, and H460 cells (Yao et al., 2016), exhibit a
preference for direct uptake of lipids from the extracellular
environment rather than de novo synthesis. These cells convert
exogenous lipids and lipoproteins into the necessary lipids for cell
growth and proliferation, facilitated by fatty acid-binding proteins
(FABPs) (Ntambi, 2022). According to these studies, lipid
acquisition depends on the type of cell and microenvironment,
whether through de novo fatty acid synthesis or alternative
pathways, and contributes to tumorigenesis.

3 Phospholipid metabolism and drug
resistance

Lipids containing phosphate are called phospholipids.
Phospholipids can divide, which contain phosphate, play a
crucial role in various biological processes. They can be
categorized into two main groups: those made up of glycerol are
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called phosphoglycerides, composed of glycerol, and those made up
of neurosphingosine are called sphingolipids, composed of
sphingosine.

Glycerophospholipids are the most abundant phospholipids
found in the body, serving multiple essential functions. They not
only form the structural basis of biological membranes but also
contribute to bile composition, act as surface-active substances, and
play a role in protein recognition and cell membrane signaling.
Glycerophospholipids can be classified into various categories based
on their substitution groups, with some of the most important ones
being phosphatidylcholine (PC) formed by choline and
phosphatidic acid, phosphatidylethanolamine (PE) formed by
ethanolamine and phosphatidic acid, phosphatidylserine (PS)
formed by serine and phosphatidic acid, phosphatidylglycerol
(PG) formed by glycerol and phosphatidic acid, and
phosphatidylinositol (PI) formed by inositol and phosphatidic
acid (Ntambi, 2022). The synthesis of glycerophospholipids
occurs through three stages: raw material sourcing, activation,
and glycerophospholipid generation. This process takes place in
the endoplasmic reticulum of the cytoplasm, undergoes processing
by the Golgi apparatus, and is ultimately utilized by tissue biofilms
or secreted as lipoproteins. Glycerophospholipids can be synthesized
in various body tissues, excluding mature erythrocytes. In living
organisms, certain phospholipases can hydrolyze
glycerophospholipids, and their degradation mainly involves
hydrolysis catalyzed by different phospholipases in the body.
During glycerophospholipid metabolism, several bioactive lipid
molecules are generated, including inositol triphosphate, glycerol
diacyl, arachidonic acid, phosphatidic acid, and lysophosphatidic
acid. These lipid molecules, in turn, regulate diverse intracellular
signaling pathways (Oude Weernink et al., 2007).

Sphingolipids, distinguished by the absence of glycerol and the
presence of sphingomyelin, encompass sphingomyelin and
glycosphingolipids. They are synthesized in various tissues
throughout the body, with particularly high activity in brain
tissues where they constitute a major component of neural tissue
membranes. The synthesis of sphingolipids occurs within the
endoplasmic reticulum. The breakdown of sphingolipids takes
place through the hydrolysis of sphingolipids into choline
phosphate and ceramide, catalyzed by phospholipase (Duan M.
et al., 2022). Sphingomyelin, an important structural component of
cell membranes, also serves as a precursor for various metabolites,
including ceramide, ceramide-1-phosphate, sphingosine,
sphingosine-1-phosphate, and glycosyl ceramide. These
metabolites play crucial roles as bioactive lipid molecules
involved in apoptosis and signaling pathways related to drug
resistance.

3.1 Phospholipid metabolism and
chemotherapy resistance

The fatty acid composition of phospholipids (PL) plays a crucial
role in distinguishing between sensitive and resistant cells. Recent
studies have highlighted the impact of acyltransferases on the fatty
acid composition of PL, which can influence cancer
chemosensitivity. For instance, lysophosphatidylcholine
acyltransferase 2 (LPCAT2), an enzyme associated with lipid
droplets, has been found to promote abnormal biosynthesis of
phosphatidylcholine, leading to resistance to oxaliplatin and 5-
fluorouracil in colorectal cancer. The underlying mechanism
involves an enhanced anti-apoptotic response to endoplasmic

FIGURE 1
Lipid sources include the de novo fatty acid synthesis pathway and exogenous lipid uptake. In this process, citric acid from the tricarboxylic acid
cycle (TCA cycle) crosses themitochondrial membrane and enters the cytosol. Subsequently, ATP citrate lyase (ACLY) releases Acetyl-CoA, which plays a
crucial role in the fatty acid synthesis pathway. Acetyl-CoA is then catalyzed by acetyl-CoA carboxylase (ACC) to form malonyl-CoA (Malony-CoA), and
fatty acid synthase (FASN) further catalyzes the synthesis of fatty acids and, consequently, lipids. Additionally, fatty acid-binding proteins (FABPs)
facilitate the conversion of exogenous lipids and lipoproteins into lipids. ACLY, ATP citrate lyase; ACC, acetyl-CoA carboxylase; FA, fatty acid; FABPs, fatty
acid-binding proteins; FASN, fatty acid synthase; TCA cycle, tricarboxylic acid cycle.
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reticulum stressors and improved resistance to immunogenic cell
death induced by chemotherapy (Cotte et al., 2018). These findings
suggest that LPCAT2 activity can modify the lipid composition of
the endoplasmic reticulum and plasmamembrane, thereby reducing
sensitivity to endoplasmic reticulum stress and impairing
recognition by the host immune system (Figure 2).

Additionally, progesterone has been found to upregulate Stearoyl-
CoA desaturase 1 (SCD1), resulting in an enrichment of oleic acid in
plasma membrane phospholipids. This enrichment has been correlated
with docetaxel resistance, as it increases the mobility of the plasma
membrane and alters its connection to the cytoskeleton. Consequently,
cells become better adapted to drugs that target the cytoskeleton, such as
docetaxel (Schlaepfer et al., 2012) (Figure 2). Moreover, studies have
reported a link between enhanced lipid droplet formation and drug
resistance. In progesterone-dependent breast cancer, increased
intracellular accumulation of lipid droplets has been associated with
docetaxel resistance since hydrophobic cytotoxic drugs, including
docetaxel, are readily sequestered within lipid droplets (Schlaepfer
et al., 2012). Similarly, a significant increase in neutral lipids within
lipid droplets and the accumulation of free cholesterol in lysosomes
have been observed in a variant of T-47D breast cancer cells resistant to
the lipid-soluble drug tamoxifen (Hultsch et al., 2018). The presence of
lipid droplets has also been identified in MCF7R cells with acquired
resistance to doxorubicin (Morjani et al., 2001) (Figure 2).

Lysophospholipids (LysoPL), the direct precursors of phospholipids
(PL), also play a role in mediating drug resistance. Interestingly, their
mechanism of action is not solely dependent on the plasma membrane.
A recent study demonstrated that LysoPL containing long saturated fatty
acyl chains can induce drug resistance. This protective effect of LysoPL
enables tumor cells to withstand DNA-damaging agents like cisplatin,
representing a lipid-specific and drug-specific protective mechanism
(Kramer et al., 2015) (Figure 2).

Similarly, lysophosphate-1 (LPA-1), a precursor shared by most
phospholipids, has been implicated in reducing the effectiveness of
adriamycin in inhibiting the viability of triple-negative MDA-MB-
231 cells with paclitaxel (Samadi et al., 2009) (Figure 2).
Furthermore, it has been observed that LPA-1 upregulates several
multidrug efflux transport proteins, includingMRP1, MRP2, MRP3,
and BCRP, along with various antioxidant enzymes (Venkatraman
et al., 2015) (Figure 2). This implies that LPA-1 activates at least two
mechanisms that promote resistance to chemotherapy.

3.2 Phospholipid metabolism and targeted
therapy resistance

Alterations in phospholipid-related metabolism are closely
associated with the development of resistance to targeted drugs,

FIGURE 2
Phospholipid Metabolism and Drug Resistance. Phospholipid metabolism plays a crucial role in drug resistance, involving glycerophospholipids and
sphingomyelins. Glycerophospholipids encompass phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS),
phosphatidylglycerol (PG), and phosphatidylinositol (PI), each characterized by different substituents. Sphlngolipids comprise sphlngmyelins and
glycosphingolipids. Several factors contribute to drug resistance: the abnormal biosynthesis of phosphatidylcholine driven by
lysophosphatidylcholine acyltransferase 2 (LPCAT2), upregulation of Stearoyl-CoA desaturase 1 (SCD1) leading to lipid droplet accumulation, and the
induction of drug resistance by precursors of phospholipids, namely, lysophospholipid (LysoPL) and lysophosphatidic acid receptor 1 (LPA-1).
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mirroring the pattern seen with many chemotherapeutic agents. In a
comprehensive study conducted by Geneste et al., it was revealed
through both in vitro and in vivo validation that increased adipocyte
lipolysis surrounding tumors contributes to the resistance of breast
tumor cells to lapatinib-mediated cytotoxicity (Geneste et al., 2020)
(Figure 2). Moreover, elevated expression and activation of adipogenic
fatty acid synthase (FAS) were observed in breast, colon, and prostate
cancers, leading to enhanced lipid droplet (LD) accumulation and
synthesis of triacylglycerol (TAG) (Pandey et al., 2012; Wu et al., 2020).

Further investigations focusing on breast cancer cells have
demonstrated that the development of trastuzumab resistance is
associated with heightened adipogenesis due to increased FAS
promoter activity (Menendez et al., 2004) (Figure 2). Similarly,
the accumulation of LD and overexpression of stearoyl-CoA
desaturase 1 (SCD1) were observed in non-small cell lung cancer
(NSCLC) cells resistant to EGFR-tyrosine kinase inhibitors (TKIs)
(Figure 2). Interestingly, the extent of LD accumulation resulting

from upregulated adipogenesis was greater in EGFR/TKI-resistant
cells with aberrantly activated EGFR signaling pathways than in cells
harboring sensitive EGFR mutations. This observation aligns with
the role of de novo adipogenesis driven by the upregulation of the
receptor tyrosine kinase signaling pathway, particularly the
maintenance of sterol regulatory element-binding protein
(SREBP) activity (Butler et al., 2020).

4 Cholesterol metabolism and drug
resistance

4.1 Cholesterol and its synthesis and
metabolism

Cholesterol is a vital component of animal cell membranes,
serving not only as a structural element but also as a precursor for

FIGURE 3
Cholesterol metabolism and drug resistance. Cholesterol synthesis involves three stages: HMGCoA generation, MVA generation, and cholesterol
generation. Cholesterol plays a regulatory role in cancer cell resistance through various mechanisms. Elevated levels of mitochondrial cholesterol can
contribute to resistance against apoptosis. Changes in the composition of cell membrane cholesterol can affect the function of ABC transporters,
including P-glycoprotein and ABCC1. Moreover, alterations in cell membrane cholesterol content may impact the permeability of therapeutic
agents and drug uptake. Ultimately, drug resistance in cancer cells affects critical cellular processes such as survival, proliferation, differentiation, and
apoptosis. HMGCoA:3-Hydroxy-3-methylglutaryl coenzyme A; HMGCS: 3-Hydroxy-3-methylglutaryl coenzyme A synthetase; MVA: mevalonic acid;
HMGR: HMGCoA reductase; ER cyclases: endoplasmic reticulum cyclases.
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the synthesis of bile acids, vitamin D, and steroid hormones
(Griffiths and Wang, 2022). Its physiological significance in the
human body is diverse and essential (Rezen et al., 2011).

Cholesterol is synthesized in nearly all tissues of the body, with
the liver being the primary site of synthesis, occurring
predominantly in the cytosol and the endoplasmic reticulum. The
process of cholesterol synthesis can be summarized into three stages
(Figure 3). The first stage involves the production of 3-hydroxy-3-
methylglutaryl CoA (HMG-CoA): Within the cytosol, three
molecules of acetyl CoA undergo catalysis by Thiolase and
HMG-CoA synthase (HMGCS) to form HMG-CoA. This process
is similar to the production of ketone bodies, although it occurs in a
different intracellular location. The second stage encompasses the
generation of mevalonic acid (MVA): HMG-CoA is converted by
HMG-CoA reductase (HMGR), consuming two molecules of
NADPH+ and H+ to produce mevalonic acid (MVA). This step is
irreversible. The third stage involves the production of cholesterol:
MVA is initially phosphorylated, decarboxylated, and
dehydroxylated, ultimately leading to the synthesis of 30C
squalene. This squalene is then catalyzed by endoplasmic
reticulum cyclase and hydrogenase to generate lanolin sterols,
which further undergo a series of multi-step reactions, including
redox reactions, to ultimately yield cholesterol (Ačimovič and
Rozman, 2013).

4.2 Cholesterol homeostasis and drug
resistance

The association between cholesterol homeostasis and drug
resistance has been extensively investigated (Duan Y. et al.,
2022). Studies using data from the Cancer Genome Atlas have
shown a correlation between cholesterol synthesis, decreased
patient survival, and cancer progression (Weinstein et al., 2013).
Understanding the role of cholesterol in drug resistance is crucial for
overcoming challenges in cancer treatment (Wu et al., 2015). To
elucidate the mechanisms underlying drug resistance, it is important
to examine the involvement of cholesterol in this process.

Preclinical studies have provided compelling evidence linking
cholesterol metabolism to drug resistance in various types of cancer,
including prostate, lung, pancreatic, and breast cancers
(Guillaumond et al., 2015; Nguyen et al., 2015; Zhan et al., 2019;
El-Kenawi et al., 2021). Notably, in aggressive prostate cancer
(CRPC), researchers have discovered that macrophage-derived
cholesterol influences drug resistance during treatment by
affecting its transportation and metabolism-related effects. This
finding serves as a valuable model for understanding the
mutation landscape of CRPC, supported by experimental data
(El-Kenawi et al., 2021).

In non-small cell lung cancer, gefitinib-resistant cells have been
found to exhibit significantly higher cholesterol levels compared to
their gefitinib-sensitive counterparts (Zhan et al., 2019) (Figure 3).
Similarly, in breast cancer, increased endogenous cholesterol
biosynthesis in aromatase inhibitor-resistant cells leads to the
activation of estrogen receptor-α, which subsequently diminishes
the effectiveness of statins and impedes cell invasion (Nguyen et al.,
2015) (Figure 3). In the case of pancreatic ductal adenocarcinoma
(PDAC), disruption of low-density lipoprotein receptor (LDLR)

internalization leads to alterations in free versus esterified
cholesterol levels. This effect becomes more pronounced in vivo
when gemcitabine (GEM) is administered (Guillaumond et al.,
2015) (Figure 3). GEM-resistant PDAC cells exhibit elevated
levels of cholesteryl ester (CE) compared to their sensitive
counterparts (Li et al., 2018). Therefore, targeting LDLR or acyl
coenzyme A cholesterol acyltransferase (ACAT) to limit CE
accumulation holds promise for enhancing the efficacy of GEM
against PDAC.

4.3 Mitochondrial cholesterol levels and
drug resistance

Elevated levels of cholesterol in mitochondria have been
demonstrated to contribute to resistance against apoptotic
signaling, leading to chemotherapy resistance in cancer (Montero
et al., 2008). Considering the crucial role of mitochondria in
apoptosis regulation and chemotherapy response, several studies
have highlighted the association between cholesterol accumulation
and mitochondria-targeted chemoresistance in cancer cells. For
instance, both rat H35 and human HepG2 and HCC cells exhibit
resistance to anticancer agents that target mitochondria and induce
the opening of mitochondrial permeability transition pores through
various mechanisms (Le Bras et al., 2006) (Figure 3). Subsequent
investigations have revealed that the resistance to chemotherapeutic
agents in H35 and HepG2 cells can be reversed by treatment with
lovastatin, an inhibitor of HMG-CoA reductase (HMGCR) that
inhibits cholesterol resynthesis and prevents cholesterol
accumulation in the mitochondrial membrane (Smith and Land,
2012). Moreover, a significant increase in mitochondrial cholesterol
content has been observed in liver cancer tissues compared to
normal tissues (Kramer et al., 2015). In this context, inhibition of
the mevalonate pathway has been shown to reduce mitochondrial
cholesterol content and enhance the hepatocyte response to the
mitochondria-targeting drug doxorubicin, thereby sensitizing the
cancer cells to chemotherapy (Montero et al., 2008). Additionally,
mitochondria in hepatocellular carcinoma cells demonstrate
resistance to mitochondrial membrane permeabilization and
various other stimuli, with elevated cholesterol levels observed in
all cases. Previous research has demonstrated that knockdown of the
mitochondrial cholesterol transport polypeptide, steroid acute
regulatory protein, which is upregulated in hepatocellular
carcinoma cells, leads to reduced cholesterol synthesis in
mitochondria and increased sensitivity of cells to chemotherapy
(Domínguez-Pérez et al., 2019).

4.4 ABC transporter protein cholesterol
levels and drug resistance

The significance of ABC transporter proteins in the
development of drug resistance in various cancers has been
extensively studied for several decades. Numerous studies have
demonstrated that altering the cholesterol composition of cell
membranes also affects the activity of these ABC transporter
proteins Recent research has indicated that P-gP substrates
may preferentially accumulate in cholesterol-rich regions of the
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membrane, thus increasing P-gP transport activity (Subramanian
et al., 2016). Consequently, elevated cholesterol levels can promote
P-gP activity and mediate drug resistance. Consistent with this
observation, in colon cancer cells, the quantity and transport
activity of P-gP decrease as cholesterol synthesis is inhibited.
Another ABC transporter protein, ABCC1, also appears to be
regulated by cholesterol. Its function has been linked to its
localization in cholesterol-rich membrane microstructure
domains. When membrane cholesterol levels drop below 40%,
ABCC1 partially relocates to the high-density fraction, resulting
in reduced functionality (Marbeuf-Gueye et al., 2007). In summary,
the localization and function of ABCC1 in cell membranes are
regulated by cholesterol.

4.5 Cholesterol metabolism and drug
resistance to targeted therapy

Patients with advanced non-small cell lung cancer (NSCLC)
who are treated with epidermal growth factor receptor tyrosine
kinase inhibitors (EGFR-TKIs) experience significant clinical
benefits. However, they inevitably develop acquired resistance.
Research has demonstrated that high cholesterol levels in lipid
rafts contribute to gefitinib resistance in NSCLC cell lines and
are associated with altered EGFR binding affinity and
downstream signaling pathways. This groundbreaking study
highlights that elevated cholesterol levels in lipid rafts play a
pivotal role in inducing gefitinib resistance in NSCLC cells by
impacting EGFR phosphorylation, downstream signaling
pathways, and EGFR-TKI affinity (Irwin et al., 2011) (Figure 3).
Moreover, combination therapy with lovastatin has shown a
synergistic inhibitory effect on gefitinib-resistant cells, making the
combination of lovastatin and gefitinib a promising treatment
strategy for patients with gefitinib resistance (Chen et al., 2018).

An increasing body of evidence highlights the crucial role of
cholesterol in cancer development. Researchers have focused on
investigating the impact of cholesterol on the acquisition of drug
resistance in cancer. Elevated cholesterol levels and alterations in
protein expression related to cholesterol metabolism have been
observed in different types of drug-resistant cancer cells.
Collectively, dysregulated cholesterol metabolism emerges as a
fundamental factor contributing to the development of drug
resistance in multiple cancer types.

5MicroRNA-mediated lipidmetabolism
may affect drug resistance

MicroRNAs (miRNAs) are short, non-coding RNA molecules
composed of approximately 22 nucleotides. They are encoded by
endogenous genes and play a crucial role in the post-transcriptional
regulation of gene expression in both plants and animals. MiRNAs
have been widely implicated in various biological processes and are
closely associated with the regulation of gene expression. In the
context of lipid metabolism homeostasis, previous studies have
revealed a close relationship between miRNAs and lipid
metabolism. Specifically, several miRNAs, such as miR-33, miR-
128–1, miR-144, and miR-148a, have been identified to target and

suppress the expression of ABCA1 and ABCG1 transporter proteins.
These findings have been demonstrated in cultured cells and further
validated through in vivo experiments (Gerin et al., 2010; Horie
et al., 2010; Goedeke et al., 2015; Wagschal et al., 2015). Since ABC
transporter proteins have been implicated in the development of
drug resistance, it is important to investigate whether the inhibitory
effect of miRNAs on these transporter proteins is correlated with the
emergence of drug resistance. Furthermore, miR-33a and miR-33b
have been found to inhibit the synthesis of fatty acid oxidase, which
leads to a reduction in intracellular lipid renewal (Dávalos et al.,
2011; Gerin et al., 2010). These observations highlight the
multifaceted role of miRNAs in lipid metabolism and suggest
their potential involvement in modulating cellular responses to
lipid-related therapies and drug resistance. Further research is
needed to unravel the intricate mechanisms underlying the
regulatory effects of miRNAs on lipid metabolism and drug
resistance, providing valuable insights for the development of
therapeutic strategies targeting these processes.

The liver, being the primary site of lipid metabolism in the body,
plays a pivotal role in maintaining lipid homeostasis. Among the
miRNAs involved in this process, miR-122 is particularly abundant
in the liver (Chang et al., 2004). It exerts regulatory control over
various genes associated with cholesterol and fatty acid synthesis
(Krützfeldt et al., 2005; Esau et al., 2006), thereby influencing lipid
metabolism. Another key player in regulating lipid metabolism is
miR-27b, which acts as a central regulatory hub (Vickers et al.,
2013), Its paralog, miR-27a, has also been identified as a regulator of
lipid metabolism in the liver (Zhang et al., 2017). These miRNAs
contribute to the fine-tuning of lipid synthesis and metabolism,
ensuring the proper balance of lipids in hepatic cells. Furthermore,
miR-223 has been found to inhibit cholesterol biosynthesis and
reduce cholesterol levels. This miRNA adds to the repertoire of
miRNAs involved in the regulation of lipid metabolism, highlighting
their potential impact on cellular lipid profiles. Collectively, these
miRNAs orchestrate a series of intricate associations with the
development of drug resistance in cancer, potentially through
their regulatory roles in lipid metabolism. Understanding the
interplay between miRNAs, lipid metabolism, and drug resistance
in cancer holds promise for the identification of novel therapeutic
targets and strategies. Further investigation into these mechanisms
will shed light on the underlying complexities of cancer biology and
may pave the way for innovative approaches to combat drug
resistance.

6 Combination of lipid metabolic
pathways to alleviate tumor drug
resistance

Combination therapy has emerged as a highly effective
therapeutic approach employed in the treatment of various
diseases (Han et al., 2017). Extensive research has demonstrated
that combining multiple drugs offers several advantages over single-
drug treatment, including enhanced efficacy, reduced toxicity, lower
required doses with equal or improved effectiveness, and diminished
development of drug resistance (Foucquier and Guedj, 2015). While
single lipid-targeted medications can impede the growth and
metastasis of cancer cells by inhibiting specific lipid-related
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pathways, they often fall short in completely eradicating cancer cells.
In contrast, combination therapy exploits the synergistic
interactions between different drugs, working in tandem to
achieve the ultimate objective of eliminating cancer cells. By
simultaneously targeting multiple pathways or molecular targets
involved in lipid metabolism, combination therapy exhibits a more
comprehensive and potent anticancer effect. Numerous
pharmacological inhibitors have been developed to target various
lipid-metabolizing enzymes, and when combined with conventional
therapies, they have demonstrated significant therapeutic efficacy
(refer to Table 1 for examples). The rationale behind combination
therapy lies in the complementary mechanisms of action and
additive or synergistic effects that arise from targeting multiple
points within the lipid metabolic pathways. Overall, combination
therapy holds great promise as a powerful strategy to combat
diseases, particularly in the context of lipid metabolism. The
judicious selection and integration of lipid-targeted drugs in
combination regimens can lead to improved treatment outcomes
and offer new avenues for overcoming drug resistance. Continued
exploration of optimal drug combinations and their mechanisms of
action will undoubtedly contribute to advancements in therapeutic
approaches for various disorders.

In the context of drug-resistant ovarian cancer, the combination
of the FAS inhibitor orlistat and the specific Her-2 inhibitor
trastuzumab has shown remarkable synergistic effects. In vitro
studies demonstrated a substantial increase in apoptosis among

chemotherapy-resistant ovarian cancer cells upon treatment with
this combination (Menendez et al., 2006). Similarly, in prostate-
resistant cell lines, the combination of orlistat with paclitaxel analogs
exhibited reduced cell viability and increased apoptotic activity
(Souchek et al., 2017). These findings highlight the potential of
combination therapy in overcoming drug resistance and enhancing
treatment outcomes in specific types of cancer. By concurrently
targeting distinct molecular pathways or cellular processes, such as
FAS inhibition and Her-2 blockade, orlistat and trastuzumab acted
synergistically to induce apoptosis and impede the survival of drug-
resistant ovarian cancer cells. Likewise, the combination of orlistat
with paclitaxel analogs demonstrated enhanced efficacy in prostate-
resistant cell lines, further underscoring the benefits of combining
drugs with different mechanisms of action. The use of combination
therapies holds great promise in addressing the challenges posed by
drug resistance in cancer treatment. By exploiting synergistic
interactions between drugs, these regimens offer the potential for
improved therapeutic outcomes, reduced drug resistance, and
enhanced patient responses. Continued research into optimal
drug combinations and their underlying mechanisms will
undoubtedly advance our understanding and implementation of
combination therapies in combating drug-resistant cancers.

The SCD1 enzyme activity inhibitor A939572 has shown
promising results in combination with gefitinib, a targeted
therapy for lung cancer. When used together, A939572 and
gefitinib significantly impeded tumor progression, inhibited

TABLE 1 Lipid metabolism-related combination therapy alleviates tumor resistance.

Pathway/
Enzyme

Lipid targeted
drug Drug combination Vivo or vitro models Effects

FAS Orlistat

Trastuzumab
Chemotherapy-resistant ovarian

cancer cells
Apoptosis increased significantly Menendez et al.

(2006)

Taxanes Prostate resistant cell lines
Decreases viability increases apoptosis Souchek

et al. (2017)

SCD1

A939572

Gefitinib Lung cell lines
Reduces tumor progression and inhibits cancer cells

She et al. (2019)

Temsirolimus Clear renal cell carcinoma cell lines
Decreases tumor cell proliferation and induction of

apoptosis von Roemeling et al. (2013)

SSI-4 Sorafenib
Sorafenib-resistant hepatocellular

carcinoma cell lines
Increased sensitivity to sorafenib Ma et al. (2017)

SSI-4 5-fluorouracil cisplatin Gastric cells
Increased sensitivity to5-fluorouracil and cisplatin

Wong et al. (2023)

g-PPT Gefitinib
TKI-resistant non-small cell lung

cancer cell lines
Reverses resistance Huang et al. (2019)

LPCAT2
LPCAT2 or LD

biogenesis inhibitor

Oxaliplatin
Colorectal cancer Relieve drug resistance Cotte et al. (2018)

5-fluorouracil

Glycolytic ferment PFKFB3 Carboplatin paclitaxel Cervixcancer
Increased sensitivity to carboplatin and paclitaxel

Mondal et al. (2019)

HMG-CoA
reductase

Statins
Cytarabine, Daunorubicin,

Doxorubicin, etc.

Colon cancer
Growth inhibition increased apoptosis Ding et al.

(2017), Stirewalt et al. (2003)
Breast cancer

FABP BMS309403 Carboplatin
Carboplatin-resistant ovarian

cancer cell lines
Increased sensitivity to carboplatin Mukherjee et al.

(2020)

CPT1 Etomoxir Ara-C Drug-resistant leukemia cells
Enhanced the cytotoxicity of Ara-C87 Salunkhe

et al. (2020)
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cancer cell growth, and exhibited favorable outcomes in an in vivo
xenograft model (She et al., 2019). Similarly, in renal clear carcinoma
cells and transplanted tumors, the combination of A939572 with
tesirolimus demonstrated inhibitory effects on tumor cell
proliferation and facilitated apoptosis both in vitro and in vivo
(von Roemeling et al., 2013). Another SCD1 inhibitor, SSI-4, has
also displayed potential in overcoming drug resistance in different
cancer types. In hepatocellular carcinoma cells resistant to sorafenib,
the combination of SSI-4 with sorafenib restored sensitivity to
sorafenib and exhibited significant therapeutic benefits (Ma et al.,
2017). Moreover, SSI-4 improved the sensitivity of gastric cancer-
resistant cells to treatment with 5-fluorouracil and cisplatin (Wong
et al., 2023). g-PPT, another SCD1 inhibitor, has demonstrated
efficacy in reducing the synthesis of polyunsaturated fatty acids,
inhibiting triglyceride (TG) synthesis, and preventing lipid droplet
accumulation in cancer cells. In TKI-resistant non-small-cell lung
cancer cells, the combination of g-PPT with gefitinib effectively
countered drug resistance, promoting apoptosis and enhancing the
therapeutic response (Huang et al., 2019). These findings highlight
the potential of SCD1 inhibitors in combination with existing
therapies for overcoming drug resistance and improving
treatment outcomes in various cancer types. By targeting lipid
metabolism pathways and modulating cellular processes, such
combinations offer a promising approach to tackle drug
resistance and enhance the efficacy of existing treatments.
Continued research and clinical investigations are warranted to
validate and further explore the potential benefits of these
combination regimens in cancer therapy.

In colorectal cancer, increased LPCAT2-mediated lipid droplet
(LD) production has been linked to resistance against oxaliplatin
and 5-fluorouracil (Cotte et al., 2018). In subsequent in vivo
experiments using a colon cancer mouse model, the
administration of LPCAT2 or LD biogenesis inhibitors resulted
in tumor regression and increased survival, indicating the
significant improvement of LPCAT2-mediated drug resistance.
Similarly, in mice with ovarian and cervical cancers that were
insensitive to carboplatin and paclitaxel, the use of the glycolytic
enzyme inhibitor PFKFB3 showed promising results. By indirectly
blocking LD biogenesis and lipid autophagy, PFKFB3 alleviated
resistance to carboplatin and paclitaxel, thereby enhancing their
effectiveness (Mondal et al., 2019). Furthermore, studies
conducted on rat H35 and human HepG2 cells, known to be
resistant to various antitumor agents, revealed the potential of
lovastatin in reversing chemotherapeutic resistance (Le Bras et al.,
2006). Lovastatin, through its inhibition of HMGCR, a key enzyme
in cholesterol synthesis, effectively prevented the accumulation of
cholesterol in the mitochondrial membrane. This inhibition of
cholesterol synthesis in mitochondria by lovastatin led to the
restoration of sensitivity to chemotherapeutic agents in
H35 and HepG2 cells. These findings underscore the
significance of targeting lipid metabolism pathways and LD
biogenesis to combat drug resistance in cancer cells. Inhibition
of LPCAT2-mediated LD production or modulation of glycolytic
enzymes and cholesterol synthesis holds promise for overcoming
resistance to specific chemotherapeutic agents and improving
treatment outcomes. Further research is needed to explore the
full potential of these approaches and their applicability in clinical
settings.

Moreover, statins, inhibitors of the 3-hydroxy-3-methylglutaryl
coenzyme A (HMG-CoA) reductase enzyme, have demonstrated the
ability to inhibit cancer cell growth and induce apoptosis in various
types of tumor cell lines. When used in combination with drugs like
cytarabine, erythromycin, and doxorubicin, statins have shown
promising results in xenograft models of colon cancer, breast
cancer, and other malignancies (Stirewalt et al., 2003; Ding et al.,
2017). These findings suggest the potential of statins as adjunctive
therapy to enhance the efficacy of existing chemotherapeutic agents.
Another noteworthy inhibitor, BMS309403, which targets fatty acid-
binding proteins (FABPs), has shown promise in overcoming
resistance to carboplatin in ovarian cancer. When combined with
carboplatin, BMS309403 significantly increased the sensitivity of
carboplatin-resistant cells, offering a potential strategy to overcome
resistance in this context (Mukherjee et al., 2020). These findings
highlight the potential of combining statins or FABP inhibitors with
conventional chemotherapeutic agents to improve treatment
outcomes and overcome drug resistance in various cancer types.
Further research and clinical studies are warranted to explore the full
therapeutic potential and safety profile of these combinations.

Another interesting study focused on leukemia cells that had
developed resistance to the chemotherapeutic agent
arabinofuranosylcytosine (Ara-C). In these resistant cells, it was
found that Ara-C preferentially drove the tricarboxylic acid (TCA)
cycle through fatty acids (FAs), relying less on glucose metabolism.
This metabolic adaptation led to enhanced oxidative
phosphorylation in the mitochondria (OXPHOS), which
contributed to the cells’ drug resistance (Farge et al., 2017).
Interestingly, the entry of long-chain fatty acids (LCFAs) into the
mitochondria requires the involvement of carnitine
palmitoyltransferase (CPT), which consists of two isoforms,
CPT1 and CPT2 (Wang et al., 2020). In subsequent experiments,
researchers discovered that blocking CPT1 using etomoxir, a specific
inhibitor, disrupted the OXPHOS status and significantly
potentiated the cytotoxic effect of Ara-C on drug-resistant
leukemia cells (Salunkhe et al., 2020). This finding suggests that
targeting fatty acid metabolism through CPT1 inhibition could be a
promising approach to sensitize resistant leukemia cells to Ara-C
treatment. These findings shed light on the metabolic
reprogramming occurring in drug-resistant leukemia cells and
highlight the potential of targeting specific metabolic pathways,
such as fatty acid metabolism, to overcome drug resistance and
improve therapeutic outcomes. Further investigations are needed to
validate these findings and explore the clinical implications of
modulating fatty acid metabolism in the context of leukemia
treatment.

Lipid metabolism plays a crucial role in the development of
resistance to anti-angiogenic drugs (AAD). Researchers have
identified that combining anti-angiogenic therapy with lipid
metabolism inhibitors could potentially overcome the emergence
of AAD resistance. Preclinical studies have demonstrated that
tumors with identical genetic backgrounds but implanted in
different locations exhibit varying responses to AAD treatment
(Iwamoto et al., 2018). For instance, hepatocellular carcinoma
(HCC) growing in a steatotic (fatty) liver becomes resistant to
anti-angiogenic therapy, while HCC growing in a non-steatotic
liver remains sensitive. These findings highlight the influence of
the adipose tissue environment on AAD resistance. Tumors growing
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in a fatty environment are typically more hypoxic compared to those
developing in non-adipose tissues. Hypoxia induced by AAD leads
to three significant alterations in lipid metabolism. Firstly, it
promotes lipolysis in adipocytes, leading to the release of
metabolites such as glycerol and free fatty acids (FFAs) (Nieman
et al., 2011). Secondly, cancer cells respond to hypoxia by
upregulating the expression of fatty acid translocase (CD36),
facilitating increased uptake of FFAs by the tumor cells (Choi
et al., 2018). Lastly, cancer cells undergo metabolic
reprogramming, activating the β-oxidation pathway to generate
energy from FFAs, thereby promoting tumor growth and
metastasis (Park et al., 2016). Building upon these findings,
combining AAD with inhibitors targeting lipid metabolism holds
promise in alleviating and overcoming the development of AAD
resistance. By targeting the metabolic adaptations occurring in the
tumor microenvironment, this combination approach has the
potential to enhance the effectiveness of anti-angiogenic therapy
and improve treatment outcomes. However, further research and
clinical investigations are necessary to validate these findings and
determine the optimal strategies for combining AAD with lipid
metabolism inhibitors in the clinical setting.

7 Summary and discussion

Malignant tumors pose a significant global health threat, and their
incidence continues to rise each year (Ferlay et al., 2018).While medical
advancements, have greatly improved the overall survival rates (Weiss
et al., 2022), drug resistance complicates treatment strategies. Thus,
overcoming drug resistance has become a critical issue in anticancer
therapy. Recent studies have highlighted the role of lipid metabolism in
influencing drug resistance (Kramer et al., 2015; Wu et al., 2015; Cotte
et al., 2018). It has been shown that lipid-related processes can impact
drug efficacy by affecting drug diffusion, altering membrane
permeability, influencing mitochondrial function, and modulating
the activity of ABC transporter proteins (Hegedüs et al., 2015).
Upregulation of LPCAT2 and SCD1(Schlaepfer et al., 2012; Cotte
et al., 2018), enhanced lipid droplet formation (Hultsch et al., 2018),
PL precursor LysoPL and LPA-1 in phospholipid metabolism (Kramer
et al., 2015) are all associated with drug resistance. Cholesterol
metabolism affects drug penetration, absorption, and drug resistance
by affecting mitochondrial cholesterol level (Le Bras et al., 2006), ABC
transporter activity (Waghray and Zhang, 2018) and cell membrane
cholesterol content (Subramanian et al., 2016). This review details the
changes of lipid metabolism in drug resistance and how lipid
metabolism affects drug resistance.

Further studies have shown that while single lipid-targeting
drugs can hinder cancer cell growth and metastasis by inhibiting
specific lipid-related pathways, they often fail to completely
eradicate cancer cells (Han et al., 2017). In contrast, combination

therapy utilizes synergistic interactions between different drugs that
work together to reach the ultimate goal of eliminating cancer cells.
Combination therapy shows a more comprehensive and effective
anti-cancer effect by simultaneously targeting multiple pathways or
molecular targets of lipid metabolism (Foucquier and Guedj, 2015).
This review summarizes the progress of drug design targeting lipid
metabolism in improving drug resistance.

The advantages of drug combination and our understanding of
lipid metabolism suggest that we can continue to explore the synergies
between targeted drugs of lipid metabolism and traditional anticancer
drugs, so as to innovate new therapeutic approaches to improve the
efficacy of anticancer drugs and mitigate the emergence of drug
resistance for the benefit of patients. Therefore, further research in
this area is essential to uncover the complexity of lipid metabolism
during tumor resistance and to optimize the implementation of
combination therapy strategies.
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