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Inonotus obliquus (Chagamushroom) is an inexpensive fungus with a broad range
of traditional and medicinal applications. These applications include therapy for
breast, cervix, and skin cancers, as well as treating diabetes. However, its benefits
are virtually untapped due to a limited understanding of its mycochemical
composition and bioactivities. In this article, we explore the ethnobotany,
mycochemistry, pharmacology, traditional therapeutic, cosmetic, and
prospective agricultural uses. The review establishes that several secondary
metabolites, such as steroids, terpenoids, and other compounds exist in chaga.
Findings on its bioactivity have demonstrated its ability as an antioxidant, anti-
inflammatory, antiviral, and antitumor agent. The study also demonstrates that
Chaga powder has a long history of traditional use for medicinal purposes, pipe
smoking rituals, and mystical future forecasts. The study further reveals that the
applications of Chaga powder can be extended to industries such as
pharmaceuticals, food, cosmetics, and agriculture. However numerous
publications focused on the pharmaceutical benefits of Chaga with few
publications on other applications. Overall, chaga is a promising natural
resource with a wide range of potential applications and therefore the diverse
array of therapeutic compounds makes it an attractive candidate for various
applications such as plant biofertilizers and active ingredients in cosmetics and
pharmaceutical products. Thus, further exploration of Chaga’s potential benefits in
agriculture and other industries could lead to exciting new developments and
innovations.
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1 Introduction

Inonotus obliquus (Chaga mushroom) is a sterile tree-destroying fungus that parasitizes
the trunks of living birches. It belongs to the family Hymenochaetaceae and thrives in humid
parts of Europe, Asia, and North America (Razumov et al., 2020; Abu-Reidah et al., 2021).
The genus Inonotus includes about 100 species in a broad sense all of which have been
identified as plant pathogens (Zhou and Wang, 2015). The distinction reflects changes in
different groupings of the species over time as taxonomists have gained a better
understanding of the relationships between different fungal species (May et al., 2019).
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The species obliquus is well-known for its medicinal and
pharmacological properties (Balandaykin and Zmitrovich, 2015).

The preparation methods for indigenous herbal and non-
medicinal uses of Chaga vary according to tribes and cultures. In
China, Chaga mushrooms are processed for multiple applications by
heating and crushing in water (Hwang et al., 2019). The same
extraction method is applied in South Korea for similar purposes
(Hong et al., 2015). In some tribes, Chaga mushrooms are used to
boost the immune system and treat various diseases including
diabetes and tumors (Abu-Reidah et al., 2021). In folk medicine,
chaga is commonly consumed as a dietary mushroom as studies
show it contains high levels of antioxidants, proteins, minerals, fiber,
and vitamins. Apart from diet, it also plays a role as a functional food
ingredient with several reported health-promoting activities
including anti-cancer, anti-inflammatory, antioxidant, and
antithrombotic (Lindequist et al., 2005; Rhee et al., 2008; Abu-
Reidah et al., 2021). Other studies report the mushrooms’ general
impact on the immune system and its potential in improving insulin
resistance in type 2 diabetes (Géry et al., 2018; Abu-Reidah et al.,
2021).

A comprehensive literature review (1900–2022) was conducted
to assess the biological activities, mycochemical constituents,
medicinal, and some nutritional potential of Chaga mushroom to
supplement prior attempts focused on medicinal value (Milyuhina
et al., 2022; Teplyakova et al., 2022). Globally, Chaga mushrooms are
known for their therapeutic benefits, and novel bioactive metabolites
in pharmaceutical, chemical, and cosmetic products (Peng and
Shahidi, 2022). The application of Chaga is not limited to the
medical field alone. The antioxidant properties of the fungus
have demonstrated potential in animal production (Li et al.,
2022). The addition of the mushroom to a nutrient matrix for
livestock has been shown to increase the bioavailability of vitamin A
in the digestive tract of livestock (Li et al., 2022). With these
demonstrated benefits, the mushroom can be harnessed for use
in other fields. Therefore, exploring the use of chaga in production of
fertilizer can reduce environmental contamination that pose threat
to both animal and plant and the overreliance on chemical fertilizer.
This article therefore presents a summary of the biological functions
of the Chaga mushroom linked to medical and agricultural
applications.

2 Methodology

A systematic and comprehensive search strategy was employed
to source all relevant materials. This review covers material
published between the years 1900 and Nov. 2022, including
periodicals, books and/or chapters, essays, research articles,
review papers, theses, and minutes from meetings. Only
information written in the English language was located using
web search engines such as Google, Google Scholar, Pub Med,
Google Books, Semantic Scholar, Science Direct, Scopus,
Worldwide Science, Web of Science, JSTOR, and ResearchGate.
Approximately 90 scientific documents were used for this review.
The word “Chaga” was also cross-referenced with related phrases,
such as medicinal mushrooms, phytochemistry, biological qualities,
and nutritional properties using Boolean operators such as ‘AND’,
‘OR’, ‘NOT’, or ‘AND NOT’.

3 Ethnomycology description

3.1 Scientific classification and common
names of Inonotus obliquus

According to Federhen (2012) scientific nomenclature “INOS”
denotes fibre, “NOTON” denotes back, and “OBLIQUE” denotes
unevenness of the sides (Figure 1) (Federhen, 2021).

Common names include Chaga, “Tschaga, Tschagapilz”
(Russian), black birch touchwood, malalon mushroom, sterile conk
trunk (North America/Europe), “Kreftjuilce” (Cancer polypore)
(Norway), “Tikkatee” (Finland) and “Kabanoanatake” (Japan)
(Zabel, 1976; Lee et al., 2008; Zhong et al., 2009; Beltrame et al.,
2021). Chaga has several common names: in Russia, the fungus is
called Chaga, which is derived from “Komi-Permyak,” the language of
the Kama Basin, west of the Ural Mountains, but in England and
Canada, Chaga is referred to as the birch’s sterile conk trunk (Zabel,
1976; Lee et al., 2008; Zhong et al., 2009; Beltrame et al., 2021). Owing
to its therapeutic uses inmodernmedicine, Chaga is also known as the
“Mushroom of Immortality”, in Japan, it is known as the “Diamond of
the Forest” and the “King of Plants” in China (Nakajima et al., 2007;
Zyryanova et al., 2010).

3.2 Distribution and ecology

Chaga is commonly found in cooler climates, extending from
the meridian zone in the mountains to the Northern hemisphere in
subarctic regions (Figure 2). This mushroom is well known on three
continents, including the cold climate regions of North America at
latitudes of 45⁰ N– 50⁰ N (Canada, the United States of America),
Asia (Russia, Kazakhstan, Siberia, South Korea, Japan), and Central
andNorthern Europe. AlthoughWestern and Southern Europe have
cold climates, Chaga is rare in these regions perhaps owing to the
length of unfavorable climatic conditions (Zhong et al., 2009; Abu-
Reidah et al., 2021; Wasser, 2021).

4 The myth, rituals, and indigenous
medicinal properties of chaga
mushrooms

In addition to their nutritional value, Chaga mushrooms are
featured in various myths and were used by indigenous peoples in
the management and treatment of various ailments. These myths and
their uses vary among tribes, countries, and localities. In Canada, the
Métis, Cree, Ojibway, Denesuline peoples of Northern Saskatchewan,
and the Gitksan peoples of British Columbia all have myths about
Chaga’s creation (Zmitrovich et al., 2020). It is said that “Wisakecak,”
(a mythological character), was responsible for hurling the scab of
Chaga onto the birch tree (Rogers, 2016; Peng and Shahidi, 2022).
Some historians argue that Wisakecak discovered a birch tree while
taking a stroll in the forest. He had been eating a piece of dried meat
while wandering through the forest, and as he wandered, he became
sleepy and absentmindedly threw the meat onto the tree trunk before
settling under the tree and sleeping. While he slept, the meat began to
rot, and the spores of the Chaga fungus began to grow on it (Il’ina &
Uljašev, 2012). When Wisakecak awoke and saw the Chaga on the
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tree, he mistook it for the dried meat he had thrown and attempted to
consume it. However, he quickly realized his mistake and spat it out,
but not before some of the spores had entered his body. He then
realized that the Chaga had healing properties and decided to leave it
on the tree for the benefit of humanity (Rogers, 2012). In Anishinaabe
culture, Chaga is considered a powerful medicinal mushroom and is
often used in traditional medicine. Indigenous people also used Chaga
mushrooms in pipe rituals because they produce a sweet smell
(Zmitrovich et al., 2020). The legend of Wisakecak and the Chaga
mushroom is a reminder of the importance of respecting the natural
world and the role that traditional knowledge plays in understanding
the benefits of natural remedies (Wasser and Volz, 2017).

In Northern Saskatchewan, the Denesuline people use two long
strands of Chaga powder to predict the future. The Denesuline would
sometimes lay out two rows of powdered Chaga, one for each possible
future event. Each line was set on fire at the same time, and whichever
one finished first was thought to determine what would happen next
(Chung et al., 2010; Peng and Shahidi, 2022). Again, the Denesuline of
Saskatchewan used a divination procedure with finely split intestinal
fungus (Rogers, 2006). Each pile represented a separate event that
occurred at the same time and is illuminated from different ends. The
pile that burns through first determines what action takes place

initially. “ETSEN DEK, ON”, or “it stinks while it is burning,” is
the name given to this occurrence (Rogers, 2006).

According to historical records (Figure 3), the Khanty people of
Western Siberia were the first to use Chagamedicinally, perhaps in the
12th century (Saar, 1991). The native Siberians would grind it up and
add it to their everyday beverages, soups, and stews. Despite living in a
difficult environment, the Siberians discovered that consuming chaga
regularly protected against the beginning of degenerative diseases.
They used it to increase vitality and live a long, healthy life. Modern
Russians have noticed that cancer is not prevalent where the Chaga
was traditionally utilized (Pilz, 2004). According to Moss, (2016), the
Khanty tribe regularly consumed Chaga in several forms, including
tea, “soap water,” and smoke (Moss, 2016). The tea was produced by
slicing Chaga into tiny pieces with a knife, and the pieces were placed
into boiling water and simmered for a few minutes. Chaga tea was
consumed to aid in digestion, satiate appetite, and detoxify. In the 16th
century, the Russian First Nations used Chaga to treat tumors related
to angiogenesis. In Siberia, indigenous people used Chagamushrooms
to treat tuberculosis, liver conditions, and stomach diseases (gastritis
and ulcers) (Shikov et al., 2014). In modern-day Russia, Chaga is used
by hunters and foragers to increase their capacity to work, and to
promote endurance (Shikov et al., 2014).

FIGURE 1
Taxonomic classification of Chaga mushroom.
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To make “soap water”, the fungus was first placed in the fire.
After it becomes charred like smoldering charcoal, it was placed in a
bucket of boiling water and swirled until it was broken up into little
chunks. The black water that was produced because of this process
has excellent cleansing and disinfecting properties (Lukina, 1975).
Women who bathed themselves with such water were never sick,
and the water was also used to cleanse the vaginal area after
menstruation and childbirth. In earlier times, it was also used to

wash the hands, feet, and sometimes the whole body in place of soap
(Lukina, 1975). Saar (1991) reported that Chaga was also used for
ceremonial washing and cleansing after menstruation. It was
possible that a newly born child might also be washed as part of
this ceremony (Shikov et al., 2014).

In northern America, Chaga is consumed as a tea or powder,
inhaled, and smoked by the Indigenous people. “Posahkan” and
“Wiskakecak” are the preferred names given by Cree healers due to

FIGURE 2
Geographical locations of Chaga mushroom.

FIGURE 3
Traditional and ritual uses of Chaga mushroom.
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Chaga’s healing virtues. The Métis also use Chaga for treating
cancers of the breast, liver, colon, skin, cervix, and lungs, as well
as for diabetes (Barkwell, 2018). Notably, in North America and
especially in Canadian indigenous tribes including the Cree,
Ojibway, Denesuline, and Gitksan, Chaga was used for the
treatment and management of several diseases, including
rheumatic and joint pain, infections, and tooth pain (Rogers,
2012). Additionally, Chaga mushroom tea was used by both the
Ojibway and the Denesuline people as an antiviral agent. The
Tanaina tribe in south-central Alaska in the United States of
America also uses Chaga to treat toothaches (Turner and
Cuerrier, 2022). The various uses are summarised in Table 1.

In China and Korea, empirical evidence suggests that for centuries,
Chaga was traditionally taken as a tea to treat several ailments including
pathogenic infections, gastrointestinal disorders, cancers, and liver
disorders (Park et al., 2004; Géry et al., 2018; Gründemann et al.,
2020). Similarly in Japan, Greece, and parts of eastern Europe, the
mushroom has a history of use in folk medicine as a treatment for
ulcers, gastritis, and tuberculosis (Cha et al., 2006a; Pan et al., 2013). It
was recorded that the Grand Duke of Kievan Rus, Tsar Vladimir
Monomakh, used Chaga to heal his lip tumors. Finnish soldiers used
Chaga as a coffee substitute during World War II (Baek et al., 2018).
When the troops’ supply of coffee ran short, they turned to the nearby
woodlands for sclerotia, which they used to make Chaga tea.

According to Gorbunova et al. (2005), inhabitants of Siberia have
long relied on Chaga infusions for medicinal purposes. Indeed, the fact
that Befungin was the first Chaga product to be isolated and used in
clinical therapy has been proven by Russian experts and is now known
to be an effective treatment for psoriasis. It is worth mentioning that in
the middle ages, the famed physician Avicenna experimented with the

use of Chaga as a source of medicinal compounds (Ryzhova et al., 1997;
Safin et al., 2018). Various traditional medicinal uses of Chaga around
the world are summarized below (Figure 4).

5 Morphological characteristics

Chaga mushroom usually grows on the bark of birch trees. This
association matches the Cree legend that describes a type of scab
growing along the trunk of birch trees (Rogers, 2012). Chaga has a
texture similar to loose, rubbery wood or porous, crumbly rocks
(Hobbs, 2003). The Chaga is not the fruiting body as seen in other
mushrooms, it is the sclerotia that contains the mycelium. Chaga is a
parasitic fungus that infects birch trees and looks like hard rock
protrusions (Kim, 2005). Close examination using a microscope
shows a brown hypha separated without pores as well as a wide
partition with 2.five to seven um in diameter. Chaga arises through the
action of basidiospores contaminating the duramen of birch trees
through unhealed wounds (Brydon-Williams, 2019). Basidiospores,
which are reproductive structures produced by the Chaga fungus, can
enter the tree through these wounds and then grow and spread within
the tree’s inner tissues, or duramen (Figure 5). Over time, the Chaga
fungus can form large, woody growths or cankers on the tree’s surface,
which are then harvested and processed for various uses (Thomas
et al., 2020). The large woody growth is supported by root-like
structures of the mushroom known as the mycelium. This
structure grows inside the tissues of the tree and as it grows
degrades the cell wall of the tree while simultaneously producing
decay known as ‘white rot’ (Figure 5). The white rot degrades
cellulose, hemicellulose, and lignin the major components found in

TABLE 1 Use of Chaga as a folk medicine across cultures.

S/N Disease and symptoms Method of administration Tribe/Country References

1 Anthelmintic Tea Khanty/Siberia Saar, (1991)

2 Heart disease Tea

3 Liver disease Tea

4 Disease prevention and death Smoke

5 Stomach disease Tea

6 Tuberculosis Tea

7 Washing of external sexual organs
during menstruation and after
birth

Soap water

8 Washing of body Soap water

9 Arterial diseases Chaga infusions Siberia Gorbunova et al. (2005)

10 Healing wounds Lotions-balsams Siberia

11 Joint diseases Chaga syrup Siberia

12 Rheumatic pain Burn a piece of Chaga black coal Gitksan of British Columbia/
Canada

Rogers, (2012)

13 Counterirritant in arthritis
(Mugwort)

Moxibustion treatment Cree/Canada Rogers, (2012)

14 Toothache Tea Tanaina/United States of
America

(Turner and Cuerrier, 2022)
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the cell wall. By breaking down these materials, the Chaga fungus can
extract nutrients from the tree and continue to grow and spread
throughout its life (Deshpande and Arya, 2022).

The fruiting bodies of Chaga, which appear in the form of black,
irregularly shaped masses, develop between the bark and the sapwood
of the tree and turn yellow to brown over time. This transformation
usually takes between 2 and 12 years after the death of the birch

(Bernicchia, 2005; Géry et al., 2018). Although the fruiting body of
Chaga is usually harvested, the vegetative component rather contains
more proteins as compared to the fruiting body (Rogers, 2006). The
sclerotia of Chaga contains up to 30% betulin, a compound that is also
found in birch trees. This betulin is believed to be absorbed by the
Chaga fungus from the birch tree, where it is present in the form of
betulinic acid. In addition to betulin, the Chaga core contains a greater

FIGURE 4
Timeline events for the Chaga mushroom.

FIGURE 5
The life cycle of Chaga mushroom.

Frontiers in Pharmacology frontiersin.org06

Fordjour et al. 10.3389/fphar.2023.1273786

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1273786


amount of lanostanes, which are triterpenoids that have been shown
to have a variety of potential health benefits (Wold et al., 2018).
Betulinic acid possesses biological activities such as anti-cancer, anti-
inflammatory, antiviral, and antioxidant (Hordyjewska et al., 2019).

The high concentration of melanin in the sclerotia (the hard,
black outer layer of the Chaga mass) gives it its characteristic black
color (Stamets, 2005). The sclerotia contain up to 30% betulin, while
the core contains a greater amount of lanostanes. However, the
harvested part of the Chaga is bicolored, consisting of the sclerotia
and a golden, cork-like interior. As the Chaga mass ages, a greater
proportion of its mass becomes associated with the interior rather
than the sclerotia (Figure 5) (Thawthong et al., 2014).

6 Mycochemistry

Mycochemical analysis of Chaga extracts revealed several essential
primary metabolites including polysaccharides, proteins, and other
compounds (Kim et al., 2011; Peng and Shahidi, 2022). As of 2022,
more than 250 secondary metabolites have been identified in chaga
including betulin, vanillic acid, terpenoids, and lanosterol. Rogers
(2006) further reports that the fungus is made up of primary
metabolites including minerals, proteins, and polysaccharides.
Several macro and micro nutrients have been identified from Chaga
extracts which include carbohydrates (β-glucans, xylogalactoglucose)
(Joo et al., 2010; Jayachandran et al., 2017; Wold et al., 2018), lipids
(fecostrol, episterol, β-sitosterol) (Cha et al., 2005; Cha et al., 2006b),
polyphenols (inonoblins A, phelligridins D, ferulic acid, foscoperianol
D, vanillic acid) (Lee et al., 2007; Seo and Lee, 2010).Some of these
compounds are presented below:

6.1 Polysaccharides

Huang et al. (2012) extracted and purified five Inonotus obliquus
polysaccharides (IOPS) by column chromatography, namely,;
IOP1b, IOP2a, IOP2c, IOP4 and IOP3a (Huang et al., 2012). In
one study, the authors suggest that the sugar, -(1.3)- β-D-mannan
influences β-glucan properties (Baek et al., 2012). Recently, both β-
glucan has been found to have a variety of health-promoting
properties, including immune modulation, anti-inflammatory
effects, and antioxidant activity (Zhu et al., 2015). Yeast,
mushrooms, bacteria, and algae are all sources of a dietary fiber
compound called β glucan. This compound is widely recognized as a
polysaccharide found in Chaga mushrooms along, with
galactomannan (Basal et al., 2021; Eid et al., 2021; Peng and
Shahidi, 2022). Chaga contains 8.57% β-glucan (Song 2020).

6.2 Proteins

According to a study, by Razumov et al. (2020), they found that
chaga hydrolyzed products contain many amino acids with aspartic
acid, glycine, and glutamic acid making up, around 40% of the amino
acids. The remaining 60% consists of lysine, threonine, methionine,
alanine, tyrosine, serine, histidine, proline, tryptophan, arginine, and
cysteine (Razumov et al., 2020). Other forms of amino acids such as
peptides have also been reported by Hyun et al. (2006). In the study, the

author identified a new peptide that prevents platelet aggression. In the
study, analysis of the peptide using LC/MS revealed amolecular mass of
365 Da (Hyun et al., 2006).

6.3 Mineral components

Chaga has been observed to have a high concentration of elements,
with potassium accounting for 50% of the total ash content, sodium
accounting for 9%–13%, and manganese accounting for 1.2%
(Shashkina et al., 2006). Other minerals such as copper, zinc,
aluminum, sulfur, magnesium, phosphorus, and calcium have all
been identified in chaga (Razumov et al., 2020).

Chaga also contains a significant number of mineral
microelements. In their research, the scientists used x-ray
fluorescence and atomic absorption spectroscopy to analyze chaga
and determine its composition of macro and micro elements. Their
findings revealed that chaga contains amounts of iodine, vanadium,
zinc, copper, selenium, manganese, and sulphur (0.02%) rubidium
(approximately 0.04%) sodium (approximately 0.05%) phosphorus
(approximately 0.23%) chlorine (approximately 0.33%) calcium
(approximately 0.37%) nitrogen (approximately 0.4%) magnesium
(approximately 0.64%) hydrogen (around 3.6%) potassium (around
9 10%) and carbon constituting approximately 39%. (Razumov et al.,
2020). These findings suggest that Chaga mushrooms and their
derived products possess essential nutrients that are beneficial for
crop cultivation (Peng and Shahidi, 2022).

6.4 Bioactive compounds

Based on several studies of crude Chaga extracts, numerous
bioactive compounds have been isolated and purified (Table 2).

6.4.1 Polyphenols
Six polyphenols were recovered from Chaga mushrooms

following extraction with methanol: inonoblins A, B, C, and
phelligridins D, E, and G (Table 1) (Lee et al., 2007). Particularly,
chaga contains a variety of phenols, including 4-hydroxy
3,5 dimethoxy benzoic acid, 2-hydroxy-1-hydroxymethyl ethyl
ester, protocatechuic acid, caffeic acid, 3,4 dihydroxy benzene
formaldehyde, 2,5-dihydroxyterephthalic acid, syringic acid and
3,4-dihydroxybenzalacetone (Nakajima et al., 2007; Nakajima et al.,
2007). Additionally, gallic acid and dihydroxy benzoic acid ketones
(DHBAs) have been found in Chaga. Show potential in their ability to
combat cancer (Kim et al., 2011). Melanins are also generated by
Chaga, which exhibit antioxidant and genoprotective properties
(Shashkina et al., 2006). Babitskaya et al. (2000) demonstrated that
copper ions, catechol, and tyrosine effectively promote the production
of melanin, and o- and p-dephenoloxidase. The acid composition of
Chaga includes acetic acid, butyric acid, oxalic acid, and formic acid
(Razumov et al., 2020). Chaga extract also contains triterin, sterols
(6%–8%), acid-resistant lignin (25%–30%), dietary fiber (2%),
hemicellulose (12.5%), and folic acid (Shashkina et al., 2006).

Zheng et al. (2009) conducted a study to extract phenolic
components from I. Obliquus by using fermentation. They used
continuously stirred reactors to investigate how phenolic compounds
accumulated in various cultures and their antioxidant properties.
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TABLE 2 Compounds isolated from Chaga.

Compounds Structure References

Polyphenols

Phelligridin C Lee et al. (2007),
Zheng et al. (2011b)

Phelligridin D Lee et al. (2007)

Phelligridin E Lee et al. (2007)

Phelligridin F Lee et al. (2007)

Phelligridin G Lee et al. (2007)

(Continued on following page)
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TABLE 2 (Continued) Compounds isolated from Chaga.

Compounds Structure References

Phelligridin H Lee et al. (2007)

Inonoblin A Lee et al. (2007)

Inonoblin B Lee et al. (2007),
Zheng et al. (2011a)

Inonoblin C Lee et al. (2007),
Zheng et al. (2011b)

(Continued on following page)
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TABLE 2 (Continued) Compounds isolated from Chaga.

Compounds Structure References

Methylinoscavin A Zheng et al. (2011a)

Terpenes

Inonotsutriol A Chang et al. (2022),
Zhao et al. (2015)

Inonotsutriol B Zhao et al. (2015),
Park et al. (2021)

Inonotsutriol C Tanaka et al. (2011)

Ergosterol Zhao et al. (2015)

(Continued on following page)
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TABLE 2 (Continued) Compounds isolated from Chaga.

Compounds Structure References

Lanosterol Moon and Lee (2009);
Ma et al. (2013)

Betulin Wold et al. (2018)

Betulinic acid Zhao et al. (2016)

Inonotsuoxide A Zhao et al. (2015)

(Continued on following page)
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TABLE 2 (Continued) Compounds isolated from Chaga.

Compounds Structure References

Inonotsuoxide B Tanaka et al. (2011)

Inonotusane C Zhao et al. (2015)

Terpenoids

Stigmastanol/sitostanol Sun et al. (2008)

Lupeol Sun et al. (2008)

(Continued on following page)
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TABLE 2 (Continued) Compounds isolated from Chaga.

Compounds Structure References

Lupenone Sun et al. (2008)

α-Curcumene Zhao et al. (2016)

α-Cedrene Zhao et al. (2016)

β-Farnesene Ying et al. (2014)

α-Bisabolene He et al. (2001),
Thomas et al. (2020)

p-Cymene Geng et al. (2013)

Photosantalol Ayoub et al. (2009)

(Continued on following page)
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TABLE 2 (Continued) Compounds isolated from Chaga.

Compounds Structure References

Triterpenoids

Lanosterol Liu et al. (2014)

3 β - hydroxylanosta-
8.24,dien-21-al

Kahlos et al. (1984)

Inotodial (Yusoo et al., 2002)

Trametanolic acid Nakata et al. (2007)

(Continued on following page)
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TABLE 2 (Continued) Compounds isolated from Chaga.

Compounds Structure References

Lanosta-7.9 (11),24-
trien-3-β-22,diol

Taji et al. (2008)

Lanosta-8,23E-dien-3
β,22R,25-triol

Taji et al. (2008)

Lanosta-7.9 (11),25E-
trien-3 β,22R,25-triol

Nakajima et al. (2007)

Lanosta-8-24-dien-3
β −21-diol

Handa et al. (2010)

(Continued on following page)
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TABLE 2 (Continued) Compounds isolated from Chaga.

Compounds Structure References

Inonotusol A Handa et al. (2010)

Inonotusol B Handa et al. (2010)

Inonotusol C He et al. (2001)

Inonotusol D Kim et al. (2011)

(Continued on following page)
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TABLE 2 (Continued) Compounds isolated from Chaga.

Compounds Structure References

Inonotusol E Kim et al. (2011)

Inonotusol F Kim et al. (2011)

Inonotusol G Kim et al. (2011)

3β −22-dihydrolanosta-
8-24-diene-7-one

He et al. (2001)

(Continued on following page)
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TABLE 2 (Continued) Compounds isolated from Chaga.

Compounds Structure References

3 β -hydroxylanosta-
8,24-diene-21,23-
lactone

Kahlos et al. (1984),
Nakata et al. (2007)

Methyl trametenolate Ying et al. (2014)

21,24-
cyclopentalanosta-
8-en-3 β -21-25,triol

Tanaka et al. (2011)

Lanosta-8-en-3
β- 22.25,triol

Zheng et al. (2011b)

(Continued on following page)
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TABLE 2 (Continued) Compounds isolated from Chaga.

Compounds Structure References

Sterols

Ergosterol peroxidase Ma et al. (2013)

β-sitosterol Lu et al. (2010)

Cholesterol Ma et al. (2013)

Fungisterol Tanaka et al. (2011)

(Continued on following page)
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According to the study, Chaga demonstrated the production of melanin
and polyphenols in the control medium. The introduction of H2O2 did
not have an impact on the levels of phenols. It did increase the amount
of phenol andmelanin inside the cell.WhenChagawas exposed to both
H2O2 and arbutin there was an increase in phenol synthesis while
extracellular phenol accumulation decreased. These findings suggest
that incorporating an oxidizing agent into Chaga mycelia could boost
the production of compounds such, as vanillin, salicylic acid,
pyrocatechol, hydroquinone, and eugenol. This makes Chaga a more
dependable source of pharmaceutically essential phenolic compounds.

Chaga contains numerous flavonoids, such as flavones, flavanones,
anthocyanins, and catechins (apigenin, mariningin, corin, and
quercetin) (Shashkina et al., 2006). As of 2022, a total of
31 flavanoids were detected in a Chaga sample (Peng and Shahidi,
2022). When the phenolic contents of mycelia and wild chaga culture
were compared, flavonoids were detected in small quantities in wild
Chaga, while other phenols such as melanins and styrylpyrones were
present in larger quantities. In contrast, the mycelia cultures contained
more flavonoids with trace quantities of melanin and styrylpyrones
(Zheng et al., 2008). The Chaga mushroom contains a unique class of
phenolics known as styrylpyrones (Peng and Shahidi, 2022). A total of
16 styrylpyrones have been detected previously, including phelligridin
C, inoscavin C, hispidin, methylinoscavin C, davallialactone, inonoblin
C, davallialactone, inonoblin B, phelligridin E, phelligridin D. Newly
detected compounds included: inoscavin A, inoscavin D, phelligridin J,
phelligridin A, phelliribsin A, methylinoscavin D.

Peng and Shahidi (2022) further detected several flavonoid
derivatives such as apigenin, eriocitrin, rhoifolin, isorhamnetin-
3-O-rutinoside, epigallocatechin, and epigallocatechin. However,
other non-flavanoid phenolics such as inonoblin A, phelligridin,
resveratrol, and phellxinye A were absent. In the same study, the
31 detected flavonoid derivatives included 18 flavones (ols),
5 flavanones (ols), 3 flavans (ols), aurones, isoflavones,
ligniflvanoids and chalcones (Razumov et al., 2020).

6.4.2 Steroids
Steroids are another bioactive component of Chaga (Wang et al.,

2014), including fungal sterols (Kirk et al., 2008; Chen andWang, 2014),
ergosterol (Shin et al., 2000; Huynh, 2019), ergosterol peroxide (Zheng
et al., 2011a; Kim et al., 2011), and β–sitosterol (Table 1). Wang et al.
(2014) found that (0.01 and 0.1 g/L) dosages of extracts from birch bark

and birch core had a substantial stimulatory impact on the generation of
I. obliquus steroids in submerged Chaga cultures (p = 0.05). The
aqueous extract (0.01 gL) of birch bark stimulated 97.3 percent
greater production than the control (i.e., 225.8 mg/L). Although
these extracts promoted both mycelial growth and steroid content,
only methanol extracts enhanced the synthesis of betulin, cholesterol,
lanosterol, stigmasterol, and sitosterol. Another study also
demonstrated that birch bark extract may stimulate the synthesis of
steroids in Chaga, which have anti-tumor and anti-inflammatory
properties (Debnath et al., 2013).

6.4.3 Terpenoids
In the study by Peng and Shahidi (2022), a total of 108 terpenoids

were identified in chaga. Seventy-eight of these terpenoids were newly
detected. Apart from terpenoid compound T108, all terpenoids
included substituent groups with multiple oxygens, non-oxygenated
derivatives. Apart from sesquiterpenoids, monoterpenoids,
diterpenoids, tetraterpenoids, pentaterpenoids, the remaining
103 terpenoids were steroids and triterpenoids. Chaga contains
esters of triterpenoids including hydroxycinnamoyl indicating the
presence of impure terpenoids. However, in contrast to phenolic
compounds, the high molecular weight of terpenoid compounds
makes classification by structure challenging due to the possibility of
having several isomers (Peng and Shahidi, 2022).

7 Pharmacological potential

According to several research studies (Figure 6), Chagamushrooms
possess around 130 pharmacological properties including anticancer,
immunomodulating, gene-protecting, and antimicrobial capabilities
(Chung et al., 2010; Thomas et al., 2020; Kou et al., 2021). The
details of some pharmacological activities are discussed below.

7.1 Antioxidant properties

Chaga extract is widely recognized for its properties and
multiple studies have shown its ability to counteract the effects of
free radicals (Zheng et al., 2011b; Haines, 2013). In one study, to
examine Chaga’s ability to operate as a superoxide dismutase (SOD)

TABLE 2 (Continued) Compounds isolated from Chaga.

Compounds Structure References

Episterol Tanaka et al. (2011)
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in scavenging radicals, the researchers utilized alcohol and three
distinct hot-water extractions (each with a different temperature).
According to Hu et al. (2009), their research revealed that the
alcohol extract exhibited SOD activity, among all their
investigations. On the hand, hot water extracts also showed SOD
activity with higher temperatures resulting in stronger antioxidant
abilities (Hu et al., 2009). Additionally, these researchers evaluated
the four extracts’ capacity to scavenge 2,2 diphenyl 1 picrylhydrazyl
(DPPH). Interestingly the alcohol extract displayed a higher DPPH
scavenging ability as compared to hot water extracts (Hu et al.,
2009).

Notably present in Chaga extracts is hispidin—a compound,
with antioxidant and inflammatory properties. However, Chaga
extracts’ composition can vary based on the source of the fungus,
the extraction procedure, and the section extracted (Lee and Yun,
2006; Yusoo et al., 2002). Among the hispidin analogs are
phelligridins, inoscavins, inonoblins, and davalialactone and its
derivatives (Zheng et al., 2011b). These analogs contain the active
ingredient that confers antioxidant action on the drug and is used to
treat disorders associated with oxidative stress. In other studies,
Giridharan et al. (2011) investigated the impact of the antioxidant
activity of Chaga extract on the cognitive function of mice with
amnesia. Researchers studied its effects on the brain and cognition
after using the alkaloid scopolamine to induce cognitive impairment.
In both tests, Chaga increased glutathione and superoxide dismutase
levels (endogenous antioxidants), and improved learning and
memory. The antioxidant properties of Chaga have gained
recognition, for their ability to combat cancer promote heart
health and help manage diabetes (Zhong et al., 2009; Song et al.,
2013; Jiang et al., 2020). Moreover, findings demonstrate that Chaga
extracts possess antioxidants that can effectively counteract radicals
suggesting its potential in preventive and healing capacities, for
various diseases (Mu et al., 2012). Song et al. (2004) examined NF-
kB and antioxidant activity in malignant human keratinocytes (SCC-

13) to determine whether pine bark extract, Chaga (Inonotus
obliquus), and Chaga mycelium were effective. The activity of NF-
BNF-B was downregulated in every substance that was evaluated
using a cell-based NF-BNF-Bmonitoring assay. Using AGI-1120 (one
to two mg) as the positive control and Chaga mushroom extract
(0.05–0.1 mg), demonstrated a significant inhibitory effect on NF-
BNF-B activity which implies that the Chaga mushroom extract was
successful in scavenging DPPH radicals.

7.2 Anti-inflammatory properties

The extracts, from Inonotus obliquus known for their
inflammatory properties, have gained popularity in countries
like China, Korea, Japan, Russia, and the Baltics. When it was
initially discovered in the mid-20th century it was utilized in the
treatment of malignancies and digestive issues with no effects
(Szychowski et al., 2021). Research has indicated that Chaga
extract possesses inflammatory properties. Macrophages can
release substances such, as nitric oxide, prostaglandin
mediators, and pro-inflammatory cytokines (TNF α, IL 1 β IL
6) (Im et al., 2016). A study on the methanol and ethanol extracts
of Chaga has shown that they inhibit macrophage activity by
reducing the production of inflammatory mediators such as
nitrogen oxides, prostaglandins (PGE2), and certain cytokines
(Softa et al., 2019). According to a study conducted by Mishra
et al. (2012), it was found that aqueous Chaga extracts have the
potential to greatly alleviate effects caused by dextran sodium
sulfate (DSS). These effects include reducing edema and mucosal
damage and minimizing crypt loss. Additionally, the study
revealed that Chaga extracts can effectively suppress the
expression of inflammatory cytokines lower the levels of iNOS
induced by DSS, and reduce the accumulation of myeloperoxidase
in the colon (Mishra et al., 2012). The anti-inflammatory

FIGURE 6
Pharmacological potentials of Chaga Mushroom.
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properties of Chaga associated with isolated ergosterol, ergosterol
peroxide, and trametenolic acid were further confirmed by Kou
et al. (2021). Ishfaq et al. (2022), demonstrated that aqueous
extract of chaga possess anti-inflammatory chaacteristics. The
study further demonstrated the ability of the extract to suppress
expression of p53, caspace-3 and microcystin-LR known to cause
inflammation and toxicity to the liver in mice (Ishfaq et al., 2022).
In another study, Ishfaq et al. (2021), demonstrated that aqueous
extract of chaga suppressed carbon tetrachloride (CCl4) induced
damage in liver tissues in mice. The study also showed that
ergosterol peroxide isolated from chaga has the ability to bind
and inhibit activity of pro-inflammatory proteins (Ishfaq et al.,
2021).

Betulin and betulinic acid have shown promising potential as
antimicrobial and anti-inflammatory agents. With anti-
inflammatory activities, these compounds are reported to
modulate the activities of immune cells and prevent pro-
inflammatory production (Oliveira-Costa et al., 2022). This,
therefore, demonstrates its potential ability for the treatment of
inflammatory ailments.

7.3 Anticancer and antitumor properties

Ma et al. (2013) evaluated the anticancer properties of chaga
using bioassay-guided preparative isolation. Acetate and
petroleum ether extracts significantly reduced NO generation
and NF-kB luciferase activity in macrophage RAW 264.7 cells
and induced cytotoxicity in vitro in human prostate cancer
PC3 and breast cancer MDA-MB-231 cells. Inotodiol,
ergosterol peroxide, and trametenolic acid were recovered
from these two fractions. Both ergosterol peroxide and
trametenolic acid were cytotoxic to the human prostatic
carcinoma cell PC3 and the human breast cancer MDA-MB-
231. These findings may help in understanding Chaga’s anti-
cancer activity. Different cancers, including Walker
256 carcinosarcoma, MCF-7 human breast adenocarcinoma,
sarcoma 180, and carcinoma 755, are sensitive to the effects of
lanolin triterpenoids isolated from Chaga (Shin et al., 2000).
Additionally, hot water extracts of Chaga were shown to have
anticancer activity against human colon cancer cells HT-29. The
main mechanisms involved in this process were increasing the
levels of proteins that promote cell death and decreasing the
levels of proteins that prevent cell death. This was shown in a
study conducted by (Heo et al., 2017). Another study by Mizuno
et al. (1999), found that purified endopolysaccharide from
cultivated mycelia of Chaga suppressed tumor cell
proliferation and activated B cells and macrophages.
Moreover, Chaga mycelium, had an effect, on
cdc25 phosphatase, an enzyme that regulates the cycle of
cancer cells. In a study using Sepharose, researchers found
that the drug contains a water-soluble polysaccharide (ISP2a),
which showed antitumor activity in vivo and significantly
enhanced the immune response in tumor mice. As an added
benefit, ISP2a enhanced lymphocyte proliferation and increased
the production of TNF-α (Liuping et al., 2012). Satoru et al.
(2016) sought to explore whether Chaga water extract might be
utilized as a long-term cancer therapy. Chaga water extracts were

extremely anti-blastema active in the treatment of cancer. A
study published in 2008 by Youn et al. (2008) indicated that
Chaga water extract inhibits the growth of cancer cells in vitro
and triggers apoptosis (programmed cell death, in which the cell
breaks down into distinct apoptotic bodies) in various carcinoma
cells.

Particularly betulinic acid has demonstrated promise in cancer
research as it has demonstrated potential in shrinking cancer growth
cells, inhibiting apoptosis, and shrinking tumors (Zhang et al.,
2015). Other researchers, attest to its anticancer activity and
demonstrate its selective antagonistic activity towards cancer cells
(Saha et al., 2015; Kumar et al., 2018).

In 2015, a study examined the anti-cancer activity of ergosterol
peroxide isolated from chaga on colon cancer cells. The study
demonstrated that the compound increased apoptosis and
suppressed cell growth in colon cell lines. The compound further
inhibited the β-catenin signaling pathway, a major player in colon
cancer development (Kang et al., 2015). Similarly, Mishra et al.
(2013) found that aqueous extract of chaga expresses anti-
proliferative and anti-inflammatory activity on colon cancer cells
and tumors in mice. The study also demonstrated that extracts
suppresses the Wnt/β-catenin and NF-κB signaling pathways that
are responsible for colon cancer onset and development (Mishra
et al., 2013).

7.4 Antiviral properties

For anti-viral properties, studies report the inhibitory
properties of bioactive compounds in Chaga against a host of
viruses including hepatitis C, HIV, and herpes simplex virus
make them attractive candidates for antiviral therapies (Navid
et al., 2014; Paduch and Kandefer-Szerszen, 2014; Xiao et al.,
2018).

Satoru et al. (2016), shows that Chaga extracts have been found
to impede the replication of both hepatitis C virus and human
immunodeficiency virus (HIV). The intriguing potential benefits of
Chaga, in treating diseases have captured the attention of
researchers. Jin et al. (2017) investigated the antiviral effects of
Chaga extracts on feline viruses. They proved that Chaga therapy
was effective in cell assays and had minimal cytotoxicity by using
feline calicivirus cell models. According to research on adhesion’s
mode of action, the treatment of calicivirus causes an inhibitory
effect on viral particles by preventing viral binding and absorption.
Research has shown that cats may experience gastrointestinal issues
due, to the herpes virus panleukopenia virus, and infectious
peritonitis virus. These viruses have a range of activities. In this
study, scientists discovered that Chaga polysaccharides could
potentially serve as an antiviral treatment, for both feline and
human pathogens. Moreover, researchers from Poland have
shown in 1998 that botulin and betulinic acid found in
Chaga can stop blastema development (Liang et al., 2009).
They discovered that betulin and betulinic acid are now
potential anti-HIV medicines that inhibit HIV reverse
transcriptase, in turn inhibiting HIV type 1 (Gogineni et al.,
2015). Human influenza A and B and horse influenza A are also
inhibited by constituents of the black exterior surface of Chaga
(Zheng et al., 2010). Betulin, mycosterol, and lupeol, which are
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all found in mushrooms, are thought to be the primary antiviral
agents (Pan et al., 2013). Polkovnikova et al. (2014), examined
the antiviral efficacy of Chaga extract on Vero cells using Vero
cell cultures and HSV (herpes simplex virus) type 1 infected
Vero cells. Most of the HSV-infected Vero cells were protected
by non-toxic sub-components. Deletion of viral DNA in Chaga-
infected cells suggests that it protects Vero cells from HSV
cytotoxicity.

More recent research by Eid et al. (2021) has shed light on
the impact of Chaga on the novel coronavirus (SARS-CoV-2)
that has been responsible for widespread outbreaks around the
globe. In this study, the S1-carboxy-terminal domain of the
SARS-receptor-binding CoV-2 domain was discovered to be
closely related to -glucan, galactomannan, and betulinic acid. At
the TRP-436, ASN-437, and ASN-440 sites, this interaction was
substantial. The receptor binding domain of the most recent
SARS-CoV-2 isolates had a furin cleavage site that was not seen
in prior isolates. Since this response interacted with ACE-2
more often, this virus was able to infect more people. Chaga,
according to those who took part in the research, might be
used in conjunction with other medications to combat SARS-
CoV-2. Hence, future anti-SARS-CoV-2 therapeutic
development may be aided by the development of naturally
derived anti-coronavirus therapies that include Chaga (Eid
et al., 2021).

7.5 Antithrombotic activity

Platelet aggregation is a complicated event that is most likely the
product of several metabolic pathways working in concert. The use of
platelet inhibition in the prevention of thrombosis is a potential new
treatment. According to a report by Hyun et al. (2006), water and
ethanol extracts from 55 different kinds of mushroom mycelium or
fruiting bodies were tested for platelet aggregation inhibitory activities
in vitro. The ethanol extracts of Chaga ASI 74006mycelia demonstrated
the highest platelet aggregation inhibitory activity (71.2%), whereas the
impacts of extracts from its fruiting bodies had very low inhibitory
activity. The isolated peptide was found to have a strong inhibitory
activity of 91.6% and a lowmolecular mass of 365 Da. It is assumed that
the peptide from Chaga which inhibits platelet aggregation is quickly
absorbed in the gut, and is commonly employed in the creation of
antithrombotic medications and nutritional supplements for human
consumption (Huang et al., 2012).

7.6 Other therapeutic uses

7.6.1 Effects of chaga on diabetes
Researchers have found that Chaga mushroom extract can

lower blood sugar (Rogers, 2012). The effects of Chaga on diabetes
were evaluated by Xu et al. (2010). Mice with diabetes were given
an extract of the polysaccharide fraction of Chaga, which reduced
maleic dialdehyde activity. After histological morphological
examination, the study revealed that the Chaga extract
significantly reduced damage to their injured pancreatic tissues
(Xu et al., 2011). The polysaccharides derived from Chaga have
shown properties in combating high blood sugar levels and lipid

oxidation (Xu et al., 2011; Hu et al., 2012). Another study
investigated the chemical composition and blood sugar-lowering
effects of the ethyl acetate fraction extracted from Chaga revealing
its hyperglycemic and anti-lipid peroxidative actions, in mice with
diabetes induced by alloxan (Lu et al., 2010). Postprandial
hyperglycemia is closely associated with type 2 diabetes mellitus
and its complications. The research demonstrated that an acidic
protein-bound polysaccharide called IOPS derived from Chaga
effectively inhibits the activity of β glucosidase at a concentration
of 93.3 g/mL. Additionally, Chen et al. (2010) discovered that it
also suppresses stress and the generation of compounds reactive to
acid during Fe2+/ascorbate induced lipid peroxidation in rat livers
(Chen et al., 2010). Exploring substances as inhibitors of β
glucosidase could potentially lead to the development of foods
or promising compounds, for combating diabetes (Chen et al.,
2010). These findings have the potential to contribute to the
development of safe inhibitors of β glucosidase. These
inhibitors can be derived from sources making them a
promising choice, for creating foods or lead compounds in anti
diabetic treatment.

7.6.2 Chaga in the prevention of DNA damage
In a study by Kyoung et al. (2004), human lymphocytes were

subjected to oxidative DNA damage, and an aqueous extract of
Chaga was tested for its protective effect. One-cell electrophoresis
for DNA fragmentation was used to detect oxidative damage in the
test subjects’ bodies (comet analysis). The DNA fragmentation in
cells that were pre-treated with Chaga extract was reduced by more
than 40% compared to cells that had been treated with the positive
control (100 micron/mole H2O2).

It has been shown that Inonotus obliquus polysaccharides (IOPS)
may boost the immune system and reduce oxidative stress throughout
the growth process (Youn et al., 2008). However, more studies are
required to understand the impact of IOP, on genotoxicity in model
organisms. Liuping et al. (2012) conducted experiments where they
exposed embryos (12 h post fertilization) to UVB radiation (12 J/m2/s,
310 nm) for 10 s and then administered IOP therapy (2.5 mg/L) after
24 h post fertilization continuing for a duration of, up to 7 days (Liuping
et al., 2012). Crimson, orange staining, the alkaline comet test, and qRT-
PCR screening of DNA repair genes were used to evaluate genotoxic
effects. The IOP-treated zebrafish were exposed to UVB at 5 days post-
fertilization and subsequently exhibited a substantial decrease in DNA
damage and improvement of the distorted structures. The relative
mRNA expressions of RAD51, P53, and GADD45 dramatically
increased in IOP-treated UVB-exposed zebrafish. DNA repair genes
were shown to be coordinated in their response to UVB exposure,
indicating a communal response. Finally, the IOP therapy reduced
UVB-induced genotoxic effects on zebrafish embryos, allowing them to
grow normally (Liuping et al., 2012).

Because of the lack of information on probable interactions between
various dietary supplements, there is rising concern about negative
effects. For the first time, Živković et al. (2019) investigated the
genotoxic effects of Chaga and dihydroquercetin in combination.
When Chaga (250 g/mL) and dihydroquercetin at 100 g/mL, 250 g/
mL, and 500 g/mL were administered alone or together, no genotoxic
impact was found on whole blood cells. The comet test was used to
investigate the antigenot1oxic effectiveness against DNA damage
caused by hydrogen peroxide (H2O2) in whole blood cells.
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Dihydroquercetin alone did not affect H2O2-induced DNA damage in
cells, whereas the combination of Chaga and 500 g/mL
dihydroquercetin was most effective. Hydrogen peroxide-induced
oxidative damage to genomic material may be prevented in vitro by
taking Chaga and dihydroquercetin together. Table 3 is the summary of
the established literature report on the pharmacological potentials of
Chaga mushrooms.

8 Cosmetic uses

Melanin, a pigment, in the skin plays a vital role in shielding the
skin from harmful UV radiation (Kukulyanskaya et al., 2002;
Tsatmali et al., 2002). However, when exposed to UV light and
other triggers the skin naturally produces melanin as a protective
response (Yan et al., 2014). In other studies, two naturally occurring
chemicals, birch sap from Betula alba and organic extracts from
Chaga, were investigated for their potential to block the Sun’s
ultraviolet (UV) rays (Alhallaf, 2020). Both pure birch sap and
Chaga extracts, as well as a combination containing 5% organic
birch sap and 5% Chaga, were tested.

The birch tree sap derived from Betula alba and Chaga proved
effective, in reducing the production of cytokines when the skin was
exposed to UV light. Keratinocytes are shielded from the DNA
damage caused by UV light by extracts of birch sap and Chaga
mushrooms. These findings demonstrate for the very first time that
extracts of Chaga and Betula alba mushrooms shield skin cells from
the damaging effects of UVA and UVB radiation because of their
antioxidant, anti-inflammatory, and DNA-preserving and repairing
properties. Moreover, they have the potential to be used in anti-
aging and sun-screening cosmetics (Softa et al., 2019).

Based on a study’s findings, Song et al. (2004) concluded that
Chaga and Chaga mycelium may inhibit NF-BNF-B in human skin
(Figure 7). Chaga possesses antioxidants, like melanin and hispidin
analogues (polyphenols) along with dismutase and catalase. This
makes it a promising ingredient in the field of dermatology for
addressing signs of aging such as wrinkles, sagging skin, and graying
hair. Oxidative stress is believed to be a contributing factor to these
manifestations of aging. Excessive free radicals resulting from
sunlight exposure and other oxidative damage can lead to
accelerated skin deterioration due, to the body’s inability to
effectively neutralize them (Song et al., 2013). More antioxidants
in the body might theoretically delay or even halt the aging process.
The efficiency of Chaga in combating other kinds of oxidative stress
implies that it may also combat aging, although no clear study has
connected it to anti-aging effects (Géry et al., 2018).

Chaga sulphur soap is manufactured in South Korea, where it
is said to have anti-aging and hydrating effects, among others
(Ţura et al., 2018). Sagayama et al. (2019) conducted cell
proliferation experiments to assess the impacts of Mongolians
using Chaga sclerotium to wash their hair traditionally. They
isolated five lanostane-type triterpenes (1–5) from human hair
follicle dermal papilla cells (HFDPCs). These triterpenes
outperformed the positive control, minoxidil, for their pro-
proliferative effects on HFDPCs.

Yan et al. (2014) investigated the potential of Chaga to reduce
melanin pigmentation and explore its use as a skin whitening
ingredient in cosmetics. Specifically, they focused on tyrosinase,

an enzyme, for stimulating production. It was discovered that the
tyrosinase enzyme was inhibited by betulin and trametenolic acid,
but other compounds such as inotodiol and lanosterol activated
tyrosinase and increase pigment synthesis in laboratory cells.
Pigment reduction may assist people with darker patches to
achieve a more even skin tone, whilst pigment activation may be
beneficial for those who have lost or decreased their pigment. It
seems that Chaga has great potential as a cosmetic agent, and further
studies are needed to determine how beneficial the various
components may be for the cosmeceutical industry.

8.1 Industrial applications

Chaga produces ligninolytic enzymes that act as biocatalysts in
oxidoreductase processes such as degrading lignin and other parts of
the cell wall (Dashtban et al., 2010). Particularly, ligninolytic
peroxidase degrades polymers and other complex components in
an oxidative process, splitting the entire lignin structure (Silvat,
2013). In a similar fashion, the enzyme degrades polysaccharide
compounds in hemicellulose and cellulose. By breaking down these
materials, Chaga can access the nutrients present in the wood and
utilize them for its growth and survival (Cajthaml and Svobodová,
2012).

This ability of Chaga’s enzymes to degrade lignin and other
woody materials has attracted interest for potential applications in
various industries. One such application is bioremediation, where
these enzymes play a role in the cleanup of polluted environments.
By breaking down lignin and other organic pollutants, such as
pesticides, dyes, and industrial chemicals, these enzymes
contribute to the degradation of toxic compounds, leading to the
remediation of contaminated sites and a reduction in environmental
pollution (Singh et al., 2021). Another notable application lies in
biofuel production. In one study, lignocellulosic biomass, including
wood and agricultural residues, was reported to be beneficial as a
feedstock for biofuel production. Ligninolytic peroxidase enzyme
hydrolyzed the lignocellulosic materials, breaking them down into
simpler sugars. These sugars were then fermented to produce
biofuels like ethanol. By facilitating the degradation of biomass,
these enzymes present a promising avenue for the advancement of
biofuel technologies (Ilić et al., 2023).

In the paper and pulp industry, these enzymes have been
reported to provide a more environmentally friendly alternative
to the conventional pulping and bleaching processes. The enzymes
activate the bond between ink and paper particles through
hydrolysis which is subsequently removed via a flotation
technique (Lee et al., 2013).

Traditionally, these industries rely on harsh chemicals and
energy-intensive methods (Kaur et al., 2020). However, the
enzyme was found to selectively degrade lignin, increasing the
efficiency of the pulping process while reducing the dependence
on chemicals. Furthermore, these enzymes can be employed in
the bleaching process, minimizing the use of chlorine-based
bleaching agents that pose harm to the environment (Singh
et al., 2021).

Chaga enzymes have also shown potential in the textile and
detergent industries. As bio-catalysts, they can be utilized in the
processing of natural fibers like cotton and hemp (Pavithra et al.,
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TABLE 3 Established literature reports on pharmacological potential of Chaga mushroom.

S/N Type of extract Type of
assay

Pharmacological
activity

Major findings Country of study References

1 Methanolic extract
(MeOH)

In vitro Anticancer These results support the use
of Inonotus obliquus in
treating lung cancer and
disclose the molecular basis
for its cytotoxic effect against
human lung cancer cells

South Korea Baek et al. (2018)

2 Ethyl acetate extract In vitro Antimutagenic and
Antioxidant

According to the findings,
three of the components of
Chaga, -3-hydroxy lanosta-8,
24-dien-21-al, and
inotodiolal — have
antimutagenic and
antioxidative properties,
respectively

South Korea Ham et al. (2009)

3 Chaga mushroom
powder

In vivo Anticancer The results showed that
oxalate crystals were detected
in the renal tubular lumen
and urinary sediment, and
oxalate nephropathy was
diagnosed. Kidney function
declined and hemodialysis
was started. This response is
the first report of a case of
this kind related to the
ingestion of Chaga
mushrooms

Japan Kikuchi et al. (2014)

4 Hot water extract (IOE) In vitro Ex vivo Immunomodulating effects of
Chaga

The results show that Chaga
regulates antigen-specific
antibody production and
release of Th1/Th2 cytokines
in immune cells

South Korea Ko et al. (2011)

5 Hot water extract In vitro Antitumor Hot water extracts of Chaga
(IOWE) can be used to treat
cancer by increasing the
expression of pro-apoptotic
proteins while decreasing the
expression of anti-apoptotic
proteins, thereby helping
cancer cells die

South Korea Lee et al. (2009)

6 Aqueous extract
(IOAE)

In vitro Anti-inflammatory IOAE suppresses TNF-α,
iNOS and IL-1, indicating
that it may be useful in
preventing inflammatory
bowel illness

South Korea Mishra et al. (2012)

7 Ethanolic extract In vitro Prevents inflammatory bowel
disease (IBD)

Chaga extract decreases
oxidative stress in
lymphocytes from IBD
patients and healthy people

United Kingdom Najafzadeh et al.
(2007)

8 Polysaccharide extract
(IOPE)

In vitro Antitumor A Chaga extract was found to
inhibit tumour cell growth

China Ning et al. (2014)

9 Aqueous extract
(AEIO)

In vitro Antivirus Herpes simplex virus (HSV)
infection was significantly
reduced when I. obliquus
aqueous extract (AEIO) was
used

China Pan et al. (2013)

10 Methanol extract
(MEIO)

In vitro and In
vivo

Anti-inflammatory In LPS-stimulated RAW
264.7 macrophages, Chaga
dramatically reduced NO,
PGE2, and TNF-α
production

South Korea Park et al. (2005)

Anti-nociceptive

(Continued on following page)
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TABLE 3 (Continued) Established literature reports on pharmacological potential of Chaga mushroom.

S/N Type of extract Type of
assay

Pharmacological
activity

Major findings Country of study References

11 Dry matter of culture
broth (DMCB) of
Inonotus obliquus

In vitro Antihyperglycemic DMCB of Inonotus obliquus
had strong
antihyperglycemic,
antilipidperoxidative, and
antioxidant properties in
alloxan-induced diabetic
mice

China Sun et al. (2008)

Antilipidperoxidative

12 Polysaccharide extract
(IOPE)

In vitro Antifatigue IOPE increased swimming
time in mice but decreased
lactic acid and urea levels.
Studies on major organs,
including the liver, showed
no negative consequences of
IOP. These findings support
the use of IOP as an anti-
fatigue medication

China Xiuhong et al. (2015)

13 Polysaccharides
extracted from Chaga

In vitro Antihyperglycemic In alloxan-induced diabetic
mice, Chaga DMCB
polysaccharide extract
lowered blood glucose levels

China Xu et al. (2010)

Antilipidperoxidative

14 Aqueous extract
(IOAE)

In vitro Anticancer Extract reduced cell growth,
causing G0/G1-phase arrest
and apoptotic cell death

South Korea Youn et al. (2008)

15 Aqueous extract
(IOAE)

In vitro Anticancer The Inonotus obliquus
aqueous extract significantly
reduced tumour growth in
mice. The Inonotus obliquus
extract may be utilised as a
natural cancer suppressant
by improving energy
metabolism

South Korea Arata et al. (2016)

16 Aqueous dried fruiting
body Chaga fraction

In vitro Anticancer The results suggest that
Chaga has anticancer
benefits that are partially
attributed to reduction in
tumor cell proliferation,
motility, and morphological
changes

Poland Lemieszek et al.
(2011)

17 Polyphenolic and
Polysaccharide extract
(IOPE)

In vitro Antioxidant The results of the study
showed that IOPE protected
cells from oxidative stress
and scavenged free radicals at
concentrations above 5 g/mL

South Korea Cui et al. (2005)

18 Aqueous extract
(IOAE)

In vitro Immunity enhancer The extract increased blood
IL-6 levels when
administered orally. Reduced
TNF-related pathological
abnormalities were observed
in the extract-treated
animals. These findings
support the use of IOAE as
an immunity enhancer
during chemotherapy

South Korea Kim (2005)

19 Aqueous extract
(IOAE)

In vitro Anticancer IOAE at 10 μg/mL to
2000 μg/mL concentration
suppressed cancer cell
development

Poland Burczyk et al. (1996)

20 Aqueous extract
(IOAE)

In vitro Anticancer French Chaga has cytotoxic
effects on normally
transformed BEAS-2B cells

France Géry et al. (2018)

(Continued on following page)
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2023; Asemoloye et al., 2021 reported that by effectively removing
lignin and impurities from these fibers, the ligninolytic peroxidase
enzyme contributed to the production of cleaner and higher-quality
textiles. In the detergent industry, Chaga enzymes were found to
enhance the efficiency of laundry detergents by aiding in stain
removal and facilitating the degradation of organic matter
(Asemoloye et al., 2021).

9 Agricultural potentials

Aside from the pharmacological advantages of Chaga, there have
been a few discoveries regarding its use in crop and animal
husbandry. However, despite Chaga’s popularity and potential for
use in agriculture, this application of the fungus has not been
subjected to a rigorous scientific review. Hence, this part of the
review will focus on Chaga and its prospective uses in agriculture
(Figure 8).

9.1 Potentials of chaga in animal farming

The use of these mushrooms as lignocellulosic materials were
conceptualized more than a century ago by Falck (1902), who
proposed their use for improving agricultural waste and
subsequently animal nutrition. After almost a century, several
newer studies also focus on improving lignocellulosic materials
for fodder (Lindenfelser et al., 1979; Hadar and Cohen-Arazi,
1986). This includes investigating the underlying biochemical
mechanisms of the fungal degradation of agricultural waste.
Studies have also considered the lignocellulose complex in
straw and plant residues, and the reaction mechanisms
connecting lignin polymers and hydrolytic enzymes such as
cellulases and hemicelluloses (Hadar et al., 1992; Honda et al.,
2000).

Antibiotics have become a major aspect of livestock
production, especially in developed countries (Rathgeber et al.,
2008). The initial evidence, reported by Moore et al. (1946)
showed the benefits of administering doses of antibiotics to
chickens (Moore et al., 1946). Their study indicated that the
inclusion of streptomycin improved the growth rate of the chicks
(Moore et al., 1946). Chaga mushrooms contain a concentration
(8.57%) of β glucan which is recognized for its immune system
support properties and has been shown to improve the growth
rate of fowls (Chandrasekaran et al., 2011). Currently, few studies
conducted to confirm that incorporating β glucan, into animal
feed has an overall impact, on the system and the growth of
livestock.

Several studies have shown that the addition of β-glucan to
animal feed positively affects the immune system and the growth of
farm animals. One study, in particular, demonstrated that broiler
feed supplemented with β glucan increased the weight of the broilers
significantly as compared to broilers given feed without
supplemented β glucan (Chae et al., 2006). Rathgeber et al.
(2008) conducted studies that revealed β glucan to be equally
effective, as virginiamycin, in promoting the growth of broiler
chickens. Similarly, Dritz et al. (1995) demonstrated that the
addition of β glucan improved the growth of nursery pigs while

TABLE 3 (Continued) Established literature reports on pharmacological potential of Chaga mushroom.

S/N Type of extract Type of
assay

Pharmacological
activity

Major findings Country of study References

21 Gold nanoparticles
(AuNPs) synthesized
using Inonotus obliquus

In vitro Antibacterial Anticancer Both the MCF-1 human
breast cancer cell line and the
NCI-N87 human stomach
cancer cell line demonstrated
high antibacterial,
antioxidant, and cytotoxic
activity

South Korea Lee et al. (2015)

22 Ethanol and water
extracts

In vitro Immunity booster The findings show that the
Chaga mushroom can make
a small-molecule inhibitor
that stops the CTLA-4/
CD80 interaction. They
believe that Chaga can be
used to create a new type of
immune checkpoint
inhibitor

South Korea Kim et al. (2020)

FIGURE 7
Cosmetics uses of Chaga mushroom.
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incorporating Chaga into their diet enhanced piglet growth and
facilitated weight gain. Not are β glucans utilized in the food and
pharmaceutical industries as anticancer and immune-modulating
agents. They are also employed within the aquaculture and livestock
sectors to enhance animals’ innate immunity (Jung et al., 2007; Zhu
et al., 2016). According to (Jung et al., 2007), β-glucan from
Paenibacillus polymyxa JB115 can be added to animal feed to
enhance immunity and may act as an anticancer agent in
livestock. Additionally, rainbow trout (Oncorhynchus mykiss)
were fed β-glucan pellets, increasing the secretion of specific
antibodies and Ig levels in serum (Skov et al., 2012). Owing to
the emergence of new diseases and government efforts to prohibit
antibiotics that promote growth while enhancing the efficacy of
commercial agriculture, new opportunities for natural, highly
effective, and inexpensive immunomodulators like Chaga
mushrooms can compensate by inducing and enhancing disease
resistance while reducing losses. Moreover, these mushrooms
produce significant quantities of β-glucan that can be used in
feed supplements (Cueno et al., 2004). These supplements can
improve immunity, reducing the excessive use of antibiotics. This
has been confirmed by the immunostimulation of fowl after being
fed with Pleurotus ostreatus, which considerably improved without
affecting the size or quality of the meat (Li et al., 2006; Zhang et al.,
2008).

In addition, these medicinal mushrooms have been investigated
extensively as prospective materials for improving the quality of
agricultural lignocellulose waste (Bogan et al., 1999). In one study,
Chaga mushroom helped to breakdown lignin, releasing cellulose
that can be used by ruminants (Kamra and Zadražil, 1986). This
breakdown mechanism was linked to the ligninolytic system of the
mushroom made up of oxidative enzymes. In another study, the
direct use of mushrooms as lignocellulosic residues in animal feed

played an important role in the diet of ruminants (Streeter et al.,
1982). Studies have also examined the use of Pleurotus spp in
breaking down wheat straw under different conditions and
substrate treatments (Zadrazil, 1997; Salmones et al., 2005; Khan
et al., 2013; Muswati et al., 2021). A significant increase in
digestibility of wheat straw was observed after treatment with the
mushroom. Similarly, Hadar et al. (1992) found that the lignin
constituents in wheat straw significantly decreased during 4 weeks of
treatment with P. ostreatus. In vitro digestion also increased and the
product was degraded by up to 40% in animals’ diets (Hadar et al.,
1992).

A major barrier to the upgrade of straw to fibre is the expensive
materials and equipment needed for the preparation of fungal
substrates (Hüttermann et al., 2000). Hüttermann et al. (2000)
described a new process for degrading agricultural wastes using
Pleurotus spp. This included using solar heating for pasteurization,
and treatment using detergents, tomato pomace, and potato
pulp. These methods generated positive results in on-farm
applications (Hüttermann et al., 2000). Moreover, in both
in vitro and in vivo studies, Pleurotus spp. significantly improved
the availability of roughage in animal diets due to its action on
cellulose and lignin (Van Kuijk et al., 2015). In a feeding experiment
by Hüttermann et al. (2000), rams fed with mushroom-treated straw
increased in body weight. At the same time, the treated group
demonstrated an increase in nutritive value (Hüttermann et al.,
2000).

In a study by Nwafor et al. (2022), a significant increase in the
mineral composition of animal feed produced from agro -waste was
observed after treatment with extracts ofmushrooms. Its amino acid and
carbohydrate contents also increased significantly as compared to the
positive control, confirming the potential for mushrooms to improve the
nutritional composition of animal feed (Nwafor et al., 2022).

FIGURE 8
Agricultural potentials of Chaga.
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9.2 Potentials of the chaga mushroom in
crop farming

Boulet and Bussières (2018) mentioned that an arborist in
Quebec employed Chaga powder and paste to treat beech tree
blight caused by Cryphonectria parasitica. The incision healed
over 2 years, and the trees became immune to blight. This means
that Chaga might be used as an inoculation or crop-protection
strategy for other tree species. Chaga is also used as a fertilizer to
protect cultivated plants from Phytophthora, and as a plant
growth stimulant to promote development (Shashkina et al.,
2006). Some Russian researchers, especially P. A. Yakimov and
others (Bulatov et al., 1959; Shashkina et al., 2006; Sysoeva et al.,
2012), conducted detailed investigations of Chaga and its
concentrated extracts along with those of other porous fungi
about a century ago (Bulatov et al., 1959). The chemical
composition of Chaga is significantly different from other
polypores. An X-ray fluorescence approach, atomic absorption
spectrum, and gravimetric analysis demonstrated that Chaga
contains the following: carbon (39%), potassium (9%–10%),
hydrogen (3.6%), nitrogen (0.4%), magnesium (0.64%),
calcium (0.37%), chlorine (0.33%), phosphorus (0.23%),
sodium (0.04%). The nitrogen content of Chaga is primarily
part of proteins. The products of hydrolysis exposed 15 different
amino acids, the most prevalent of which were glycine, aspartic,
and glutamic acids (accounting for approximately 40%), as well
as tyrosine, serine, threonine, leucine, methionine, lysine, and
histidine (Shashkina et al., 2006).

Invitro studies have shown these mushrooms to be useful in the
degradation of industrial dyes, phenols, soil decontamination, and
wastewater treatment. Yet, no further analysis such as in situ tests
has been done to further confirm these claims (Irie et al., 2001). Roy
et al. (2015) investigated the improvement of plant health for
Capsicum annuum L by treating it with spent mushroom
substrate from button and oyster mushrooms. After several
weeks of treatment, growth parameters such as height, branches,
and yield improved significantly (Roy et al., 2015; Somnath et al.,
2015). Apart from that, the substrate played a role in reducing soil
phosphate and increasing root and leaf phosphate. The c9hlorophyll
and carotenoid content of the leaves also significantly increased
following soil treatment with the mushroom substrate (Roy et al.,
2015).

Currently, mushroom substrates are recognized as inexpensive,
ecologically friendly sources of organic fertilizers. Features such as
high moisture, nutrient retention, high air permeability, loose texture,
and rich pellet structure are known to improve soil structure and
maintain a beneficial environment for soil microorganisms. Among
the numerous applications of mushrooms to crop farming, the use of
spent mushroom substrate remains the most effective and economical
(Lou et al., 2017). The spent substrate, from mushrooms contains an
amount of matter and essential nutrients like nitrogen, phosphorus,
and potassium. These elements play a role in promoting plant growth.
Through the utilization of mushroom substrate, as a soil amendment,
farmers can enhance the quality and fertility of their soil without
having to rely on synthetic fertilizers (Esmaielpour et al., 2017).
Secondly, the use of spent mushroom substrate can help to reduce
waste and save resources. After the mushrooms are harvested, the

remaining substrate can be recycled and used as a soil amendment
instead of being disposed of as waste (Cunha Zied et al., 2020). Third,
the production of spent mushroom substrate is relatively low-cost
compared to other types of organic amendments, such as compost or
manure. This is because the substrate is already produced as a
byproduct of mushroom cultivation, so there are no additional
costs associated with its production (Meng et al., 2018).

Another study demonstrated that treatment with beneficial
microorganisms improved the biological and nutritional activity
of the substrate thereby improving soil structure, efficiency,
quality, and ecological function (Mohd Hanafi et al., 2018). In
another study, after composting, elements such as phosphorus,
potassium, and nitrogen increased after treatment with the
mushroom (Akdeniz, 2019; Sánchez, 2010). Moreover, during
the composting process, mushroom substrates diminished the
function of pathogenic microorganisms and by extension plant
diseases, while supplying these essential nutrients.

Other studies have demonstrated the benefits of combining
mushroom substrates with organic waste or sludge (Meng et al.,
2018; Meng et al., 2019). In another study, substrate-compost
mixes improved nitrogen content in plants by more slowly
releasing nitrogen from the substrate, increasing overall
uptake (Uzun, 2004). Grimm and Wosten (2018) also
illustrated that mushroom substrates can be used to replace
chemical fertilizers.

Field experiments by Courtney and Mullen (2008) compared a
chemical fertilizer to an organic mushroom substrate. The application
ofmushroom substrate improved soil properties and the yield of barley by
50% relative to the 40% improvement from the chemical fertilizer
(Courtney and Mullen, 2008). This improved performance was
attributed to the increase of mineral contents by 3 times for the
mushroom substrate, the chemical fertilizer yielded no increase. As
mentioned earlier medicinal mushrooms like Chaga contain
compounds such as polysaccharides, polyphenols, steroids, and
terpenoids that have antibacterial and antioxidant properties
(Glamočlija et al., 2015). Moreover, the application of mushroom-
spent substrate to soils slowly releases these bioactive compounds into
the soil. This can potentially benefit plants by acting as a defense against
diseases. For example, a research study demonstrated that using this type
of biofertilizer led to plant growth and increased resistance against the
fungal pathogen Fusarium oxysporum (Awad-Allah et al., 2022). In
another study focused on chili pepper plants affected by root rot disease
scientists explored the potential of a biofertilizer derived from Bacillus
subtilis bacteria. The findings revealed that applying this biofertilizer
significantly reduced both disease incidence and severity while also
promoting plant growth and higher yields (Sivasakthi et al., 2014).
Similarly in a study involving tomato plants infected with Rhizoctonia
solani fungus researchers investigated the effects of a biofertilizer derived
from Trichoderma fungus, on growth and disease resistance levels
(Sivasakthi et al., 2014). According to Awad-Allah et al. (2022) when
the biofertilizer was applied it led to plant growth. Increased protection,
against the pathogen (Awad-Allah et al., 2022). This claim is further
supported by Othman et al. (2020) research, which showed that
mushroom substrates have properties that can combat plant
pathogens. Apart from agriculture, the antibacterial effect of these
mushrooms has also been used to suppress food and clinical
pathogens (Hearst et al., 2009).
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10 Chaga safety and side effects

Since antiquity, the use of Chaga and its crude extracts has been
completely harmless. Although the useful bioactivities of Chaga have
attracted a lot of attention in the last decade, the safety and toxicology
of the fungus has not been extensively investigated. Moreover, few
studies that have investigated the safety and toxicology present
divergent views on the safety of the mushroom.

In one study, researchers claim that the fungus is safe for
consumption, whether ingested by animals or plants. However,
Cui et al., in their study showed that the ethanol extract of Chaga
was found to be harmful to HaCaT keratinocytes cells when applied in
concentrations ranging from 100 to 400 g/mL (Cui et al., 2005).

Another study has shown that the primary porcine hepatocytes
(PLP2) were not significantly affected by alcohol-based and/or aqueous
extracts of Chaga at a concentration of 400 ppm compared to those
exposed to alcohol for the first time (Glamočlija et al., 2015).
Furthermore, other studies and numerous investigations have
concluded that the use of Chaga extract does not result in any
impact, on weight fluctuations, or effects on liver and kidney
functions in kumming mice and Sprague Dawley rats (Kim et al.,
2006; Nakata et al., 2007; Yong et al., 2018). Yet varying concentrations
of oxalic acid, a toxic substance found in the fungus are documented in
several studies (Kikuchi et al., 2014; Glamočlija et al., 2015; Lee et al.,
2020). Although the understanding of the exactmechanismbetween the
concentration of oxalic acid and its excretion ability is unclear, it is
possible that with time extended use of chaga in any form may lead to
increased levels of oxalate in the blood. This increase in levels may pose
a risk, for sensitive individuals and potentially lead to oxalate necrosis.

The overuse of natural fungi such as Chaga is a growing concern
among medical experts around the world (Lumlertgul et al., 2018). It is
currently widely accepted that conducting trials on every fungus
worldwide is nearly impractical due to the high cost and workforce
required. Moreover, the nutritional host largely influences the chemical
composition and safety of mushroom. However, following strict safety
and health regulations can safeguard the safety and efficacy of Chaga
products. Moreover, more toxicology studies on chaga products are
needed in the present literature to authenticate the safety of these
products before their use in treating illnesses.

11 Conclusion and prospects

Inonotus obliquus (Chagamushroom), just like othermedicinal fungi
has been acknowledged for its healing abilities in traditional, folk, and
modernmedicine. In the current review, the fungus has demonstrated its
wide array of medicinal properties including antimicrobial, anti-
inflammatory, anticancer, antioxidant, and anti-tumor evaluated
in vitro and in vivo. Yet, current evidence on its biological activity is
still to a large extent scanty. Although studies have established the benefits
of Chaga’s bioactive properties, more rigorous research is needed to fully
understand the fungus’s mechanisms of action and to harness its full
potential for future use in modern medicine.

Extraction of bioactive components using water was found to be
the most common technique of preparation (or as a decoction) by
many researchers and indigenous people. Moreover, most claims
about Chaga’s traditional medicinal properties have also been
proven true, either by in vitro or in vivo testing. Further clinical

trials and translational studies are however required to further
acquire more information on the fungus that will serve as a basis
for future research. This could provide the necessary data to support
the development of innovative medicines or applications as well as
present alternative use for this mushroom. Eventually, this could
pave the way for harnessing the bioactive characteristics of Chaga for
various treatments.

Most research on Chaga was conducted in Asia and North
America, with no available literature related to Africa. This is
understandable because of its preference for certain climatic
conditions (e.g., cold-loving), its origins in Asia (particularly Russia),
and its extensive distribution across Europe and North America.
Despite the mushroom’s widespread availability and traditional uses,
it may nevertheless be considered underutilized since its full potential
has not yet been explored (for example, by confirming its use as a
traditional medicine for diseases other than originally used, or by
further applying the confirmed in vitro properties of pharmacology
to in vivo research and human or clinical trials for drug development).

Furthermore, Chaga mushrooms have shown promise in
agricultural applications. In animal farming, researchers have
studied Chaga and its bioactive compound β glucan for their
potential to stimulate the system and promote growth in
livestock. Adding Chaga or β glucan to animal feed has been
found to boost immunity enhance growth performance and lessen
the reliance on antibiotics. Moreover, scientists have explored the
use of Chaga mushrooms to enhance the quality and digestibility of
waste which can serve as feed, for ruminant animals. Utilizing
Chaga in animal farming holds the potential, for improving animal
wellbeing, and productivity and minimize impact.

In crop farming, Chaga has shown potential as a crop protection
strategy and plant growth stimulant. It has been used to treat tree
blight caused by Cryphonectria parasitica and protect cultivated
plants from Phytophthora. The application of Chaga or its extracts
has been associated with improved plant growth parameters,
increased nutrient content, and enhanced resistance to plant
diseases. Furthermore, Chaga mushrooms and their spent
substrate have been explored as organic fertilizers, rich in organic
matter and nutrients, to improve soil quality and fertility. The use of
spent mushroom substrate not only enhances soil structure but also
reduces waste and saves resources in agricultural practices.

The most recent pharmaceutical importance of Chaga mushrooms
has been reviewed to cater to the huge increase in demand for
mushroom derivatives like polysaccharides and antibacterial agents
and for its industrial and medicinal uses. Scientists spent many years
investigating this fungus before its possible pharmacological effects
could be validated, despite extensive Indigenous knowledge indicating
that themushroomhas long been utilizedmedicinally. In summary, this
review serves as a benchmark for researchers to further investigate this
fungus, to better understand its medicinal value and benefits for crop
and animal production, particularly as a potential candidate for
biofertilization, and to further exploit its remarkable significance in
the cosmeceutical and food industries.
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