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Background: Bladder cancer (BCA) has high recurrence and metastasis rates,
and current treatment options show limited efficacy and significant adverse
effects. It is crucial to find diagnostic markers and therapeutic targets with
clinical value. This study aimed to identify lactate metabolism-related
lncRNAs (LM_lncRNAs) to establish a model for evaluating bladder cancer
prognosis.

Method: A risk model consisting of lactate metabolism-related lncRNAs was
developed to forecast bladder cancer patient prognosis using The Cancer
Genome Atlas (TCGA) database. Kaplan‒Meier survival analysis, receiver
operating characteristic curve (ROC) analysis and decision curve analysis (DCA)
were used to evaluate the reliability of risk grouping for predictive analysis of
bladder cancer patients. The results were also validated in the validation set.
Chemotherapeutic agents sensitive to lactatemetabolismwere assessed using the
Genomics of Drug Sensitivity in Cancer (GDSC) database.

Results: As an independent prognostic factor for patients, lactatemetabolism-related
lncRNAs can be used as a nomogram chart that predicts overall survival time (OS).
There were significant differences in survival rates between the high-risk and low-risk
groups based on the Kaplan‒Meier survival curve. decision curve analysis and receiver
operating characteristic curve analysis confirmed its good predictive capacity. As a
result, 22 chemotherapeutic agents were predicted to positively affect the high-risk
group.

Conclusion: An lactate metabolism-related lncRNA prediction model was
proposed to predict the prognosis for patients with bladder cancer and
chemotherapeutic drug sensitivity in high-risk groups, which provided a new
idea for the prognostic evaluation of the clinical treatment of bladder cancer.
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1 Introduction

Globally, bladder cancer (BCA) is the most common urological
malignancy and requires lifelong monitoring after diagnosis
(Dobruch and Oszczudłowski, 2021). Twenty to thirty percent
of BCA patients have progressed to muscle-invasive BCA
(MIBCA) when diagnosed (Fletcher et al., 2011). Nearly 50% of
MIBCA patients develop tumor metastasis after radical cystectomy
(RC). BCA is estimated to cause 356,000 new cases and
145,000 deaths yearly (Antoni et al., 2017). Consequently, the
guidelines recommend treating MIBC with neoadjuvant
chemotherapy (NAC) and RC (Milowsky et al., 2016).
Approximately 50% of MIBCA patients cannot tolerate
suppressive adverse events resulting from chemotherapy,
leading to treatment delays in nonresponders (Hanna et al.,
2018). To improve cancer patients’ clinical efficacy and
prognosis, clarifying BCA pathogenesis and determining targets
for diagnosis and treatment are imperative.

Urothelial BCA (UBCA) is one of the earliest cancers considered
to have immunogenicity. With the FDA’s approval of immune
checkpoint inhibitors (ICIs) and pan-FGFR inhibitors, PD-1/PD-
L1 therapy has shown an impressive lasting response in UBCA
patients. However, the response rate has been low (Eckstein et al.,
2019). To maintain uncontrolled growth and proliferation, BCA
may use aerobic glycolysis-dependent metabolism (the Warburg
effect) as the primary energy source (Yang et al., 2011). High lactic
acid levels and subsequent acidification caused by glycolytic
metabolic transformation may promote carcinogenesis and
contribute to invasion, immune escape, metastasis, and
chemoradiotherapy resistance (Wang et al., 2020). In addition,
the Warburg effect is a feature of MIBCA and nonmuscle
invasive BCA (NMIBC) (Burns et al., 2021). A significant portion
of the glucose storage is converted into lactic acid by lactate
dehydrogenase-A (LDH-A), resulting in glucose being used to
promote growth, regardless of oxygen levels (Kim et al., 2006). In
vitro, overexpression of LDH-A promoted BCA proliferation,
invasion, and migration by stimulating epithelial-mesenchymal
transformation (EMT) (Jiang et al., 2016). The metabolic state of
tumor cells influences their interactions with the tumor
microenvironment (TME), which is crucial for antitumor
immunity (Bader et al., 2020). As lactic acid levels increase in the
TME, tumor-associated macrophages differentiate into
M2 subtypes, while activated macrophages promote tumor
invasion through the CCL17/CCR-4/Mtorc1 signaling axis
(Zhang et al., 2021). Lactic acid derived from tumor cells
induces GPR81 expression in dendritic cells through a paracrine
mechanism, inhibiting immune cell antigen presentation (Brown
et al., 2020). These reports suggest that an in-depth understanding
of lactate metabolism in BCA will provide new opportunities
to predict the disease life cycle and find targets for tumor
immunotherapy.

A long noncoding RNA (lncRNA) is an RNA transcribed over
200 nucleotides without the capability to code for proteins. Various
cancers, including BCA, can be initiated and progress at different
levels, including epigenetic, transcriptional, and posttranscriptional
regulation (Iyer et al., 2015). In BCA patients, overexpression of Aly/
REF export factor (ALYREF) promotes cell proliferation through
PKM2-mediated glycolysis and high expression of pyruvate kinase

M2 (PKM2), and ALYREF predicts poor survival (Wang et al.,
2021). The low expression of AlkB homolog 5 (ALKBH5) results in
poor prognosis in BCA patients, inhibits progression in a m6A-
dependent manner, and sensitizes BCA cells to cisplatin through the
casein kinase 2 (CK2)α-mediated glycolytic pathway (Yu et al.,
2020). Due to their regulatory influences on BCA metabolism,
lncRNAs are considered potential targets for drug screening and
are a promising area of research.

In recent years, using high-throughput sequencing and
data analysis in biomedical research has become increasingly
important in identifying biomarkers, predicting prognosis, and
monitoring recurrence and stratification (Zhang et al., 2019).
Many studies have used a variety of biomarkers to establish
clinical patient diagnosis or prognosis prediction models (Liu
et al., 2021). Many studies have focused on hypoxia modulating
tumor immune responses, while lactate has mainly been ignored in
BCA metabolism.

Herein, LM_lncRNAs were analyzed using bioinformatics,
a prognostic model for BCA was established, chemotherapy-
targeted drugs were explored based on lactate metabolism
groups, and a prediction model was developed for the
prognosis of BCA. This study may benefit the innovation of
customized precision diagnosis and treatment strategies
for BCA.

2 Methods

2.1 Data acquisition

TCGA data are freely available to the public, and this study
strictly follows access policies and publication guidelines. BCA
RNA expression data were downloaded from TCGA GDC’s official
website (https://portal.gdc.cancer.gov/). A total of 408 BCA
patients were evaluated for gene expression. This study included
variables such as the age and sex of the participants, American
Joint Committee on Cancer (AJCC) stage, histological grade, and
survival rate. We excluded 11 samples of BCA patients with OS<
30 days and one sample without OS recorded. All remaining
patients were included in our study. In this study, we included
397 patient samples and 19 paracancerous samples (Table 1). To
select mRNAs with a p-value less than 0.05, fragments per kilobase
million (FPKM) were converted into transcripts per million
(TPM). The Molecular Signatures Database (MSigDB) contains
a gene set related to lactate (Hallmark-lactate) (Liberzon et al.,
2015).

2.2 Identification of differentially expressed
LM_lncRNA

Our screening procedure used a |log2FC| > 1 and a false
discovery rate (FDR) < 0.05. The limma package was also used
to identify all differentially expressed lncRNAs (Ritchie et al., 2015).
It was determined whether there was a relationship between the
LM_mRNAs in the sample and all lncRNAs differentially expressed
data calculated by Pearson correlation. A correlation was
demonstrated if |R2| > 0.3 and p < 0.001.
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2.3 Development of the LM_lncRNA
prognostic signature

Based on univariate Cox analysis, lncRNAs predict overall
survival (OS) in BCA patients. Afterward, we selected lncRNAs
with independent prognostic characteristics using multivariate Cox
regression. In this study, we selected lncRNAs that are independent
prognostic factors for patient survival using the survminer software
package. The regression coefficient of the multivariate Cox regression
model wasmultiplied by the linear combination of expression levels to
generate a prognostic risk score based on LM_lncRNAs.

This model can be expressed as follows:

Risk score � @Expr of lncRNA 1( ) × coefficient of lncRNA 1( )]
+@Expr of lncRNA 2( ) × coefficient of lncRNA 2( )] + . . . . . .

+@Expr of lncRNA n( ) × coefficient of lncRNA n( )]

Riskscore � ∑
N

i�0
Expi*βi( )

In this formula, Expi is the expression level of each prognostic
lncRNA, and the coefficient is βi. Furthermore, patients were
divided into high-risk and low-risk groups based on the median
lactate-related risk scores calculated by the formula above. Kaplan‒
Meier survival curves, receiver operating characteristic curves
(ROCs), and C-indices were used to predict patient outcomes
and decision curve analysis (DCA).

2.4 Signature validation of LM_lncRNA

The TCGA dataset (dataset 1) contains 393 patients divided
into two subgroups based on random selection. There were
197 patients in validation set 1 and 196 in validation set 2
(dataset 2). TCGA datasets were analyzed, prognostic features

were identified, and the model’s performance was validated in
2 datasets, validation sets 1 and 2. Having validated the
prognostic value of lncRNA models based on the LM_
lncRNA signature, we validated its impact on survival
outcomes in BCA patients. The OS effects of prognostic
factors were compared between high-risk and low-risk
patients using log-rank tests and Kaplan‒Meier survival
curves. To evaluate the accuracy of the immune profile
derived from the survival ROC software package, we
calculated the area under the curve (AUC) using time-
dependent ROC curves.

2.5 Coexpression network construction

Using Cytoscape, we constructed a correlation network
between mRNAs and lncRNAs. With the help of the R software
package ggalluvial, we analyzed the relationship between lncRNAs
and risk.

2.6 Predictive nomograms and GSEA
enrichment analysis

Separate gene expression analyses were conducted for high-
and low-risk groups related to lactate metabolism (Subramanian
et al., 2005). With an FDR q-value <0.25, the difference was
considered statistically significant. To estimate the OS of
patients at 1, 3, and 5 years, we constructed a Norman diagram
and calibrated the statistics using the RMS package. After a
calibration curve was developed, statistically significant values
(p < 0.05) were calculated and compared with patient
predictions at the 3- and 5-year marks.

2.7 Immunity reaction and sensitivity to
immunotherapies/chemotherapies

Infiltration of immune cells in tumors in the high-risk and low-
risk groups was estimated using the ESTIMATE algorithm
(Yoshihara et al., 2013). Identifying immune checkpoints and
m6A modification enabled quantification of immune function in
high- and low-risk populations.

Every patient with BCA can be predicted to respond to
chemotherapy using the Genomics of Cancer Drug Sensitivity
database (GDSC) (Yang et al., 2013). The GDSC database
predicts chemosensitivity in patients with two types of BCA.
A half-maximum inhibitory concentration (IC50) was predicted
using ridge regression in the “pRRophetic” package (Geeleher
et al., 2014). Ten cross-validations are conducted to calculate
accuracy.

2.8 Statistical analysis

R software was used for all data analysis and visualization
(version 4.1.2). If the distribution of the groups was not
expected or the variance was unknown, Wilcoxon rank-sum

TABLE 1 The clinical characteristics of patients in the TCGA dataset

Variable Number of samples

Gender

Male/Female 294/103

Age

≤65/>65 159/238

Stage

I/II/III/IV/NA 2/124/137/132/2

Grade

High/Low/UN 376/18/3

T

T0/T1/T2/T3/T4/UN 1/3/114/190/58/31

M

M0/M1/MX/UN 187/10/198/2

N

N0/N1/N2/N3/NX/UN 229/45/76/7/36/4

Frontiers in Pharmacology frontiersin.org03

Wang et al. 10.3389/fphar.2023.1215296

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1215296


tests or Kruskal‒Wallis tests were used to compare them. Cox
regression analysis was conducted on both the univariate and
multivariate data. Survival differences were assessed using log-
rank tests. We assessed the sensitivity and specificity of BCA
prognosis and other clinicopathological features by calculating
ROC curves and C-indices. The statistics were considered
significant if p < 0.05.

3 Results

In Figure 1, a flow chart describes this study in more detail.

3.1 Identification of significantly enriched
LM_lncRNAs

Twelve GSEA gene sets were related to lactate metabolism in the
MSigDB database, and all of the lncRNAs were extracted, totaling
330. A total of 306 lncRNAs were enriched for lactate metabolism-
related pathways after intersection processing with the entire gene
set of the sample. Based on the Pearson correlation between mRNAs
and lncRNAs in BCA, we screened lncRNAs significantly associated
with lactate metabolism. We obtained 780 candidate gene
expression data of lncRNAs with the criteria of |R2| > 0.3 and
p < 0.001 (Supplementary Table S2, S3). Among them, 548 lncRNAs

FIGURE 1
Study flowchart. Three hundred thirty lactate-related mRNAs and 780 related lncRNAs (LRLs) were obtained from the TCGA and MSigDB databases.
Then, 426 lactate-related differentially expressed lncRNAs (LDELs) were identified according to their differential expression in the tumor and adjacent
tumor. Next, univariate Cox, Lasso, andmultivariate Cox analyses were applied to screen for prognostic LDELs. Based on this analysis, a 5-LDEL signature
was constructed. Subsequently, GSEA analyses, immune-related analyses, m6A-related analyses, and drug sensitivity assays were applied to identify
the potential function of this signature. Finally, 2 internal validations were conducted to explore the expression and function of these LDELs.
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were overexpressed, and 232 lncRNAs were downregulated. A total
of 426 differential lncRNAs were identified with p < 0.05 and |log2
FC| > 1 criteria. The heatmap and volcano map of the different
analyses are shown in Figures 2A,B.

3.2 Construction andmultivariate evaluation
of the prognostic significance of LM_lncRNA

This study included 397 BCA patients and 306 LM_lncRNAs in the
TCGA cohort to determine prognostic risk models. The association
between survival and LM_lncRNAs was determined by univariate Cox
regression analysis. As a result, when the p < 0.05, we found seven
lncRNAs significantly associated with OS in BCA patients. Figure 2C

shows the prediction model constructed from five lncRNAs as the result
of multivariate stepwise Cox regression analysis. A prognostic model
based on LM_lncRNA was developed by dividing patients into two
categories based on median risk scores. Compared to the low-risk group,
the high-risk group had a shortermortality and survival time (Figure 2D).

A prognostic risk score formula composed of these five lncRNAs
is as follows:

Risk score � 1.34455 × Expr of SATB2 − AS1( )
+ 0.09399 × Expr of AC021242.3( )
+ −6.07924 × Expr of AC105053.1( )
+ −4.23667 × Expr of AL135786.2( )
+ 0.19263 × Expr of LINC01842( )

FIGURE 2
Lactate signature construction. (A) Volcano map for differentially expressed lncRNAs. (B) Heatmap for differentially expressed lncRNAs. (C) Risk
score distribution and survival status of the two risk groups. (D) Kaplan‒Meier curve analysis (K-M curve analysis) for the cohort. (E) The Sankey diagram
presents the detailed connection between lactate-related lncRNAs and lactate-related genes.
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In Cox regression analysis, three of these LM_lncRNAs, SATB2-
AS1, AC021242.3, and LINC01842, showed positive coefficients,
suggesting that their high expression is associated with poorer OS.
While the coefficients of AC105053.1 and AL135786.2 were
negative, the Sankey diagram indicated that this lncRNA was
protective (Figure 2E).

An analysis of clinicopathological manifestations and LM_
lncRNA prognostic features was conducted using a
heatmap. Meanwhile, the 1-year AUC of this signature
lncRNA was 0.681, and the 5-year AUC was 0.691, which was
superior to standard clinicopathological features in predicting
BCA prognosis (Figures 3A,B). Over the 3-, 5-, and 10-year
periods, the survival ROCs were 0.67, 0.68, and 0.69,
indicating that the predictive ability of the model was still
good after 10 years (Figure 3C). As shown by DCA, the model
had good profitability based on its C-index of 0.648 (Figure 3D).

3.3 Validation of the LM lncRNA signature

To validate the LM_lncRNA signature, its prognostic
accuracy was further evaluated in an independent cohort.
These two validation datasets were also downloaded from the
TCGA database. Moreover, the data of “Dataset 2” and “Dataset
3” were randomly selected from the 397 patients obtained in the
initial part of the present study. Two validation sets were
randomly selected: validation set 1 (dataset 2: 197) and
validation set 2 (dataset 3: 196). Low-risk patients had
significantly longer survival, as evaluated by the ROC curve,
with areas of 0.670 and 0.702 (Figures 4A,B) and the
validation cohorts (Figures 4C,D), respectively.

FIGURE 3
Stability verification of the lactate-related lncRNA signature model in
the trainingcohort. (A-B)The1-yearAUCof this signature lncRNAwas0.681,
and the 5-year AUCwas0.691. (C)Thepredicted 3-, 5-, and 10-year survival
receiver operating characteristic (ROC) curves of the new lncRNA
features were 0.67, 0.68, and 0.69, respectively. (D) The model’s decision
curve analysis (DCA) also shows that the model has good profitability.

FIGURE 4
ROC validation and Kaplan‒Meier curve analysis for the lactate-related lncRNA signature. (A-B) The ROC areas were 0.670 and 0.702 in validation sets 1
(dataset 2: n= 197) and2 (dataset 3: 196), respectively. (C–D)ProlongedOS in low-risk versushigh-risk patients in both validation cohorts (log-rank test,p<0.001).
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3.4 Construction of the nomogram in the
TCGA cohort

According to univariate and multivariate regression analyses,
BCA was an independent prognostic factor (Figures 5A,B).
Figure 4C shows the nomogram derived from the five LM_
lncRNAs. The mixed nomogram (Figure 5D) combining
clinicopathological features and prognostic factors of LM_
lncRNAs coupled with the 5-year calibration curve could be
applied stably and accurately to treat BCA patients (Figure 5E).

In low- and high-risk individuals, GSEA identified pathways
enriched with differentially expressed lncRNAs. According to these
findings, LM_lncRNAs play a central role in cell cycle regulation,
oocyte meiosis, pyrimidine metabolism, and DNA replication. Low-
risk individuals showed higher steroid hormone biosynthesis, retinol
metabolism, and linoleic acid oxidation (Figure 6A).

3.5 Subtype-specific genomic profiling and
immune infiltration levels

Based on immune scores, no significant differences were found
between the high- and low-risk groups. In the high-risk group,

stromal scores were significantly different from those in the low-risk
group; moreover, as shown in Figures 6B,C, immune infiltration of
the matrix was significantly different in the high-risk group. As
immune checkpoint inhibitors are a critical component of
immunotherapy, we explored differences between groups in
immune checkpoint expression. HNRNPA2B1, HNRNPC,
IGF2BP2, IGF3, ALKBH5, and YTHDF2 were significantly
different between the high-risk and low-risk groups in terms of
m6A modification (Figure 7A). The two patient groups expressed
significantly different levels of lncRNAs, such as TNFRSF18,
TNFRSF14, TNFRSF9, TNFRSF8, TNFSF4, HAVCR2, LAG3,
LGALS9, SIGLEC15, SIGLEC9, SIGLEC7, and LAIR1
(Figure 7B). According to the results of the Pearson correlation
calculation in the previous section, with |R2| > 0.3 and p < 0.001 as
the correlation criteria, to identify independent prognostic factors
for LM_mRNAs, a network diagram was drawn (Figure 7C).

3.6 Predicting chemotherapeutic response

We utilized the GDSC website to assess the outcome considering
that chemotherapy resistance directly affects patient outcomes.
Furthermore, we assessed the response of the two subgroups to

FIGURE 5
Independent prognostic value of the LDEL risk model. (A, B) Univariate (A) and multivariate Cox (B) analyses in the training cohort. (C) A nomogram
for the lactate lncRNA signature. (D) A nomogram for both prognostic lactate lncRNAs and pathological factors. (E) C-index analysis of the nomogram.
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chemotherapeutic agents using the GDSC cell line dataset (Figure 8).
A total of 22 drugs were found to be more sensitive to high-risk
subtypes, increasing a patient’s prognosis when chemotherapy drugs
were used on patients with high-risk subtypes Table 1. The above
results can help to screen for more suitable chemotherapy drugs for
precise treatment. Several specific targeted therapeutic drugs with
the smallest IC50, such as AKT inhibitor VIII, AS601245, axitinib,
FH535, MG.132, MS.275, and PD.0332991, have more significant
potential to be developed into a high-risk group for the treatment
of BCA.

4 Discussion

BCA has a poor prognosis partly because of the lack of an
effective early diagnosis. The clinical diagnosis of BCA mainly relies
on cystoscopy biopsy and urine cytology. Cystoscopic biopsy is
invasive and expensive, and urine cytology is less sensitive for
identifying early low-grade BCA (Lokeshwar et al., 2005).
Moreover, due to the lack of sensitivity and specificity of
diagnosis, a series of BCA-related biomarkers (such as nuclear
matrix protein, bladder tumor antigen, and cytokeratin) have
limited application value in the early detection of BCA (Chao
et al., 2001). Therefore, developing new biomarkers with high

sensitivity and specificity is critical for the early diagnosis and
prognostic analysis of UBCA.

The study of this type of UBCA, its molecular mechanism, and
the prognosis of MIBCA patients is essential for the prognosis of this
type of UBCA. This study first used TCGA and MSigDB data to
confirm the LM_mRNAs further screened by correlation analysis.
Recent reports indicated that patient data in TCGA with follow-up
times <30 days or OS < 30 days were excluded (Dai et al., 2021; Fang
et al., 2021; Li et al., 2021). We performed the analysis in the present
study according to such a modality.To identify differentially
expressed lncRNAs, we conducted a differential analysis on the
lncRNAs above. Univariate and multivariate analyses identified
LM_lncRNAs that might be independent risk factors for UBCA.
This study screened five differentially expressed lncRNAs: SATB2-
AS1, AC021242.3, LINC01842, AC105053.1, and AL135786.2.
SATB2-AS1, an inhibitor of microRNA155-3p, regulates the
migration and proliferation of breast cancer cells (Liu et al.,
2017). Studies of SATB2-AS1 in colon tumors demonstrated that
it could regulate SATB2 to affect the colon tumormicroenvironment
(Xu et al., 2019). The lncRNA SATB2-AS1 regulates the
proliferation of lung cancer cells by coordinating with other
lncRNAs (Lu et al., 2021). In previous studies on lung cancer-
related lncRNAs, LINC01842 was considered to regulate lung cancer
cell proliferation in a ceRNA pattern with CASC8 and VPS9D1-AS1

FIGURE 6
(A) Enrichment of genes in the representative pathways by GSEA function analysis. (B) Immune scores for the high-risk and low-risk groups. (C) The
stromal score for the high-risk and low-risk groups.
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(Dai et al., 2020). However, there are no reports on the expression
and function of AC105053.1, AC021242.3, and AL135786.2 in
tumors. Research on tumor and immune regulation and the
TME has gradually become a hotspot in recent years. However,
most of the research on the immune regulation-related mechanism
of UBCA is limited to animal experiments and direct sequencing
data. There needs to be in-depth research on the mechanism,
especially the mechanism of lactic acid in UBCA (Conde et al.,
2015). The expression levels of immune checkpoints are predictive
biomarkers of immunotherapy response, showing broad potential
for precision therapeutics. In metastatic UBCA, immunotherapy
targeting suppressive immune checkpoints has often been used as a
second-line therapy, but only 30% of patients respond to ICI
immunotherapy (Lopez-Beltran et al., 2021). Earlier studies
related to immunotherapy and pan-cancer research demonstrated
that methylation played a critical role in immune cell infiltration
(Guo et al., 2021). The process of m6A modification was proven to
be the key to methylation (Ma et al., 2019). ALKBH5 regulates target
gene splicing, leading to changes in lactate in the tumor
microenvironment (Li et al., 2020). METTL3-mediated RNA
m6A modification regulates lactate metabolism in the TME
(Xiong. et al., 2022). We hypothesize that those with high lactate

risk scores may benefit more from immunotherapy. In comparison
to low-risk groups, high-risk groups exhibited significantly elevated
levels of m6A modification, as well as TNFRSF18, HAVCR2, and
LAG3, suggesting that these m6A modification suppressive agents
may be considered for patients with a high lactate risk.

There were 22 drugs identified in the GDSC cell line dataset
that were highly specific to the high-risk lactate group, which
provides new targets for treating UBCA more precisely. By
controlling aerobic glycolysis, overactivated PTEN/PI3K/Akt/
mTOR promotes cancer metabolic conversion and tumor cell
proliferation. AKT inhibitor VIII has been proven to protect
gastric cancer cells, clear cell renal cell carcinoma, and breast
cancer cells. AS601245, an anti-inflammatory JNK inhibitor,
and clofibrate induce cell responses and alter gene expression

FIGURE 7
Correlation between LDELs and immunometabolic modification.
(A) Expression of m6A genes between high- and low-risk subgroups
(−p ≥ 0.1, ·p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).
(B) Distribution of immune checkpoints between the high- and
low-risk subgroups. (C) Protein‒protein interaction (PPI) network of
5 LDELs and lactate metabolism genes.

FIGURE 8
Comparative analysis of chemotherapy drugs with good efficacy
in the high-risk group.
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profiles in Caco-2 colon cancer cells (Cerbone et al., 2012). In
addition to inhibiting VEGFR1, VEGFR2, and VEGFR3,
axitinib inhibits platelet-derived growth factor receptors and
C-Kit. Treatment has been used for advanced renal cell
carcinoma patients who have not responded to cytokines or
tyrosine inhibitors.

Nevertheless, it is not used in the treatment of BCA. In vitro
and in vivo, blocking the SDF-1/CXCR4/β-catenin axis inhibits the
growth of BCA cells, but there are few related reports (Zhang et al.,
2018). FH535, an inhibitor of the β-catenin pathway, inhibits the
release of the proangiogenic cytokines vascular endothelial growth
factor (VEGF), interleukin (IL)-6, IL-8, and TNF-α. It inhibits
angiogenesis in vitro and in vivo (Liu et al., 2016). The proteasome
inhibitor MG-132 inhibits mitochondrial-mediated intrinsic
myocardial apoptosis and NF-κB-mediated inflammation, and
less research has been done on cancer treatment. An
investigation of MS-275, a potent cytotoxic HDACi selective for
classes I/IV, in RMS xenograft models demonstrated modest
antitumor activity alone and combined with standard
chemotherapy (Cassandri et al., 2021). A selective CDK4/
6 inhibitor, palbociclib, has shown outstanding results in phase
II clinical trials in patients with estrogen receptor-positive HER2-
negative breast cancer (Bollard et al., 2017).

5 Conclusion

Based on ROC analysis, DCA, and calibration curve analysis of
the TCGA dataset, we identified a novel, efficient, and highly
prognostic LM_lncRNA signature. LM_lncRNAs were found to
act as independent predictors of OS in the TCGA database.
Validation by random grouping within the dataset shows its
effectiveness. In addition, 22 chemotherapeutic agents sensitive to
the high-risk group were predicted, which could be used to treat
tumors with tumor-related sensitive drugs. This study developed a
new method for diagnosing and evaluating UBCA patients’ survival
prognoses based on lactate metabolism.
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