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Background: The progression of lung adenocarcinoma (LUAD) may be related to
abnormal fatty acid metabolism (FAM). The present study investigated the
relationship between FAM-related genes and LUAD prognosis.

Methods: LUAD samples from The Cancer Genome Atlas were collected. The
scores of FAM-associated pathways from the Kyoto Encyclopedia of Genes and
Genomes website were calculated using the single sample gene set enrichment
analysis. ConsensusClusterPlus and cumulative distribution function were used to
classify molecular subtypes for LUAD. Key genes were obtained using limma
package, Cox regression analysis, and six machine learning algorithms (GBM,
LASSO, XGBoost, SVM, random forest, and decision trees), and a RiskScore model
was established. According to the RiskScore model and clinical features, a
nomogram was developed and evaluated for its prediction performance using
a calibration curve. Differences in immune abnormalities among patients with
different subtypes and RiskScores were analyzed by the Estimation of STromal and
Immune cells inMAlignant Tumours using Expression data, CIBERSORT, and single
sample gene set enrichment analysis. Patients’ drug sensitivity was predicted by
the pRRophetic package in R language.

Results: LUAD samples had lower scores of FAM-related pathways. Three
molecular subtypes (C1, C2, and C3) were defined. Analysis on differential
prognosis showed that the C1 subtype had the most favorable prognosis,
followed by the C2 subtype, and the C3 subtype had the worst prognosis. The
C3 subtype had lower immune infiltration. A total of 12 key genes (SLC2A1, PKP2,
FAM83A, TCN1, MS4A1, CLIC6, UBE2S, RRM2, CDC45, IGF2BP1, ANGPTL4, and
CD109) were screened and used to develop a RiskScoremodel. Survival chance of
patients in the high-RiskScore group was significantly lower. The low-RiskScore
group showed higher immune score and higher expression of most immune
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checkpoint genes. Patients with a high RiskScore were more likely to benefit from
the six anticancer drugs we screened in this study.

Conclusion: We developed a RiskScore model using FAM-related genes to help
predict LUAD prognosis and develop new targeted drugs.

KEYWORDS

lung adenocarcinoma, fatty acid metabolism, RiskScore, machine learning, survival
probability, prognosis

1 Introduction

Lung adenocarcinoma (LUAD) accounts for about 40% of
primary lung tumors. LUAD is one of the tumor types that have
rapid metastasis and high mortality, with a survival time shorter
than 5 years (Denisenko et al., 2018; Hutchinson et al., 2019; Shi
et al., 2022). LUAD, at an early stage, usually has no obvious clinical
symptoms and is often diagnosed by adjuvant methods at the middle
and late stages or whenmetastasis occurs (Patz et al., 2014; Skřičková
et al., 2018; Sung et al., 2021). Although significant advances have
been made in the research and clinical treatment of LUAD, the
prognosis of LUAD remains dismal, despite the clinical use of
chemoradiotherapy, targeted therapy, and immunotherapy.
Currently, the underlying cellular and molecular mechanisms of
tumor behavior remain unclear (Lin et al., 2021; Chen et al., 2022a).
Therefore, molecular characteristics of LUAD should be

comprehensively investigated to improve clinical therapies and
the accuracy of prognosis prediction for LUAD.

Lipid metabolism is an important metabolic process for cells.
Abnormal fatty acid metabolism (FAM) in cancer cells has been
increasingly studied. Carcinogenesis mechanisms of various cancers
vary greatly, but they often show similar abnormalities in metabolism.
Reprogramming the metabolism of glucose, fatty acids, and other
biomolecules could promote the progression of tumor cells (Li and
Zhang, 2016). Growing evidence demonstrated that some changes
occur in tumor tissues in different processes of FAM (Amiri et al.,
2018), including in deciding the types, abundance, and mechanisms of
action of lipid-signaling molecules with regulatory functions (Santos
and Schulze, 2012). Changes of FAM also affect the proliferation,
differentiation, and metastasis of tumor cells (Yu et al., 2018).
However, the characteristics and functions of genes related to FAM
in LUAD have not been fully explored.

FIGURE 1
Abnormal FAM-related pathway genes in LUAD. (A) Proportion of gene deletion and amplification in the CNV of FAM-related pathway genes. (B)
Waterfall diagram of mutant information in the SNV of FAM-related pathway genes. (C) Comparison of FAM pathway scores in LUAD and para-cancer
tissues. (D) Comparison of expression of FAM-related pathway genes in LUAD and para-cancer tissues.
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FIGURE 2
Construction of molecular subtypes based on genes related to FAM pathways. (A) CDF curve of TCGA cohort samples. (B) Clustering heatmap of
samples in the TCGA cohort when consensus k = 3. (C) Relationship between the prognoses of three TCGA subtypes is shown by the K–Mcurve. (D)CDF
curve of GSE31210 cohort samples. (E) Clustering heatmap of samples with consensus k = 3 in the GSE31210 cohort. (F) K–M curve of the relationship
between the prognoses of three subtypes of GSE31210. (G) Heatmap of the expression of FAM-related pathway genes between three subtypes in
the TCGA cohort.
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A previous study investigating abnormal FAM showed that the
overexpression of fatty acid-binding protein 5 (FABP5) is related to
the poor prognosis in LUAD andmay be a new clinical target to treat
LUAD (Garcia et al., 2022). The downregulation of fatty acid
synthase (FASN) interferes with the progression of LUAD
through regulating the glucose metabolism and inhibiting the
AKT/ERK pathway (Chang et al., 2019). Related drugs could act
on the FAM process in LUAD. For example, anlotinib controls
LUAD progression through inhibiting FASN-mediated FAM (Shen
et al., 2022). Chaoyang Liang et al. also showed that the
overexpression of genes related to FAM enzymes (ACOT11)
regulates the growth, differentiation, and metastasis of LUAD
cells through a variety of signaling pathways (Liang et al., 2020).
In addition, Wang et al. developed a fatty acid-related RiskScore
model to predict the prognosis of lung cancer patients and identified
38 fatty acid-related genes. Among these 38 genes, eight genes
(HGNAT, MCTP2, ENPP5, PLEKHA6, ANKRD29, CNTNAP2,
SLC4A5, and ZNF738) have not been reported in previous lung
cancer-related studies (Wang et al., 2022a). Therefore, the
identification and verification of genes related to FAM may have
great potential for developing new prognostic models and
improving clinical treatment for LUAD.

In this study, we downloaded genomic information about the
clinical characteristics of LUAD from The Cancer Genome Atlas
(TCGA) and Gene Expression Omnibus (GEO) databases.
Molecular subtypes related to FAM pathways were developed for
LUAD, and we further established a risk assessment model based on

FAM-related genes using six machine learning algorithms. In
addition, we assessed the level of immune cell infiltration and
sensitivity to common drugs in different risk groups. The current
study provided a better understanding of the mechanism of
abnormal FAM in LUAD cells, helping to improve the
therapeutic strategies for treating LUAD patients.

2 Materials and methods

2.1 Data downloading and preprocessing

2.1.1 TCGA-LUAD dataset downloading and
preprocessing

Data with clinical phenotypes were obtained from the TCGA
database (Liu et al., 2020). Samples without the survival time or state
were eliminated to ensure that the survival time of all the included
samples was longer than 0 days. Finally, 500 tumor samples and
59 para-cancer tissues samples from the TCGA dataset were
obtained.

2.1.2 GEO data download and preprocessing
A set of chip data was obtained from the GEO (Barrett et al.,

2013), and the probe was converted into symbol according to the
annotation file. Normal tissue samples or those without clinical
information were excluded to ensure that the survival time of all the
included samples was longer than 0 days, and only LUAD samples

FIGURE 3
Differences in clinical characteristics among molecular subtypes. (A) Bar chart of pair-to-pair comparison of three molecular subtypes in the TCGA
cohort. (B) Comparative table of each clinical characteristic molecular subtype.
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were retained through data filtering. Specifically, 289 samples were
obtained from the GSE30219 dataset; 226 samples were from the
GSE31210 dataset; 196 samples were from the GSE37745 dataset;
and 127 samples were from the GSE50081 dataset.

2.1.3 Acquisition of FAM-related genes
From the Kyoto Encyclopedia of Genes and Genomes (KEGG), a

collection of 42 related genes was downloaded (Kanehisa and Goto,
2000).

FIGURE 4
Mutant characteristics and differential activation pathways of molecular subtypes. (A) Different molecular subtypes in the TCGA cohort were
analyzed by somatic mutation analysis. (B) Heatmap of functional enrichment scores of each subtype in the TCGA cohort.
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2.2 Classification of molecular subtypes

The ConsensusClusterPlus package was used to cluster the
TCGA-LUAD and GSE31210 dataset, and the clustering heatmap
of the samples was drawn (Liu et al., 2022a). Cumulative distribution
function (CDF) was used to obtain the optimal clustering number
and relatively stable clustering results. Three molecular subtypes
(C1, C2, and C3) were then identified. To further analyze the
prognosis of different molecular subtypes, Kaplan–Meier (KM)
curves were drawn using the survminer package.

2.3 Filtering of differentially expressed genes
and enrichment analysis

In order to further screen gene sets related to FAM subtypes, we
used the limma package to analyze the differences between C1 and
C2+C3, C2 and C1+C3, and C3 and C1+C2 in the TCGA-LUAD
dataset under the threshold of | log2 (a Fold Change) | > 1,
FDR <0.05 (Ritchie et al., 2015). GO and KEGG enrichment
analysis were performed on genes showing abnormal expression
using the clusterProfiler software package (Yang et al., 2023).

2.4 Construction of the RiskScore model

We used univariate Cox analysis for analyzing the differentially
expressed genes (DEGs) (Peng et al., 2021). The prognostic genes
with p < 0.001 were screened. Machine learning models can be
widely used in themedical field due to their excellent performance in
predicting classification problems (Choi et al., 2020). Therefore,
based on six machine learning algorithms, namely, GBM (Dash

et al., 2022), LASSO (Kang et al., 2021), XGBoost (Li et al., 2022a),
SVM (Zhou, 2022), random forest (Utkin and Konstantinov, 2022),
and decision trees (Streeb et al., 2022), the DEGs in the comparison
pairs of C1 and C2+C3, C2 and C1+C3, and C3 and C1+C2 were
comprehensively analyzed, and the characteristic genes were
obtained by overlapping analysis. A stepwise regression method
was used to further compress the characteristic genes. We calculated
the β value by multivariate Cox analysis (Zhang et al., 2021a). The
calculation formula of the model is as follows:

RiskScore � Σβi × Expi.

In the formula, Expi is the expression value of key FAM-related
genes and β is the Cox regression coefficient of the key genes.

According to the abovementioned formula, the RiskScore of
each TCGA-LUAD sample was determined and then processed
by the Z-score (DeVore, 2017). Then, the samples with a
RiskScore less than 0 were categorized as the low-RiskScore
group, while those with a RiskScore greater than 0 were
categorized as the high-RiskScore group. Five sets of chip data
(GSE31210 cohort, GSE19188 cohort, GSE30219 cohort,
GSE37745 cohort, and GSE50081 cohort) were used to
calculate the RiskScore by the same method. A receiver
operating characteristic (ROC) curve was obtained using the
timeROC package (Lu et al., 2022a).

2.5 Comparison of clinical features

The clinicopathological features (Gender, Event, T. Stage, M.
Stage, N. Stage, and Stage) in different molecular subtypes and
different RiskScore groups in the TCGA cohort were analyzed. The
pheatmap package of R software was applied to plot a heatmap to

FIGURE 5
Analysis of immune abnormalities of molecular subtypes and enrichment analysis of differential genes. (A) Comparison of immune scores among
different subtypes. (B) Comparison of 22 immune cell scores among different subtypes. (C) Comparison of the abundance of 28 immune cells among
different subtypes; * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, and ns represents p > 0.05. (D) Circle diagram of the top five functional
enrichment analyses of differential genes GO enrichment analysis. (E) Circle diagram of the top 15 functional enrichment analyses for KEGG
enrichment analysis of differential genes.
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examine the distribution of samples with different clinical features
(Zhang et al., 2021b).

2.6 Establishment of a nomogram

The relationships between clinical features, RiskScore, and
prognosis were assessed applying univariate and multivariate Cox
analyses (van de Vijver et al., 2002). The model prediction efficiency
was evaluated by developing a nomogram combining key
clinicopathological features using the rms package (Liu et al.,
2021a). A calibration curve was used to evaluate the predictive
power of the model and to test the prediction performance of the
nomogram (Van Calster et al., 2019). We also used the ggDCA

package to assess the stability of the decision curve analysis
(DCA) and to plot the calibration curve and DCA for the
nomogram in predicting 1-, 3-, and 5-year prognosis (Van
Calster et al., 2018).

2.7 Mutation analysis

Data for copy number variant (CNV) were downloaded to
compare the deletion or amplification of genes associated with
FAM pathways (Wu et al., 2020). Then, mutation data of single
nucleotide variants (SNVs) were downloaded and a waterfall map
was generated using the maftools package to display SNVmutations
in FAM-related pathway genes (Li et al., 2022b).

FIGURE 6
Key characteristic genes screening and K–M curves of six datasets. (A) Scatter plot of univariate Cox analysis of 493 genes associated with subtypes
of FAM. (B) Venn diagram comparing C1 and C2 + C3 for characteristic gene screening of six algorithms. (C) Venn diagram comparing C2 and C1 + C3 for
characteristic gene screening of six algorithms. (D) Venn diagram comparing C3 and C1 + C2 for characteristic gene screening of six algorithms. (E) K–M
curve of the RiskScoremodel developed by the 12 genes in the TCGA cohort. (F) K–Mcurve of the RiskScoremodel developed by the 12 genes in the
GSE31210 cohort. (G) K–M curve of the RiskScore model developed by the 12 genes in the GSE19188 cohort. (H) K–M curve of the RiskScore model
developed by the 12 genes in the GSE30219 cohort. (I) K–M curve of the RiskScore model developed by the 12 genes in the GSE37745 cohort. (J) K–M
curve of the RiskScore model developed by the 12 genes in the GSE50081 cohort. (K) Line graph of AUC for 1–5 years of RiskScore for six datasets.
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Differences in genomic changes were examined in different
molecular subtypes. Mutated datasets were processed using
mutect2 software (Pei et al., 2021). Genes showing a mutation
frequency greater than 3 were filtered. Fisher’s test was applied to
detect frequently mutated genes in each subtype (p < 0.05).

2.8 Pathway difference analysis

The FAM pathway scores were calculated by single sample gene
set enrichment analysis (ssGSEA) (Zhuang et al., 2021). Differences
in FAM-related pathway scores between LUAD and para-cancer
tissues were compared by the Wilcoxon signed-rank test (Divine
et al., 2013). We used the pheatmap package to draw heatmap to
show the expression of related genes (Zheng et al., 2022).

In order to characterize biological process pathways, the GSVA
software package (Hänzelmann et al., 2013) was used to analyze all
the relevant gene sets in the Hallmark database. The Kruskal test was
performed to examine differentially activated pathways in different
molecular subtypes (Liu et al., 2021b). Significant pathways were
selected under p < 0.05, and the heatmap of functional enrichment
scores of each subtype was generated.

2.9 Comparison of immune abnormalities

Immune infiltration was evaluated by Estimation of STromal
and Immune cells in MAlignant Tumors using Expression

(ESTIMATE), and the differences in immune scores were
compared (Yang et al., 2021). Then, CIBERSORT algorithm
was used to calculate the abundance of 22 kinds of immune
cells and compare the differences in immune cell scores (Zhang
et al., 2022a). A variety of immune cell characteristic genes were
identified (Charoentong et al., 2017). We compared the
differences of 28 immune cell scores using the ssGSEA.
Furthermore, the expression of gene multiple immune
checkpoint genes was analyzed between different RiskScore
groups (Danilova et al., 2019).

2.10 Drug sensitivity analysis

The R language pRRophetic package could be used to predict
patient sensitivity to drugs. Several commonly used drugs such
as erlotinib, paclitaxel, MG-132, rapamycin, sunitinib, and
cisplatin were selected (Skalniak et al., 2013; Landi and
Cappuzzo, 2015; Bhaoighill and Dunlop, 2019; Wang et al.,
2020; Lu et al., 2022b).

2.11 Statistical analysis

This study mainly used R software for statistical analysis. A p <
0.05 was defined as a statistically significant difference. The
Wilcoxon test was used to assess differences in immune
abnormalities between RiskScore groups.

FIGURE 7
RiskScore combined with clinical characteristics to analyze the predictive performance of the model. (A) Heatmap of the distribution of clinical
features in the high- and low-RiskScore group samples. (B) Univariate Cox analysis of clinical features and RiskScore. (C) Multivariate Cox analysis of
clinical features and RiskScore (univariate prognostic correlation was selected here). (D) Nomogrammodel. (E) Calibration curves of the nomogram in 1,
3, and 5 years. (F) Decision curve of the nomogram.
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FIGURE 8
Combinedwith the RiskScoremodel, potential regulatory pathways were identified. (A) Pathway enrichment score heatmap obtained by six datasets
in the HALLMARK gene set. (B) Heatmap of correlated pathway scores in the KEGG database TCGA cohort in high- and low-RiskScore groups.
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3 Results

3.1 Abnormal FAM-related pathway genes in
LUAD

After selecting FAM-related pathway genes, we found that some
genes, such as ACADM, ACSL1, and CPT1C, tended to show
deletion, while some genes, such as ALDH9A1, CPT1A, and
ACOX1, tended to show amplification (Figure 1A). The SNV of
the genes related to FAM pathways was shown in waterfall diagram,
and it was found that ACSL6 had the highest mutation rate and was
mostly missense mutation (Figure 1B). A comparison of scores of
FAM pathways showed that LUAD tissues had a lower score of FAM
pathways compared to para-cancer tissues (Figure 1C). The
expression of 24 FAM-related pathway genes was more active in
para-cancer tissues than that in LUAD tissues, such as ACAA1,
ACAT2, and ADH1B (Figure 1D). These results suggested that
FAM-related genes may have an impact on the progression
of LUAD.

3.2 Classification of molecular subtypes
based on genes related to FAM pathways

In the TCGA dataset, the CDF curve showed that cluster 3 was a
relatively stable clustering (Figure 2A). Finally, three molecular
subtypes of C1, C2, and C3 were defined based on the sample
clustering heatmap (Figure 2B). Further analysis of the K–M curves
for the three molecular subtypes showed significant differences in
terms of prognostic survival among the three subtypes (p = 0.0027).
Overall, C1 had the best survival outcome, followed by C2 and C3
(Figure 2C).

We used the abovementioned methods to analyze and classify
the GSE31210 dataset. The CDF results showed that cluster 3 also
had relatively stable clustering results (Figure 2D). At k = 3, the three
molecular subtypes were significantly different (Figure 2E). There
were also significant differences in prognostic survival among the
three subtypes (p = 0.00041). The survival of C1 was found to be the
most favorable, while that of C3 was the worst, and the overall results
were similar to those of the TCGA dataset (Figure 2F).

FIGURE 9
Comparison of high- and low-RiskScore groups with immune abnormalities. (A) Immune score was compared between low- and high-RiskScore
groups. (B) In total, 22 immune cell scores were compared between low- and high-RiskScore groups. (C) In total, 28 immune cell scores were compared
between low- and high-RiskScore groups. (D) Immune checkpoint gene expression was compared between low- and high-RiskScore groups. (E) Drug
susceptibility was compared in low- and high-RiskScore groups. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, and ns represents p > 0.05.
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The gene expression of FAM-related pathways in the three
subtypes was shown in the heatmap. It was found that the gene
expression of FAM-related pathways in C1 was relatively active,
while that in C3 was relatively poor (Figure 2G). These results
suggested that FAM-related subtypes were associated with different
prognosis, and that tumors of different subtypes had large
differences in the FAM status.

3.3 Significant differences in
clinicopathological characteristics among
the three subtypes

The clinicopathological characteristics of different subtypes in
the TCGA cohort were analyzed. There were significant differences
in three clinical indicators (Event, N Stage, and Stage) of the three
subtypes (p < 0.05). Event showed that C1 had a significantly higher
survival probability compared to C2 and C3, while C3 had the worst
survival outcomes. As for N stage, C1 had the highest proportion of
N0, while C3 had the highest proportion of N2. In Stage, C1 had the
largest proportion in stage I, while C3 had the largest proportion in
stage IV. Therefore, the outcome, clinical grade, and staging of
C1 were relatively favorable, while those of C3 were unfavorable
(Figure 3).

3.4 Mutant characteristics and differential
activation pathways of the three subtypes

Differences in genomic changes among subtypes in the TCGA
cohort were analyzed. The mutation dataset of TCGA was processed
by mutect2 software, and a total of 9,922 genes were screened.
Fisher’s test was used for screening with p < 0.05, which filtered
770 genes. The top 20 genes were selected for further analysis on the
characteristics of somatic mutations. The results showed that C1 had
the lowest mutation rate and C3 had the highest mutation rate
(Figure 4A). Moreover, whether differentially activated pathways
were present in different subtypes were explored. Some screened
pathways were found to be significantly differentially activated in
different subtypes, for example, PI3K AKT MTOR SIGNALING,
G2M CHECKPOINT, and FATTY ACID METABOLISM. The
FATTY ACID METABOLISM pathway was actively expressed in
the C1 and C2 subtypes but less expressed in the C3 subtype
(Figure 4B). This could explain a poorer prognosis of C3.

3.5 Analysis of immune abnormalities of
subtypes

Analysis on differences in the immune microenvironment
among the three subtypes showed that C3, with a poor
prognosis, had the lowest scores of StromalScore, ImmuneScore,
and ESTIMATEScore, which indicated lower immune infiltration of
C3 (Figure 5A). The abundance of 18 kinds of immune cells, such as
B-cell memory, was different among the three subtypes (Figure 5B).
The calculation results of 28 immune cell scores, such as activated
B cells and activated CD4 T cells, demonstrated differences in
26 immune cell scores among the three subtypes (Figure 5C).

3.6 Screening and enrichment of FAM-
related genes

To screen gene sets associated with FAM subtypes, differential
analysis was performed for C1 and C1+C2, C2 and C1+C3, and
C3 and C1+C2. A total of 124 upregulated genes and
123 downregulated genes were screened in the comparison
between C1 and C2+C3; 59 upregulated genes and four
downregulated genes were screened in the comparison between
C2 and C1+C3; and 160 upregulated genes and 276 downregulated
genes were screened in the comparison between C3 and C1+C2.
There were 493 DEGs in total. Circle diagrams of GO enrichment
analysis on the top five functional enrichment analyses were
plotted, and we observed that mitotic sister chromatid
segregation was the most significant biological process. The
condensed chromosome centromeric region was the most
prominent cellular component. The MHC class II receptor
activity was the most active molecular function (Figure 5D).
Asthma was found to be the most significant pathway in the circle
diagram of the top 15 functional enrichment analyses on the
differential genes (Figure 5E).

3.7 Construction and evaluation of a
RiskScore model

Building upon these findings, univariate Cox analysis was used
to perform prognostic analysis on 493 genes related to FAM
subtypes, and 143 were screened to be prognostic genes relevant
to LUAD (p < 0.001) (Figure 6A). Subsequently, we determined
feature genes using six machine algorithms (including LASSO,
GBM, random forest, SVN, XGBoost, and decision trees) for
C1 and C2+C3, C2 and C1+C3, and C3 and C1+C2. Through
the Venn diagram, we found a total of 18 characterized genes
between C1 and C2+C3 (Figure 6B), a total of 16 genes between
C2 and C1+C3 (Figure 6C), and a total of 12 genes between C3 and
C1+C2 (Figure 6D). Further comparison and screening showed
34 important genes for subsequent studies. Finally, the number of
important genes was reduced to 12 key genes (SLC2A1, PKP2,
FAM83A, TCN1, MS4A1, CLIC6, UBE2S, RRM2, CDC45,
IGF2BP1, ANGPTL4, and CD109) by the stepwise regression
method.

The calculation formula is as follows:
RiskScore = −0.293*SLC2A1+0.145*PKP2+0.113*FAM83A+

0.092*TCN1-0.142*MS4A1-
0.081*CLIC6+0.24*UBE2S+0.217*RRM2-
0.286*CDC45+0.162*IGF2BP1+0.093*ANGPTL4+0.112*CD109.

The RiskScore of the sample in TCGA was calculated by the
abovementioned model formula, and high- and low-RiskScore
groups were classified. The K–M curve results showed that the
survival probability of the high-RiskScore group was lower (p <
0.0001, Figure 6E). At the same time, five sets of chip data
(GSE31210, GSE19188, GSE30219, GSE37745, and GSE50081)
were used to draw K–M curves, and the survival probability of
the high-RiskScore group was still lower (Figures 6F–J). The AUC
values of the 1-, 3-, and 5-year RiskScore of six datasets were
observed, and it was found that the values of six datasets were all
around 0.7 and that the AUC values of three datasets were
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consistently above 0.7, indicating that the model had a strong
predictive performance (Figure 6K).

3.8 Testing the predictive performance of
the RiskScore model combined with clinical
characteristics

Combined with the RiskScore, the distribution of samples
with multiple clinical characteristics was presented in the form of
a heatmap. The results showed that the distribution of five
clinical characteristics (Cluster, Event, T Stage, N Stage, and
Stage) was closely correlated with that of the RiskScore
(Figure 7A). Meanwhile, the univariate Cox analysis between
each clinical feature and the RiskScore showed that the p-values
of T Stage, N Stage, Stage, and RiskScore were all less than 0.001.
The multivariate Cox analysis showed that the p-values of
RiskScore, T Stage, and N Stage were all less than 0.05.
Therefore, T Stage, N Stage, and RiskScore were independent
prognostic factors (Figures 7B, C). A nomogram was established
by the abovementioned factors. According to the results, the
RiskScore had the strongest survival prediction ability
(Figure 7D). The slope and distance between all the
calibration curves and standard ones were similar, which
verified the nomogram’s prediction capability (Figure 7E). The
benefit rates of the RiskScore and nomogram were significantly
higher than the extremum curves, which proved that the
nomogram and RiskScore had the greatest power for survival
prediction (Figure 7F).

3.9 Potential regulatory pathways identified
by the RiskScore model

The HALLMARK gene set was enriched in six datasets by GSEA,
and it was found that E2F target and G2M checkpoint pathways had
the highest scores, while bile acid metabolism and other pathways
had lower scores. The FAM pathway score was also generally low
(Figure 8A). We compared the predicted pathway scores of
RiskScore groups in the TCGA cohort and observed that the
scores of 15 pathways including ubiquitin-mediated proteolysis
were higher in the high-RiskScore group, while the scores of five
pathways including FAM were lower in the high-RiskScore group
(Figure 8B).

3.10 Immune status and immunotherapy
preference predicted by the RiskScore

The ImmuneScore and ESTIMATEScore were higher in the
high-RiskScore group compared to those in the low-RiskScore
group (Figure 9A). Among the 22 immune cell scores predicted,
11 immune cell scores, such as T-cell CD4 memory resting,
showed significant differences between the two RiskScore
groups (Figure 9B). Among the 28 immune cell scores
predicted, 18 immune cell scores, such as activated
CD4 T cells, showed differences between the two RiskScore
groups (Figure 9C). The expression of 48 different immune

checkpoint genes was compared between the two RiskScore
groups, and higher expression of 19 immune checkpoint
genes, such as BTLA, TNFRSF14, ICOS, and CD48, was found
in the low-RiskScore group (Figure 9D).

Cisplatin, erlotinib, rapamycin, sunitinib, MG-132, and
paclitaxel were all found to be more sensitive to the high-
RiskScore group, suggesting that patients in high-RiskScore
groups might respond better to these drugs (Figure 9E).

4 Discussion

Lung cancer is one of the most deadly malignant tumors
worldwide (Wang et al., 2022b). The metabolic reprogramming
of cancer cells, particularly the modification of FAM, is firmly
connected with tumor growth (Maan et al., 2018). Abnormal
FAM is associated with the growth, differentiation, and
metastasis of LUAD cells. Acetyl-coA carboxylase 2 (ACC2)
is a key FAM enzyme. Fei-Yuan Yu et al. found that ACC2 is low-
expressed in tumor cells, and its expression is negatively
correlated with tumor progression (Yu et al., 2022). FASN is
a homodimeric multienzymatic protein that inhibits and blocks
the adipogenic pathway and hinders fatty acid synthesis. This
causes apoptosis in tumor cells to overexpress FASN without
affecting non-malignant cells (Relat et al., 2012). Recent studies
showed that FASN expression is upregulated and overactivated
in LUAD, which may be related to the progression of LUAD
(Relat et al., 2012). Drug targeting FAM pathways in LUAD has
been designed. For example, AZ12756122, a novel FASN
inhibitor, can induce cell apoptosis, downregulate FASN
expression and activity, and reduce EGFR and Akt/mTOR
pathway activation (Polonio-Alcalá et al., 2022). Although the
relationship between the gene expression of FAM pathways and
the prognosis of LUAD has been explored, this study introduced
a variety of machine learning analysis algorithms to more
comprehensively analyze the genetic characteristics of FAM
pathways (Ganggayah et al., 2019), which can help establish a
more effective risk prediction model for LUAD based on the
FAM pathway genes.

Using LUAD data from the TCGA dataset, GEO dataset, and
FAM-related gene sets obtained by KEGG analysis, we found that
LUAD had lower scores of FAM-related pathways. Molecular
subtypes were classified using the genes related to FAM
pathways, and six machine learning methods were applied to
select key genes related to the three LUAD subtypes. A total of
12 key genes (SLC2A1, PKP2, FAM83A, TCN1, MS4A1, CLIC6,
UBE2S, RRM2, CDC45, IGF2BP1, ANGPTL4, and CD109) were
determined to be closely related to LUAD prognosis. The
downregulation of SLC2A1-AS1 can inhibit LUAD cell growth
and expansion, and its overexpression increases tumor cell
proliferation and differentiation. PKP2 promotes the growth,
division, and migration of cancer cells through activating the
EGFR signaling pathway in LUAD cells (Hao et al., 2019).
FAM83A-AS1 knockdown can suppress the proliferation of
LUAD cells, can inhibit the expression of HIF-1α and glycolytic
genes, and also plays a role in FAM (Chen et al., 2022b). High
expression of TCN1, a vitamin B12-binding protein, is positively
associated with cancer aggressiveness and a poor prognosis (Li et al.,
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2022c). The expression level of MS4A1 in colorectal cancer is
positively correlated with patients’ prognosis. CLIC6 is
upregulated in most obese patients with endometrial cancer
(López-Ozuna et al., 2021; Mudd et al., 2021). Mengjun Zhang
et al. observed that UBE2S can promote PI3K or mTOR signaling
pathway, block the regulation of cell cycle, inhibit cell apoptosis, and
promote the proliferation, migration, and prognosis of ovarian
cancer (Zhang et al., 2022b). RRM2 is upregulated in LUAD, and
high RRM2 expression is associated with a poorer survival and lower
immune infiltration (Ma et al., 2020). In addition, Zhou et al.
demonstrated that RRM2 is overexpressed in the cell lines and
clinical samples of bladder cancer and that blocking RRM2 inhibits
the growth and proliferation of cancer cells (Zhou et al., 2022).
CDC45, a key protein involved in the initiation of DNA replication,
is upregulated in many cancers, and its expression is significantly
negatively correlated with patient prognosis (Lu et al., 2022c).
JinFeng Liu et al. found that IGF2BP1 is significantly abnormally
expressed in LUAD samples. Moreover, ANGPTL4 is also
significantly upregulated in LUAD samples, which are all closely
related to the development and a poor prognosis of LUAD (Liu et al.,
2022b; Yang et al., 2022). Tetsuro Taki et al. demonstrated the
biological significance of regulating the TGF-β signal in the cancer
cell matrix through the correlation verification of CD109 and
LTBP1, and they indicated that the expression level of
CD109 plays an important role in promoting the proliferation
and diffusion of LUAD cells (Taki et al., 2020). Furthermore, Lee
et al. demonstrated that C109 expression is correlated with the
invasiveness and metastasis of LUAD. They observed that
CD109 expression is mechanistically mediated by binding to
EGFR to regulate AKT/mTOR signaling (Lee et al., 2020).
Therefore, in this study, the selected FAM-related genes may all
be involved in the progression of LUAD and can serve as biomarkers
for the clinical diagnosis and treatment of cancer. Therefore, the
12 key genes were used to construct a RiskScore model, laying a
foundation for the survival prediction and further study of LUAD.

LUAD tissues had a lower score of the FAM-related pathway
compared to para-cancer tissues. This also indicated that
abnormal FAM was involved in the progression and
prognosis of LUAD, which is consistent with the
characterization results of FAM in LUAD by Wang et al.
(2022a). As a new treatment method, immunotherapy has
become an effective strategy to treat cancers (Riley et al.,
2019). The level of immune cell infiltration in the tumor
microenvironment has also been used as an important
indicator for assessing lung cancer (Liu et al., 2021c). There
are many studies investigating the effect of FAM on
immunotherapy in various cancers (Bleve et al., 2020). The
differential expression of FASN is closely correlated with
immune cell infiltration, and patients with a low expression
of FASN have active response to immune checkpoint inhibitor
treatment (Xiong et al., 2022). The analysis and comparison of
various tumor-related studies showed that the upregulated
FASN gene expression and activity is negatively correlated
with tumor immune infiltration. The methylation of the
FASN promoter in DNA can be used to serve as a new
biomarker for cancer (Zhang et al., 2022c). Hence, a better
understanding of the correlation between FAM and the
immunological signature of the tumor microenvironment could

facilitate the identification of new therapeutic targets for
improving clinical cancer therapies.

However, this study also had certain limitations. The tumor
and gene sample data collected were all from the database with a
small number of samples, which demanded further in vivo or
in vitro validation experiments to verify the predictive
performance of the prognostic model. At the same time, the
specific mechanism of abnormal FAM in LUAD was not clearly
studied, and its interactions and regulatory mechanisms should
be explored in depth.

5 Conclusion

In summary, this study determined 12 key genes (SLC2A1,
PKP2, FAM83A, TCN1, MS4A1, CLIC6, UBE2S, RRM2,
CDC45, IGF2BP1, ANGPTL4, and CD109) using six machine
learning methods. A RiskScore model was constructed based on
the 12 key genes mentioned previously. The model can
accurately predict the survival of LUAD patients. We
demonstrated that a specific model based on FAM could
provide significant benefits for the precision treatment of
LUAD and was effective in improving the prediction of
patients’ prognoses.

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found in the article/
Supplementary Material.

Author contributions

DC: conceptualization and writing–original draft. YZ: data curation
and writing–original draft. WZ: methodology and writing–original
draft. JL: software and writing–original draft. YB: conceptualization,
data curation, and writing–review and editing.

Funding

The authors declare financial support was received for the
research, authorship, and/or publication of this article. This work
was supported by grants from the Jilin Province Natural Science
Foundation (YDZJ202301ZYTS039), Jilin Province Health Research
Talent Special Project (2022SCZ20), Beijing Medical Award
Foundation (YXJL-20W-0625-0295), and Wu Jieping Foundation
(320.6750).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Frontiers in Pharmacology frontiersin.org13

Cong et al. 10.3389/fphar.2023.1260742

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1260742


Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors, and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Amiri, M., Yousefnia, S., Seyed Forootan, F., Peymani, M., Ghaedi, K., and Nasr
Esfahani, M. H. (2018). Diverse roles of fatty acid binding proteins (FABPs) in
development and pathogenesis of cancers. Gene 676, 171–183. doi:10.1016/j.gene.
2018.07.035

Barrett, T., Wilhite, S. E., Ledoux, P., Evangelista, C., Kim, I. F., Tomashevsky, M.,
et al. (2013). NCBI GEO: archive for functional genomics data sets--update. Nucleic
acids Res. 41, D991–D995. (Database issue). doi:10.1093/nar/gks1193

Bhaoighill, M. N., and Dunlop, E. A. (2019). Mechanistic target of rapamycin
inhibitors: successes and challenges as cancer therapeutics. Cancer drug Resist.
(Alhambra, Calif.) 2 (4), 1069–1085. doi:10.20517/cdr.2019.87

Bleve, A., Durante, B., Sica, A., and Consonni, F. M. (2020). Lipid metabolism and
cancer immunotherapy: immunosuppressive myeloid cells at the crossroad. Int. J. Mol.
Sci. 21 (16), 5845. doi:10.3390/ijms21165845

Chang, L., Fang, S., Chen, Y., Yang, Z., Yuan, Y., Zhang, J., et al. (2019). Inhibition of
FASN suppresses the malignant biological behavior of non-small cell lung cancer cells
via deregulating glucose metabolism and AKT/ERK pathway. Lipids health Dis. 18 (1),
118. doi:10.1186/s12944-019-1058-8

Charoentong, P., Finotello, F., Angelova, M., Mayer, C., Efremova, M., Rieder, D.,
et al. (2017). Pan-cancer immunogenomic analyses reveal genotype-immunophenotype
relationships and predictors of response to checkpoint blockade. Cell. Rep. 18 (1),
248–262. doi:10.1016/j.celrep.2016.12.019

Chen, J., Fu, Y., Hu, J., and He, J. (2022a). Hypoxia-related gene signature for
predicting LUAD patients’ prognosis and immune microenvironment. Cytokine 152,
155820. doi:10.1016/j.cyto.2022.155820

Chen, Z., Hu, Z., Sui, Q., Huang, Y., Zhao, M., Li, M., et al. (2022b). LncRNA
FAM83A-AS1 facilitates tumor proliferation and the migration via the HIF-1α/
glycolysis axis in lung adenocarcinoma. Int. J. Biol. Sci. 18 (2), 522–535. doi:10.
7150/ijbs.67556

Choi, R. Y., Coyner, A. S., Kalpathy-Cramer, J., Chiang, M. F., and Campbell, J. P.
(2020). Introduction to machine learning, neural networks, and deep learning. Transl.
Vis. Sci. Technol. 9 (2), 14. doi:10.1167/tvst.9.2.14

Danilova, L., Ho, W. J., Zhu, Q., Vithayathil, T., De Jesus-Acosta, A., Azad, N. S., et al.
(2019). Programmed cell death ligand-1 (PD-L1) and CD8 expression profiling identify
an immunologic subtype of pancreatic ductal adenocarcinomas with favorable survival.
Cancer Immunol. Res. 7 (6), 886–895. doi:10.1158/2326-6066.CIR-18-0822

Dash, T. K., Chakraborty, C., Mahapatra, S., and Panda, G. (2022). Gradient
boosting machine and efficient combination of features for speech-based detection
of COVID-19. IEEE J. Biomed. health Inf. 26 (11), 5364–5371. doi:10.1109/JBHI.
2022.3197910

Denisenko, T. V., Budkevich, I. N., and Zhivotovsky, B. (2018). Cell death-based
treatment of lung adenocarcinoma. Cell. death Dis. 9 (2), 117. doi:10.1038/s41419-017-
0063-y

DeVore, G. R. (2017). Computing the Z Score and centiles for cross-sectional analysis:
a practical approach. J. ultrasound Med. official J. Am. Inst. Ultrasound Med. 36 (3),
459–473. doi:10.7863/ultra.16.03025

Divine, G., Norton, H. J., Hunt, R., and Dienemann, J. (2013). Statistical grand
rounds: a review of analysis and sample size calculation considerations for Wilcoxon
tests. Anesth. analgesia 117 (3), 699–710. doi:10.1213/ANE.0b013e31827f53d7

Ganggayah, M. D., Taib, N. A., Har, Y. C., Lio, P., and Dhillon, S. K. (2019). Predicting
factors for survival of breast cancer patients using machine learning techniques. BMC
Med. Inf. Decis. Mak. 19 (1), 48. doi:10.1186/s12911-019-0801-4

Garcia, K. A., Costa, M. L., Lacunza, E., Martinez, M. E., Corsico, B., and Scaglia, N.
(2022). Fatty acid binding protein 5 regulates lipogenesis and tumor growth in lung
adenocarcinoma. Life Sci. 301, 120621. doi:10.1016/j.lfs.2022.120621

Hänzelmann, S., Castelo, R., and Guinney, J. (2013). GSVA: gene set variation analysis
for microarray and RNA-seq data. BMC Bioinforma. 14, 7. doi:10.1186/1471-2105-14-7

Hao, X. L., Tian, Z., Han, F., Chen, J. P., Gao, L. Y., and Liu, J. Y. (2019).
Plakophilin-2 accelerates cell proliferation and migration through activating EGFR
signaling in lung adenocarcinoma. Pathology, Res. Pract. 215 (7), 152438. doi:10.
1016/j.prp.2019.152438

Hutchinson, B. D., Shroff, G. S., Truong, M. T., and Ko, J. P. (2019). Spectrum of lung
adenocarcinoma. Seminars ultrasound, CT,MR 40 (3), 255–264. doi:10.1053/j.sult.2018.
11.009

Kanehisa, M., and Goto, S. (2000). KEGG: kyoto encyclopedia of genes and genomes.
Nucleic acids Res. 28 (1), 27–30. doi:10.1093/nar/28.1.27

Kang, J., Choi, Y. J., Kim, I. K., Lee, H. S., Kim, H., Baik, S. H., et al. (2021). LASSO-
based machine learning algorithm for prediction of lymph node metastasis in
T1 colorectal cancer. Cancer Res. Treat. 53 (3), 773–783. doi:10.4143/crt.2020.974

Landi, L., and Cappuzzo, F. (2015). Experience with erlotinib in the treatment of non-
small cell lung cancer. Ther. Adv. Respir. Dis. 9 (4), 146–163. doi:10.1177/
1753465815588053

Lee, K. Y., Shueng, P. W., Chou, C. M., Lin, B. X., Lin, M. H., Kuo, D. Y., et al. (2020).
Elevation of CD109 promotes metastasis and drug resistance in lung cancer via
activation of EGFR-AKT-mTOR signaling. Cancer Sci. 111 (5), 1652–1662. doi:10.
1111/cas.14373

Li, B., Yu, L., and Gao, L. (2022b). Cancer classification based onmultiple dimensions:
SNV patterns. Comput. Biol. Med. 151, 106270. doi:10.1016/j.compbiomed.2022.106270

Li, H., Guo, L., and Cai, Z. (2022c). TCN1 is a potential prognostic biomarker and
correlates with immune infiltrates in lung adenocarcinoma.World J. Surg. Oncol. 20 (1),
83. doi:10.1186/s12957-022-02556-8

Li, Y., Xu, Y., Ma, Z., Ye, Y., Gao, L., and Sun, Y. (2022a). An XGBoost-based model
for assessment of aortic stiffness from wrist photoplethysmogram. Comput. methods
programs Biomed. 226, 107128. doi:10.1016/j.cmpb.2022.107128

Li, Z., and Zhang, H. (2016). Reprogramming of glucose, fatty acid and amino acid
metabolism for cancer progression. Cell. Mol. life Sci. CMLS 73 (2), 377–392. doi:10.
1007/s00018-015-2070-4

Liang, C., Wang, X., Zhang, Z., Xiao, F., Feng, H., Ma, Q., et al. (2020).
ACOT11 promotes cell proliferation, migration and invasion in lung
adenocarcinoma. Transl. lung cancer Res. 9 (5), 1885–1903. doi:10.21037/tlcr-19-509

Lin, W., Chen, Y., Wu, B., Chen, Y., and Li, Z. (2021). Identification of the pyroptosis-
related prognostic gene signature and the associated regulation axis in lung
adenocarcinoma. Cell. death Discov. 7 (1), 161. doi:10.1038/s41420-021-00557-2

Liu, J., Gu, M., Xue, Y., Wang, Q., Ren, Y., and Huang, W. (2021c). Clinical
significance of PD-L1 expression and CD8-positive tumor-infiltrating lymphocytes
in patients with cavitary lung adenocarcinoma.Oncologie 23 (3), 439–452. doi:10.32604/
oncologie.2021.017220

Liu, J., Li, Z., Cheang, I., Li, J., and Zhou, C. (2022b). RNA-binding protein
IGF2BP1 associated with prognosis and immunotherapy response in lung
adenocarcinoma. Front. Genet. 13, 777399. doi:10.3389/fgene.2022.777399

Liu, J., Sun, G., Pan, S., Qin, M., Ouyang, R., Li, Z., et al. (2020). The Cancer Genome
Atlas (TCGA) based m(6)A methylation-related genes predict prognosis in
hepatocellular carcinoma. Bioengineered 11 (1), 759–768. doi:10.1080/21655979.
2020.1787764

Liu, T. T., Li, R., Huo, C., Li, J. P., Yao, J., Ji, X. L., et al. (2021a). Identification of
CDK2-related immune forecast model and ceRNA in lung adenocarcinoma, a pan-
cancer analysis. Front. Cell. Dev. Biol. 9, 682002. doi:10.3389/fcell.2021.682002

Liu, X., Li, J., Wang, Q., Bai, L., Xing, J., Hu, X., et al. (2022a). Analysis on
heterogeneity of hepatocellular carcinoma immune cells and a molecular risk model
by integration of scRNA-seq and bulk RNA-seq. Front. Immunol. 13, 1012303. doi:10.
3389/fimmu.2022.1012303

Liu, Z., Zhang, W., Cheng, X., Wang, H., Bian, L., Wang, J., et al. (2021b).
Overexpressed XRCC2 as an independent risk factor for poor prognosis in glioma
patients. Mol. Med. Camb. Mass.) 27 (1), 52. doi:10.1186/s10020-021-00316-0

López-Ozuna, V. M., Kogan, L., Hachim, M. Y., Matanes, E., Hachim, I. Y., Mitric, C.,
et al. (2021). Identification of predictive biomarkers for lymph node involvement in
obese women with endometrial cancer. Front. Oncol. 11, 695404. doi:10.3389/fonc.2021.
695404

Lu, H., Wu, J., Liang, L., Wang, X., and Cai, H. (2022b). Identifying a novel defined
pyroptosis-associated long noncoding RNA signature contributes to predicting
prognosis and tumor microenvironment of bladder cancer. Front. Immunol. 13,
803355. doi:10.3389/fimmu.2022.803355

Lu, L., Wang, H., Fang, J., Zheng, J., Liu, B., Xia, L., et al. (2022a). Overexpression of
OAS1 is correlated with poor prognosis in pancreatic cancer. Front. Oncol. 12, 944194.
doi:10.3389/fonc.2022.944194

Lu, Y., Chen, X., Liu, F., Yu, H., Zhang, Y., Du, K., et al. (2022c). Systematic pan-
cancer analysis identifies CDC45 as having an oncogenic role in human cancers. Oncol.
Rep. 48 (4), 185. doi:10.3892/or.2022.8400

Ma, C., Luo, H., Cao, J., Gao, C., Fa, X., andWang, G. (2020). Independent prognostic
implications of RRM2 in lung adenocarcinoma. J. Cancer 11 (23), 7009–7022. doi:10.
7150/jca.47895

Frontiers in Pharmacology frontiersin.org14

Cong et al. 10.3389/fphar.2023.1260742

https://doi.org/10.1016/j.gene.2018.07.035
https://doi.org/10.1016/j.gene.2018.07.035
https://doi.org/10.1093/nar/gks1193
https://doi.org/10.20517/cdr.2019.87
https://doi.org/10.3390/ijms21165845
https://doi.org/10.1186/s12944-019-1058-8
https://doi.org/10.1016/j.celrep.2016.12.019
https://doi.org/10.1016/j.cyto.2022.155820
https://doi.org/10.7150/ijbs.67556
https://doi.org/10.7150/ijbs.67556
https://doi.org/10.1167/tvst.9.2.14
https://doi.org/10.1158/2326-6066.CIR-18-0822
https://doi.org/10.1109/JBHI.2022.3197910
https://doi.org/10.1109/JBHI.2022.3197910
https://doi.org/10.1038/s41419-017-0063-y
https://doi.org/10.1038/s41419-017-0063-y
https://doi.org/10.7863/ultra.16.03025
https://doi.org/10.1213/ANE.0b013e31827f53d7
https://doi.org/10.1186/s12911-019-0801-4
https://doi.org/10.1016/j.lfs.2022.120621
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1016/j.prp.2019.152438
https://doi.org/10.1016/j.prp.2019.152438
https://doi.org/10.1053/j.sult.2018.11.009
https://doi.org/10.1053/j.sult.2018.11.009
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.4143/crt.2020.974
https://doi.org/10.1177/1753465815588053
https://doi.org/10.1177/1753465815588053
https://doi.org/10.1111/cas.14373
https://doi.org/10.1111/cas.14373
https://doi.org/10.1016/j.compbiomed.2022.106270
https://doi.org/10.1186/s12957-022-02556-8
https://doi.org/10.1016/j.cmpb.2022.107128
https://doi.org/10.1007/s00018-015-2070-4
https://doi.org/10.1007/s00018-015-2070-4
https://doi.org/10.21037/tlcr-19-509
https://doi.org/10.1038/s41420-021-00557-2
https://doi.org/10.32604/oncologie.2021.017220
https://doi.org/10.32604/oncologie.2021.017220
https://doi.org/10.3389/fgene.2022.777399
https://doi.org/10.1080/21655979.2020.1787764
https://doi.org/10.1080/21655979.2020.1787764
https://doi.org/10.3389/fcell.2021.682002
https://doi.org/10.3389/fimmu.2022.1012303
https://doi.org/10.3389/fimmu.2022.1012303
https://doi.org/10.1186/s10020-021-00316-0
https://doi.org/10.3389/fonc.2021.695404
https://doi.org/10.3389/fonc.2021.695404
https://doi.org/10.3389/fimmu.2022.803355
https://doi.org/10.3389/fonc.2022.944194
https://doi.org/10.3892/or.2022.8400
https://doi.org/10.7150/jca.47895
https://doi.org/10.7150/jca.47895
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1260742


Maan, M., Peters, J. M., Dutta, M., and Patterson, A. D. (2018). Lipid metabolism and
lipophagy in cancer. Biochem. biophysical Res. Commun. 504 (3), 582–589. doi:10.1016/
j.bbrc.2018.02.097

Mudd, T. W., Jr., Lu, C., Klement, J. D., and Liu, K. (2021). MS4A1 expression and
function in T cells in the colorectal cancer tumor microenvironment. Cell. Immunol.
360, 104260. doi:10.1016/j.cellimm.2020.104260

Patz, E. F., Jr., Pinsky, P., Gatsonis, C., Sicks, J. D., Kramer, B. S., Tammemägi, M. C.,
et al. (2014). Overdiagnosis in low-dose computed tomography screening for lung
cancer. JAMA Intern. Med. 174 (2), 269–274. doi:10.1001/jamainternmed.2013.12738

Pei, S., Liu, T., Ren, X., Li, W., Chen, C., and Xie, Z. (2021). Benchmarking variant
callers in next-generation and third-generation sequencing analysis. Briefings
Bioinforma. 22 (3), bbaa148. doi:10.1093/bib/bbaa148

Peng, Y., Liu, C., Li, M., Li, W., Zhang, M., Jiang, X., et al. (2021). Identification of a
prognostic and therapeutic immune signature associated with hepatocellular
carcinoma. Cancer Cell. Int. 21 (1), 98. doi:10.1186/s12935-021-01792-4

Polonio-Alcalá, E., Porta, R., Ruiz-Martínez, S., Vásquez-Dongo, C., Relat, J., Bosch-
Barrera, J., et al. (2022). AZ12756122, a novel fatty acid synthase inhibitor, decreases
resistance features in EGFR-TKI resistant EGFR-mutated NSCLC cell models. Biomed.
Pharmacother. = Biomedecine Pharmacother. 156, 113942. doi:10.1016/j.biopha.2022.
113942

Relat, J., Blancafort, A., Oliveras, G., Cufí, S., Haro, D., Marrero, P. F., et al. (2012).
Different fatty acid metabolism effects of (-)-epigallocatechin-3-gallate and C75 in
adenocarcinoma lung cancer. BMC cancer 12, 280. doi:10.1186/1471-2407-12-280

Riley, R. S., June, C. H., Langer, R., and Mitchell, M. J. (2019). Delivery technologies
for cancer immunotherapy.Nat. Rev. Drug Discov. 18 (3), 175–196. doi:10.1038/s41573-
018-0006-z

Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., et al. (2015). Limma
powers differential expression analyses for RNA-sequencing and microarray studies.
Nucleic acids Res. 43 (7), e47. doi:10.1093/nar/gkv007

Santos, C. R., and Schulze, A. (2012). Lipid metabolism in cancer. FEBS J. 279 (15),
2610–2623. doi:10.1111/j.1742-4658.2012.08644.x

Shen, J., Huang, J., Huang, Y., Chen, Y., Li, J., Luo, P., et al. (2022). Anlotinib
suppresses lung adenocarcinoma growth via inhibiting FASN-mediated lipid
metabolism. Ann. Transl. Med. 10 (24), 1337. doi:10.21037/atm-22-5438

Shi, J., Chen, Y., Peng, C., Kuang, L., Zhang, Z., Li, Y., et al. (2022). Advances in
targeted therapy against driver mutations and epigenetic alterations in non-small cell
lung cancer. Oncologie 24 (4), 613–648. doi:10.32604/oncologie.2022.027545

Skalniak, L., Koj, A., and Jura, J. (2013). Proteasome inhibitor MG-132 induces
MCPIP1 expression. FEBS J. 280 (11), 2665–2674. doi:10.1111/febs.12264

Skřičková, J., Kadlec, B., Venclíček, O., and Merta, Z. (2018). Lung cancer. Cas. Lek.
ceskych 157 (5), 226–236.

Streeb, D., Metz, Y., Schlegel, U., Schneider, B., El-Assady, M., Neth, H., et al. (2022).
Task-based visual interactive modeling: decision trees and rule-based classifiers. IEEE
Trans. Vis. Comput. Graph. 28 (9), 3307–3323. doi:10.1109/TVCG.2020.3045560

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., et al.
(2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality
worldwide for 36 cancers in 185 countries. CA a cancer J. Clin. 71 (3), 209–249. doi:10.
3322/caac.21660

Taki, T., Shiraki, Y., Enomoto, A., Weng, L., Chen, C., Asai, N., et al. (2020).
CD109 regulates in vivo tumor invasion in lung adenocarcinoma through TGF-β
signaling. Cancer Sci. 111 (12), 4616–4628. doi:10.1111/cas.14673

Utkin, L. V., and Konstantinov, A. V. (2022). Attention-based random forest and
contamination model. Neural Netw. official J. Int. Neural Netw. Soc. 154, 346–359.
doi:10.1016/j.neunet.2022.07.029

Van Calster, B., McLernon, D. J., van Smeden, M., Wynants, L., Steyerberg, E. W., and
Topic Group ‘Evaluating diagnostic tests and prediction models’ of the STRATOS
initiative (2019). Calibration: the Achilles heel of predictive analytics. BMCMed. 17 (1),
230. doi:10.1186/s12916-019-1466-7

Van Calster, B., Wynants, L., Verbeek, J. F. M., Verbakel, J. Y., Christodoulou, E.,
Vickers, A. J., et al. (2018). Reporting and interpreting decision curve analysis: a guide
for investigators. Eur. Urol. 74 (6), 796–804. doi:10.1016/j.eururo.2018.08.038

van de Vijver, M. J., He, Y. D., van’t Veer, L. J., Dai, H., Hart, A. A., Voskuil, D. W.,
et al. (2002). A gene-expression signature as a predictor of survival in breast cancer. N.
Engl. J. Med. 347 (25), 1999–2009. doi:10.1056/NEJMoa021967

Wang, D., Xiao, F., Feng, Z., Li, M., Kong, L., Huang, L., et al. (2020). Sunitinib
facilitates metastatic breast cancer spreading by inducing endothelial cell senescence.
Breast cancer Res. BCR 22 (1), 103. doi:10.1186/s13058-020-01346-y

Wang, H., Fang, J., Wang, Y., Li, S., Wang, Z., He, W., et al. (2022b). Gene editing in
non-small cell lung cancer: current application and future perspective. Oncologie 24 (1),
65–83. doi:10.32604/oncologie.2022.021863

Wang, S., Chen, A., Zhu, W., Feng, D., Wei, J., Li, Q., et al. (2022a). Characterization
of fatty acid metabolism in lung adenocarcinoma. Front. Genet. 13, 905508. doi:10.3389/
fgene.2022.905508

Wu, L., Wang, H., Xia, Y., Xi, R., and Cnv-Bac, (2020). CNV-BAC: copy number
variation detection in bacterial circular Genome. Bioinforma. Oxf. Engl. 36 (12),
3890–3891. doi:10.1093/bioinformatics/btaa208

Xiong, Q., Feng, D., Wang, Z., Ying, Y., Xu, C., Wei, Q., et al. (2022). Fatty acid
synthase is the key regulator of fatty acid metabolism and is related to immunotherapy
in bladder cancer. Front. Immunol. 13, 836939. doi:10.3389/fimmu.2022.836939

Yang, W. X., Gao, H. W., Cui, J. B., Zhang, A. A., Wang, F. F., Xie, J. Q., et al. (2023).
Development and validation of a coagulation-related genes prognostic model for
hepatocellular carcinoma. BMC Bioinforma. 24 (1), 89. doi:10.1186/s12859-023-
05220-4

Yang, Y., Liu, Y., Gao, P., Liu, K., Zhao, K., Ying, R., et al. (2022). Prognostic
significance of ANGPTL4 in lung adenocarcinoma: a meta-analysis based on integrated
TCGA and GEO databases. Evidence-based complementary Altern. Med. eCAM 2022,
3444740. doi:10.1155/2022/3444740

Yang, Z., Wei, X., Pan, Y., Xu, J., Si, Y., Min, Z., et al. (2021). A new risk factor
indicator for papillary thyroid cancer based on immune infiltration. Cell. death Dis. 12
(1), 51. doi:10.1038/s41419-020-03294-z

Yu, F. Y., Xu, Q., Wei, Q. Y., Mo, H. Y., Zhong, Q. H., Zhao, X. Y., et al. (2022).
ACC2 is under-expressed in lung adenocarcinoma and predicts poor clinical
outcomes. J. cancer Res. Clin. Oncol. 148 (11), 3145–3162. doi:10.1007/s00432-
021-03910-1

Yu, X. H., Ren, X. H., Liang, X. H., and Tang, Y. L. (2018). Roles of fatty acid
metabolism in tumourigenesis: beyond providing nutrition (Review).Mol. Med. Rep. 18
(6), 5307–5316. doi:10.3892/mmr.2018.9577

Zhang, M., Liu, Y., Yin, Y., Sun, Z., Wang, Y., Zhang, Z., et al. (2022b). UBE2S
promotes the development of ovarian cancer by promoting PI3K/AKT/mTOR signaling
pathway to regulate cell cycle and apoptosis.Mol. Med. Camb. Mass.) 28 (1), 62. doi:10.
1186/s10020-022-00489-2

Zhang, M. Y., Huo, C., Liu, J. Y., Shi, Z. E., Zhang, W. D., Qu, J. J., et al. (2021b).
Identification of a five autophagy subtype-related gene expression pattern for improving
the prognosis of lung adenocarcinoma. Front. Cell. Dev. Biol. 9, 756911. doi:10.3389/
fcell.2021.756911

Zhang, M., Yu, L., Sun, Y., Hao, L., Bai, J., Yuan, X., et al. (2022c). Comprehensive
analysis of FASN in tumor immune infiltration and prognostic value for
immunotherapy and promoter DNA methylation. Int. J. Mol. Sci. 23 (24), 15603.
doi:10.3390/ijms232415603

Zhang, W., Ji, L., Wang, X., Zhu, S., Luo, J., Zhang, Y., et al. (2021a). Nomogram
predicts risk and prognostic factors for bone metastasis of pancreatic cancer: a
population-based analysis. Front. Endocrinol. 12, 752176. doi:10.3389/fendo.2021.
752176

Zhang, Y. P., Wang, X., Jie, L. G., Qu, Y., Zhu, X. T., Wu, J., et al. (2022a).
Osteoarticular involvement-associated biomarkers and pathways in psoriasis: the
shared pathway with ankylosing spondylitis. Front. Immunol. 13, 836533. doi:10.
3389/fimmu.2022.836533

Zheng, X., Ma, Y., Bai, Y., Huang, T., Lv, X., Deng, J., et al. (2022). Identification and
validation of immunotherapy for four novel clusters of colorectal cancer based on the
tumor microenvironment. Front. Immunol. 13, 984480. doi:10.3389/fimmu.2022.
984480

Zhou, S. (2022). Sparse SVM for sufficient data reduction. IEEE Trans. pattern
analysis Mach. Intell. 44 (9), 5560–5571. doi:10.1109/TPAMI.2021.3075339

Zhou, Z., Song, Q., Yang, Y., Wang, L., and Wu, Z. (2022). Comprehensive landscape
of RRM2 with immune infiltration in pan-cancer. Cancers 14 (12), 2938. doi:10.3390/
cancers14122938

Zhuang, W., Sun, H., Zhang, S., Zhou, Y., Weng, W., Wu, B., et al. (2021). An
immunogenomic signature for molecular classification in hepatocellular carcinoma.
Mol. Ther. Nucleic acids 25, 105–115. doi:10.1016/j.omtn.2021.06.024

Frontiers in Pharmacology frontiersin.org15

Cong et al. 10.3389/fphar.2023.1260742

https://doi.org/10.1016/j.bbrc.2018.02.097
https://doi.org/10.1016/j.bbrc.2018.02.097
https://doi.org/10.1016/j.cellimm.2020.104260
https://doi.org/10.1001/jamainternmed.2013.12738
https://doi.org/10.1093/bib/bbaa148
https://doi.org/10.1186/s12935-021-01792-4
https://doi.org/10.1016/j.biopha.2022.113942
https://doi.org/10.1016/j.biopha.2022.113942
https://doi.org/10.1186/1471-2407-12-280
https://doi.org/10.1038/s41573-018-0006-z
https://doi.org/10.1038/s41573-018-0006-z
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1111/j.1742-4658.2012.08644.x
https://doi.org/10.21037/atm-22-5438
https://doi.org/10.32604/oncologie.2022.027545
https://doi.org/10.1111/febs.12264
https://doi.org/10.1109/TVCG.2020.3045560
https://doi.org/10.3322/caac.21660
https://doi.org/10.3322/caac.21660
https://doi.org/10.1111/cas.14673
https://doi.org/10.1016/j.neunet.2022.07.029
https://doi.org/10.1186/s12916-019-1466-7
https://doi.org/10.1016/j.eururo.2018.08.038
https://doi.org/10.1056/NEJMoa021967
https://doi.org/10.1186/s13058-020-01346-y
https://doi.org/10.32604/oncologie.2022.021863
https://doi.org/10.3389/fgene.2022.905508
https://doi.org/10.3389/fgene.2022.905508
https://doi.org/10.1093/bioinformatics/btaa208
https://doi.org/10.3389/fimmu.2022.836939
https://doi.org/10.1186/s12859-023-05220-4
https://doi.org/10.1186/s12859-023-05220-4
https://doi.org/10.1155/2022/3444740
https://doi.org/10.1038/s41419-020-03294-z
https://doi.org/10.1007/s00432-021-03910-1
https://doi.org/10.1007/s00432-021-03910-1
https://doi.org/10.3892/mmr.2018.9577
https://doi.org/10.1186/s10020-022-00489-2
https://doi.org/10.1186/s10020-022-00489-2
https://doi.org/10.3389/fcell.2021.756911
https://doi.org/10.3389/fcell.2021.756911
https://doi.org/10.3390/ijms232415603
https://doi.org/10.3389/fendo.2021.752176
https://doi.org/10.3389/fendo.2021.752176
https://doi.org/10.3389/fimmu.2022.836533
https://doi.org/10.3389/fimmu.2022.836533
https://doi.org/10.3389/fimmu.2022.984480
https://doi.org/10.3389/fimmu.2022.984480
https://doi.org/10.1109/TPAMI.2021.3075339
https://doi.org/10.3390/cancers14122938
https://doi.org/10.3390/cancers14122938
https://doi.org/10.1016/j.omtn.2021.06.024
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1260742

	Applying machine learning algorithms to develop a survival prediction model for lung adenocarcinoma based on genes related  ...
	1 Introduction
	2 Materials and methods
	2.1 Data downloading and preprocessing
	2.1.1 TCGA-LUAD dataset downloading and preprocessing
	2.1.2 GEO data download and preprocessing
	2.1.3 Acquisition of FAM-related genes

	2.2 Classification of molecular subtypes
	2.3 Filtering of differentially expressed genes and enrichment analysis
	2.4 Construction of the RiskScore model
	2.5 Comparison of clinical features
	2.6 Establishment of a nomogram
	2.7 Mutation analysis
	2.8 Pathway difference analysis
	2.9 Comparison of immune abnormalities
	2.10 Drug sensitivity analysis
	2.11 Statistical analysis

	3 Results
	3.1 Abnormal FAM-related pathway genes in LUAD
	3.2 Classification of molecular subtypes based on genes related to FAM pathways
	3.3 Significant differences in clinicopathological characteristics among the three subtypes
	3.4 Mutant characteristics and differential activation pathways of the three subtypes
	3.5 Analysis of immune abnormalities of subtypes
	3.6 Screening and enrichment of FAM-related genes
	3.7 Construction and evaluation of a RiskScore model
	3.8 Testing the predictive performance of the RiskScore model combined with clinical characteristics
	3.9 Potential regulatory pathways identified by the RiskScore model
	3.10 Immune status and immunotherapy preference predicted by the RiskScore

	4 Discussion
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


