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Glioblastoma (GBM) is the most common malignant tumor of the central nervous
system (CNS). It is a leading cause of death among patients with intracranial
malignant tumors. GBM exhibits intra- and inter-tumor heterogeneity, leading to
drug resistance and eventual tumor recurrence. Conventional treatments for GBM
include maximum surgical resection of glioma tissue, temozolomide
administration, and radiotherapy, but these methods do not effectively halt
cancer progression. Therefore, development of novel methods for the
treatment of GBM and identification of new therapeutic targets are urgently
required. In recent years, studies have shown that drugs related to mitophagy
and mitochondrial apoptosis pathways can promote the death of glioblastoma
cells by inducing mitochondrial damage, impairing adenosine triphosphate (ATP)
synthesis, and depleting large amounts of ATP. Some studies have also shown that
modern nano-drug delivery technology targeting mitochondria can achieve
better drug release and deeper tissue penetration, suggesting that
mitochondria could be a new target for intervention and therapy. The
combination of drugs targeting mitochondrial apoptosis and autophagy
pathways with nanotechnology is a promising novel approach for treating
GBM.This article reviews the current status of drug therapy for GBM, drugs
targeting mitophagy and mitochondrial apoptosis pathways, the potential of
mitochondria as a new target for GBM treatment, the latest developments
pertaining to GBM treatment, and promising directions for future research.
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1 Introduction

Glioblastoma (GBM) is amalignant tumor that develops from astrocytes, which are cells that
support nerve cells in the brain(Watson et al., 2023). It can also develop from mutations in
specific pathways related to cell death and proliferation in different cells of the brain(Louis et al.,
2021). Unfortunately, it has the lowest 5-year relative survival rate among central nervous system
tumors (6.8%) (Ostrom et al., 2019). The first-line treatment for GBM includes maximal surgical
resection followed by concomitant chemoradiotherapy and adjuvant chemotherapy (TMZ).
(Szklener et al., 2022). After standard-of-care surgery and adjuvant chemotherapy, the
approximate median survival is 14–16 months. It is mainly induced by its high resistance to
radiotherapy and chemotherapy and the inability to remove the tumor tissue completely (Ohgaki
and Kleihues, 2005; Lah et al., 2020). GBM-initiating cells (GICs), also known as GBM stem cells
(GSCs), have the potential for self-renewal, multi-directional differentiation, and tumor initiation,
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which are associated with treatment resistance and relapse and are
considered to be the cause of relapse in most patients with this
devastating disease (He et al., 2021; Yi et al., 2019, Osuka and Van
Meir, 2017). Temozolomide (TMZ) is a currently the first-line drug
used for GBM treatment independent of the methylation state of O6-
methylguanine methyltransferase(MGMT), which can induce DNA
strand breaks during cell replication and thus promotes cell
apoptosis(Hegi et al., 2019). Owing to the overexpression of MGMT
and the lack of DNA repair pathways in GMB, TMZ-resistance is a
major obstacle in improving the prognosis of patients with GBM (Chen
et al., 2018; Lin et al., 2022a). Furthermore, phenotypic and genotypic
heterogeneity (Banelli et al., 2017), hypoxic tumor environment (Ho
et al., 2022), the presence of glioblastoma stem cells (Huang et al., 2020),
abnormal signaling pathways (Yu et al., 2019; Liu et al., 2020a; Lee et al.,
2022a), and notably, the existence of the blood–brain barrier (BBB)
(Zou et al., 2022) result in a need for increased chemotherapeutic drug
doses to reach effective concentrations of the drugs, which worsens the
systemic side effects of the drugs (Oberoi et al., 2016). Therefore, further
research, drug development, and identification of novel and effective
drugs are urgently needed.

In recent years, natural products, synthetic drugs, and cytokines
targeting the mitochondria have increasingly been applied for the
prevention and treatment of various tumors, and their promising
results in anti-tumor research and application are becoming evident.
This review focuses on research progress into potential natural drug
leads for inducing mitophagy or apoptotic pathways that may be
relevant to GBM (Tab.1).

2 Mitophagy and GBM

2.1 Mitophagy

Mitochondria are important organelles that play important roles
in cellular metabolism, including but not limited to the production
of ATP via electron transport coupled with oxidative
phosphorylation, tricarboxylic acid cycle, fatty acid β-oxidation,

amino acid synthesis, calcium homeostasis, and iron metabolism
(biosynthesis of heme and iron-sulfur clusters) (Zhang et al., 2022a).
According to the International Cancer Genome Consortium and
The Cancer Genome Atlas Program, mutations in mitochondrial
DNA (mtDNA) can be detected in approximately 60% of solid
tumors, and the accumulation of mutations in mtDNA can result in
mitochondrial dysfunction(Leao et al., 2021). In glioma,
mitochondrial function is impaired by marked alterations in the
mitochondrial genome, resulting in altered morphology and
abnormal bioenergetics, including increased ROS production(Lu
and Ho, 2020). Mitochondrial dysfunction plays a crucial role in
the regulation of several cancer intrinsic pathways related to tumor
metabolism, survival, proliferation, and cell death in GBM (Lu and
Ho, 2020).

Autophagy, morphologically characterized by the formation of
autophagosomes or autolysosomes in the cytoplasm, is a
degradation pathway through which intracellular materials or
impaired organelles are transported to lysosomes for clearance
(Levy et al., 2017). Autophagy has a dual function in GBM. As a
tumor suppressor, it can destroy harmful unfolded proteins,
oncogenic protein substrates, and damaged organelles (Batara
et al., 2021). For instance, according to recent studies, breast
cancer patients with brain metastases may benefit from
therapeutic strategies aimed at targeting autophagy (Maiti and
Hait, 2021).It may also have a role in protecting GBM cells by
eliminating misfolded proteins generated during oxidative stress (Di
Rita et al., 2018). Combining standard cancer treatment with the
regulation of autophagy activity, by promoting or preventing
autophagy using inducers or inhibitors based on tumorigenesis
and cancer stages, has the potential to be a promising anti-cancer
therapy (Li et al., 2020). Mitophagy refers to the selective removal of
damaged mitochondria through the autophagy mechanism to
maintain mitochondrial quality and rescue cells from death
(Bravo-San et al., 2017; Wang et al., 2018).

These pathways can be classified into typical and atypical. The
typical pathway mainly includes PINK1/parkin-, BNIP3/NIX-, and
FUNDC1-mediated mitophagy, whereas the atypical pathway
mainly includes lipid-, AMBRA1-, BCL2L13-, FKBP8-, and RAB-
mediated mitophagy (Vara-Perez et al., 2019). Of note, the
autophagy/lysosomal pathway that removes damaged
mitochondria (i.e., mitophagy) is impaired in patients with
Alzheimer’s disease, which leads to the accumulation of
dysfunctional mitochondria, leading to synaptic dysfunction and
cognitive deficits (Kerr et al., 2017). Dopaminergic neurons
selectively fail to execute mitophagy, which promotes their
survival(Bernardini et al., 2017; Katayama et al., 2020) within
lesions in a mouse model of Parkinson’s disease. Rapamycin
reduces cisplatin-mediated nephrotoxicity by stimulating PINK1/
parkin-mediated mitophagy in renal tubular cells, reducing tissue
damage caused by chemotherapy (Wang et al., 2018). Accordingly,
mitophagy plays a crucial role in maintaining cellular homeostasis
and is a major pathway for the degradation of dysfunctional or
damaged mitochondria. Moreover, mitophagy is also a programmed
event involved in developmental and differentiation processes,
including the elimination of paternal mitochondria from
fertilized eggs (Song et al., 2021), as well as the removal of
mitochondria during erythropoiesis and muscle differentiation
(Senft and Ronai, 2016; Panigrahi et al., 2020) (Figure 1).

TABLE 1 Summary of main mitophagy and mitochondrial apoptosis pathway-
related drugs in GBM treatment.

Classification Drugs

Mitophagy pathway-related drugs Silibinin

Cannabidiol

Gossypol
(AT-101)

Apoptosis pathway-related drugs Xanthohumol

Pterostilbene

Chrysophanol

Shikonin

Grape seeds

Mitophagy and mitochondrial apoptosis pathway-related
drugs

Sinomenine
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2.2 Relationship between mitophagy
and GBM

Activation of mitophagy has been used in the treatment of
GBM(Zhou et al., 2020; Wang et al., 2022; Cammarata et al., 2023).It
can relieve stress and suppressing tumors by eliminating
dysfunctional mitochondria, and mitophagy-mediated clearance
of pro-apoptotic mitochondria may provide cytoprotective
benefits(Panigrahi et al., 2020). In recent years, studies have
shown that drugs related to mitophagy pathways can promote
the death of GBM cells by inducing mitochondrial damage,
impairing ATP synthesis, and depleting ATP in large quantities.
The induction of lethal autophagy has become a strategy to eliminate
GBM cells, which is reportedly an effective method to eradicate
cancer cells(Maiti et al., 2019; Meng et al., 2022; Rademaker et al.,
2022).

2.3 Drugs related to mitophagy

2.3.1 Silibinin
Silibinin is a flavonoid extracted and isolated from the fruit of

the chrysanthemum plant Silybum marianum (Tuli et al., 2021). It

has been widely used for the treatment and prevention of various
hepatobiliary disorders, including alcoholic liver disease, non-
alcoholic fatty liver disease, and mushroom poisoning (Abenavoli
et al., 2018; Hosseinabadi et al., 2019; Wang et al., 2020a). Recent
studies have demonstrated the broad-spectrum anti-cancer effects of
silibinin against most types of cancer cells(Jahanafrooz et al., 2018).
For example, it can inhibit the migration and invasion of breast
cancer MDA-MB-231 cells through induction of mitochondrial
fusion(Si et al., 2020). In hepatocellular carcinoma, silibinin has
been found to effectively abate hepatocarcinogenesis and
hepatocellular carcinoma growth by regulating various signaling
pathways including HGF/c-Met, Wnt/β-catenin and PI3K/Akt/
mTOR(Yassin et al., 2022). In cholangiocarcinoma, silibinin has
the ability to inhibit cholangiocarcinoma through the ERK/
mitochondrial apoptotic pathway, which makes silibinin a
potential anti-tumor drug candidate for cholangiocarcinoma
treatment(Bai et al., 2022).

Considering that silibinin has extremely high antioxidant and
anti-tumor properties, it has drawn our attention to its potential use
in the treatment of GBM.BNIP3, a member of the Bcl-2 family of
pro-apoptotic proteins and a receptor for mitophagy, exhibits
context-dependent roles in cancer(Gorbunova et al., 2020;
Gorbunova et al., 2020; Vara-Perez et al., 2021).It targets
mitochondria and could induce mitochondrial damage and
nuclear translocation of AIF6 (Su et al., 2016). A study using
GBM cell lines and nude mice with xenografted GBM has
confirmed that silibinin could induce mitophagy in GBM, and
that autophagy can promote silibinin-induced
BNIP3 overexpression and its accumulation in the mitochondria,
thereby triggering AIF-dependent death in GBM cells (Wang et al.,
2020b). Moreover, silibinin has also been shown to inhibit GBM cell
migration by inhibiting MMP-2 and -9 and improving TMZ-
resistance in GBM cells (Zhai et al., 2021; Wong et al., 2023).
Silibinin have potential uses for patients with GBM. However,
like other polyphenols, faces the challenge of low bioavailability,
which impedes its potential as a transformative chemotherapeutic
drug(Tuli et al., 2021). At the same time, further clinical research is
also needed to better understand the potential toxicity and risks
associated with the drug’s use in treating GBM. This will provide
more reliable evidence to support clinical treatment of GBM.

2.3.2 Cannabidiol
Cannabidiol (CBD), the main active component of medical

cannabis, is extracted from the wild hemp (Karimi-Haghighi
et al., 2022). It easily passes through the BBB, is highly safe, and
has anti-proliferation and anti-invasion activities against various
cancers (Valenti et al., 2022; Ammendolia et al., 2023). The literature
indicates that in many animal cancer models, CBD has shown
potential in inhibiting the progression of various types of
cancers, including in GBM, breast(Kiskova et al., 2019; Valenti
et al., 2022), lung(Milian et al., 2022; Misri et al., 2022),
prostate(Mahmoud et al., 2023), colon cancer(Jeong et al., 2019;
Lee et al., 2022b; Yuksel et al., 2023), and melanoma(Bachari et al.,
2020). CBD has emerged as a promising agent in the treatment of
glioma cells due to its ability to inhibit their proliferation and
promote cell death. This effect is mainly achieved by targeting
the mitophagy pathway, which has gained significant attention in
recent research.

FIGURE 1
Molecular mechanism of mitophagy: The figure reflects
mitophagy mediated by receptors (mainly BINP3, NIX, PINK1/parkin,
FUNDC1, BCL-2L-13, lipids, RAB, FKBP8). These mitochondrial
receptors mediate mitophagy by directly binding to LC3 on
autophagosomes via a conserved LIR motif in their N-terminal region.
Lipid accumulation on the mitochondrial outer membrane maintains
cellular homeostasis, thereby regulating the mitophagy machinery.
Hypoxia is an important stimulus that induces this process. PINK1/
parkin-mediated mitophagy occurs in a ubiquitination-dependent
manner, and ubiquitination of specific mitochondrial proteins
enhances phosphorylation of ubiquitin on mitochondrial proteins by
PINK1 to recruit mitophagy receptors and mediate the process of
mitophagy. After further polyubiquitination, parkin recruits adapter
proteins (such as p62/SQSTM1, OPTN) and interacts with LC3 on the
membrane surface of autophagosomes to promote mitophagy.
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Transient receptor potential vanilloid 4 (TRPV4) is a widely
expressed multimodal-gated ion channel that plays a pivotal role in
many physiological and pathophysiological processes (Grace et al.,
2017; Muller and Reggio, 2020). Its expression in human brain
basement membrane tissue is closely related to tumor grade and
prognosis (Yang et al., 2020). CBD can induce mitophagy by
activating endoplasmic reticulum stress via the
TRPV4–ATF4–DDIT3–TRIB3–AKT–MTOR axis.
TRPV4 expression in human GBM tissues correlates with both
tumor grade and poor survival, suggesting that TRPV4 could be an
attractive therapeutic target and biomarker for GBM (Huang et al.,
2021a). CBD can also lead to abnormal stability of the plasma
membrane by affecting the homeostasis of GBM lipid metabolism,
thereby promoting the phagocytosis of tumor cells by macrophages
and exerting an anti-GBM effect (Khodadadi et al., 2021; Genovese
et al., 2022). These two mechanisms synergistically inhibit the
formation and development of GBM, indicating that CBD has
great clinical application prospects as an anti-GBM medicine
et al., 2021).

Simultaneously, compared with single drug treatment alone, the
combined treatment of CBD and TMZ more effectively targeted
GBM patients, significantly inhibiting the growth of GBM cells and
prolonging survival time, suggesting that CBD can effectively
enhance the anti-tumor effect of TMZ in GBM (Lopez-Valero
et al., 2018; Huang et al., 2021b). Furthermore, in the first study
on the CBD-induced anti-tumor effects of RELA
Ser311 phosphorylation, ROS was shown to serve as a biomarker
for stratifying patients who may benefit from CBD treatment
(Volmar et al., 2021).

2.3.3 Gossypol (AT-101)
Gossypol (2,2ʹ-bis-(formyl-1,6,7-trihydroxy-5-isopropyl-3-

methylnaphthalene), a BH3-mimetic compound naturally present
in cottonseed, exerts anti-tumor effects by targeting various signal
transduction pathways. It has been extensively studied in clinical
trials, where it has shown good tolerability and safety (Benvenuto
et al., 2018; Yurekli et al., 2018). However, recent studies have found
that it is the (-)-enantiomer of gossypol, namely (-)-gossypol (also
known as AT-101), rather than (+)-gossypol or racemic gossypol,
that has significant anti-cancer properties (Benvenuto et al., 2018).
Therefore, the development of single-isomer pharmaceutical
preparations can avoid potential adverse reactions. Thus far, AT-
101 has been considered a promising anti-cancer drug for the
treatment of various tumors, including multiple myeloma
(Ailawadhi et al., 2023), adrenal cortical carcinoma (Yurekli
et al., 2018), esophagus cancer (Que et al., 2019), breast cancer
(Bulut et al., 2020), lung cancer (Ahmad et al., 2021; Renner et al.,
2022), and prostate cancer (Aktepe and Yukselten, 2022).

HMOX1 is an inducible enzyme that catalyzes the degradation
of oxidized preheme and is also involved in mitochondrial
biogenesis and mitophagy (Constantin et al., 2012; Hull et al.,
2016). AT-101 can promote GBM cell death by inducing
overactivation of HMOX1 and the autophagy receptors
BNIP3 and BNIP3L, causing early mitochondrial dysfunction and
marked loss of mitochondrial mass/protein (Meyer et al., 2018). It
also suppresses the growth of TMZ-resistant glioblastoma (Kim
et al., 2019). Mitochondrial respiration and mitochondrial
permeability transition pore opening were impaired after AT-101

treatment, suggesting that mitochondrial dysfunction is a key driver
of AT-101-induced cell demise (Meyer et al., 2018). Because the AT-
101 molecule is hydrophobic, oral administration greatly reduces its
bioavailability, and gastrointestinal side effects can easily be caused.
Therefore, the cyclic RGD (cRGD)-decorated mixed liposome
(cRGD-LP) nanopreparation for the tumor-targeted delivery of
AT-101 (abbreviated as Gos hereafter) came into being (Xie
et al., 2019a; Liu et al., 2022). This nanoformulation enhanced
tumor engraftment in vivo, possibly due to cRGD binding to the
αvβ3 integrin on tumors and tumor cells, enhancing tumor targeting
(Liu et al., 2022). Moreover, some studies have also shown that
arsenic trioxide-mediated hedgehog/notch inhibition can interfere
with DNA double-stranded break repair by reducing the expression
of CHEK1 and CHEK2, synergistically targeting GSC along with
AT-101 (Linder et al., 2019). AT-101 combined with
demethoxycurcumin can enhance the inhibitory effect on the
proliferation of glioblastoma cells (Mehner et al., 2020),
suggesting that combination therapy with different agents may be
an option to overcome drug resistance in GBM cells effectively, in a
long-term treatment strategy.

3 Mitochondrial apoptosis and GBM

3.1 Mitochondrial apoptosis

Mitochondria serve as vital organelles in diverse cellular
functions, including oxidative phosphorylation, ROS, and calcium
signaling, as well as intermediate metabolite synthesis required for
cell growth andmotility(Bhargava and Schnellmann, 2017). ROS are
a crucial class of molecules directly involved in the regulation of
mitochondrial function, mainly produced by mitochondrial
oxidative phosphorylation. Various cellular metabolic processes
are associated with ROS, including transcription factor activation,
gene expression, and cell differentiation and proliferation
(Thannickal and Fanburg, 2000). Apoptosis is a type of
programmed cell death that maintains the homeostasis of the
internal environment, which is mainly regulated by the activation
of the caspase cascade (Zimmermann et al., 2001). Caspase-3 is
considered as the most important regulator of apoptosis, while
caspase-9 is considered to be the master regulator of
mitochondria-mediated apoptosis (Batoon et al., 2023; Cao et al.,
2023). Apoptosis is controlled by intrinsic (mitochondrial pathway)
and extrinsic pathways, and the intrinsic pathway is regulated by the
BCL-2 family, including the anti-apoptotic activator BCL-xL and
proapoptotic effector BAX(Lindenboim et al., 2000). Cell stress
induces the proapoptotic effector BAX to induce cell apoptosis
by inducing the release of cytochrome-c (Cyt-C), a key
component of the mitochondrial electron transport chain, into
the cytoplasm (Finucane et al., 1999; Desagher and Martinou,
2000). In the extrinsic pathway, caspase-8 cleaves and activates
procaspase-3 (Boatright and Salvesen, 2003). However, the result of
both pathways is caspase activation and the cleavage of specific
cellular substrates, leading to morphological and biochemical
changes associated with an apoptotic phenotype (Lee et al.,
2020). In this process, apoptosis is characterized by the
formation of apoptotic bodies, containing the contents of dead
cells, which will be engulfed by the surrounding cells without
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causing content leakage or damage to the surrounding cells (Li et al.,
2021) (Figure 2).

3.2 Relationship between mitochondrial
apoptosis and GBM

The accumulation of intracellular ROS can cause carcinogenesis.
In GBM cells that require high levels of ROS, if ROS are lower than
the minimum level for GBM cell survival, it may induce intracellular
signaling disturbances and apoptosis (Huang et al., 2021a; Huangfu
et al., 2021). The accumulation of mutations in mitochondrial DNA
(mtDNA) contributes to mitochondrial dysfunction, which plays a
crucial role in the pathogenesis of GBM. This dysfunction leads to
abnormal energy and reactive oxygen species production, as well as
resistance to apoptosis and chemotherapeutic agents(Leao et al.,
2021).While many chemotherapeutic drugs play a tumor-killing role
by inducing ROS and enhancing oxidative stress, they can also
damage the mitochondria and DNA of normal cells and even induce
carcinogenesis in other cells (Kleih et al., 2019). Therefore,
regulating the level of ROS in tumor and normal tissues and
selectively killing tumor cells has great clinical significance (Di
Meo et al., 2022). Mitochondria are considered to be novel
targets for cancer intervention and therapy (Xu et al., 2009). It
can induce apoptosis in GBM cells by disrupting the balance in the
anti-oxidant system, which are important mechanisms in the

research of anti-tumor therapies (Benlloch et al., 2016; Feng
et al., 2016).

3.3 Drugs related tomitochondrial apoptosis

3.3.1 Xanthohumol
Xanthohumol (XN), a natural compound found in hops, is an

isoprene flavonoid with a wide range of biological activities,
including anti-inflammatory, anti-oxidant, anti-cancer,
antibacterial, and lipid lowering (Lin et al., 2022c; Neumann
et al., 2022). Since flavonoids readily cross the BBB in vivo, they
are considered potential drug leads for treating disease. Several
studies have shown that XN has anti-GBM effects. It can not
only inhibit the IGFBP2/AKT/BCL-2 pathway and activate the
P53 signaling pathway to participate in XN-induced GBM cell
apoptosis (Chen et al., 2016), but it also induces apoptosis of
glial pathway cells by increasing ROS and activating MAPK
pathways (Festa et al., 2011). Hou et al. confirmed that XN can
inhibit C6 proliferation, trigger mitochondrial stress, and induce cell
death in a concentration- and time-dependent manner (Hou et al.,
2021). Following treatment of GBM cells with XN, the cell cycle was
blocked at the G0/G1 phase, and XN induced AIF-mediated
apoptosis, which was accompanied by mitochondrial structure
and function impairment, as well as mitophagy blockage (Hou
et al., 2021). In contrast, mitochondrial injury not only disrupts

FIGURE 2
Molecular mechanism of mitochondrial apoptosis: Apoptotic stresses promote accumulation of BH3-only proteins leading to BAX/BAK
oligomerization, MOMP, and release of intermembrane space proteins. Cytochrome c leads to apoptosome formation, which results in caspase
activation and apoptosis.
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ATP synthesis in cells but also consumed large amounts of ATP to
maintain intracellular stability. This vicious cycle exacerbates
cellular energy consumption. The DNA repair machinery is a
tool to remove DNA damage for the maintenance of genomic
integrity in normal cells and paradoxically plays a crucial role in
driving the development of drug resistance and tumor recurrence
(Huang and Zhou, 2021). The results of Ho et al. showed that XN
could enhance the cytotoxicity of TMZ by inhibiting the DNA repair
system and could be used as an adjuvant drug in the treatment of
patients with GBM with DNA repair activation (Ho et al., 2020).
Moreover, XN also reduces the invasiveness of GBM cells by
inhibiting the signaling of stromal interacting molecule 1
(STIM1), indicating that XN may be a good GBM therapeutic
agent (Ho et al., 2018). Elucidating the XN-mediated molecular
mechanism may provide novel strategies for future drug
development and tumor research.

3.3.2 Pterostilbene
As a methylated derivative of resveratrol, pterostilbene (PTE)

has higher biological activity and safety than resveratrol and is
mainly found in blueberries and grapes (Rimando et al., 2004; Ruiz
et al., 2009; Chang et al., 2012). PTE has a wide range of biological
functions, including anti-tumor, anti-oxidation, anti-inflammatory,
apoptosis, cardiovascular protection, anti-proliferation, and
antibacterial activities (Chen et al., 2020), gallbladder (Tong
et al., 2021), breast (Harandi-Zadeh et al., 2021; Kumar et al.,
2021), colon (Wawszczyk et al., 2022), cervical (Shin et al., 2020),
prostate (Hemani et al., 2022), and lung cancers (Bracht et al., 2019).
In GBM, PTE can induce the loss of mitochondrial membrane
potential and production of reactive oxygen species (ROS) (Gao
et al., 2021) and activate the FAS/FASL pathway and caspase-3,
thereby inhibiting proliferation and inducing GBM cell apoptosis
(Tan et al., 2019; Gao et al., 2021). Moreover, given that PTE
presents highly bioavailability and easily crosses the BBB, PTE
administration can serve as a novel treatment for patients with
GBM (Ma et al., 2019). Based on the abovementioned experimental
results, PTE has a high research value and development prospects in
the field of GBM drug treatment.

3.3.3 Chrysophanol
Chrysophanol (1, 8-dihydroxy-3-methyl-9, 10-anthraquinone)

is a phytochemical extracted from Rheum officinale (rhubarb),
which has been utilized as a traditional Chinese herbal medicine
(Yusuf et al., 2019; Su et al., 2020). It has various pharmacological
effects, including anti-cancer, antioxidant, neuroprotective,
antibacterial, antiviral, and blood lipid-regulation effects. Studies
have shown that chrysophanol can attenuate hepatic stellate cell-
induced endoplasmic reticulum fibrosis by regulating hepatitis B
virus stress and iron concentration (Kuo et al., 2020). Moreover, it
can inhibit the growth and metastasis of T-cell acute lymphoblastic
leukemia through themiR-9/PD-L1 axis (Yin et al., 2021), regulating
the effect of the microRNA-27b-3p/peroxisome proliferator-
activated receptor γ axis on sepsis-induced acute myocardium
damage protection (Park et al., 2022).

Moreover, the application of chrysophanol for cancer treatment
is also increasing. For instance, chrysophanol promotes cell
morphological changes, induces cell apoptosis through DNA
damage, and arrests S phase cell cycle among patients with liver

cancer (Ni et al., 2012). In patients with lung cancer, chrysophanol
expresses anti-cancer activity by regulating the ROS/HIF-1a/VEGF
signaling pathway (Zhang et al., 2020a; Zhang et al., 2021a). In
patients with GBM, it has been discovered that chrysophanol
increased the accumulation of ROS in the mitochondria of GBM
cells, promoting the release of Cyt-C from the mitochondria to the
cytoplasm and, thereby, causing GBM cell apoptosis (Gu et al.,
2021). Chrysophanol regulates the anti-cancer effect on GBM cells
by activating the mitochondrial apoptosis pathway, indicating that it
may serve as an innovative chemotherapeutic agent for GBM.
However, chrysophanol has obvious hepatotoxicity and
nephrotoxicity. Nevertheless, pharmacokinetics has shown that
chrysophanol combined with other drugs can reduce toxicity and
improve efficacy (Xie et al., 2019b).

3.3.4 Shikonin
Shikonin is the main bioactive component extracted from the

root of Lithospermum erythrorhizon, which has various bioactivities
related to cancer treatment, inflammation, and wound healing.
Many studies have shown that shikonin has strong anti-cancer
effects on leukemia, gastrointestinal cancer, pancreatic cancer,
lung cancer, breast cancer, and urogenital organ cancer, by
inhibiting cell proliferation and migration, and inducing
apoptosis and necroptosis (Guo et al., 2019). A clinical trial
conducted by Guo et al. reported that, among 19 patients
suffering from late-stage lung cancer who were not subjected to
surgery, chemotherapy, or radiotherapy, the tumor diameter
decreased by more than 25% after treatment with shikonin,
posing a remission rate of 37% and a 1-year survival rate of 47%
(Boulos et al., 2019). Shikonin is a potent inducer of necrotizing
apoptosis in cancer cells. In terms of pharmacological mechanism,
anti-glioma effect of shikonin by interfering with endoplasmic
reticulum stress-mediated tumor apoptosis targeting Caspase-3,
and Bax/Bak-induced mitochondrial outer membrane
permeabilization (MOMP) triggering cancer cell apoptosis (Ma
et al., 2020). ROS is the executor of necrotizing apoptosis.
Shikonin increases intracellular ROS levels by targeting both
NOX1 and the mitochondrial respiratory chain complex (Yang
et al., 2014). RIP1 and RIP3 can modulate shikonin-induced ROS
overproduction by targeting the mitochondria and promoting RIP1/
RIP3-dependent necroptosis in GBM cells (Lu et al., 2017). Shikonin
has shown great promise as a potential drug for treating glioma by
targeting the mitochondrial apoptosis pathway. In order to achieve
greater precision and efficacy in treating glioma, it is necessary to
consider the shikonin’s ability to cross the blood-brain barrier.
Wang et al. developed an AS1411 aptamer/hyaluronic acid-
bifunctionalized microemulsion co-loading shikonin and
docetaxel (AS1411/SKN&DTX-M), which has the ability to
penetrate the BBB according to their research report. The
codelivery of shikonin and docetaxel through bifunctionalization
with hyaluronic acid and AS1411 aptamer presents a promising
approach for anti-GBM therapy using dual-drug therapy (Wang
et al., 2019).

3.3.5 Grape seeds
Grape seeds are the seeds of Vitis vinifera. Grape seed

proanthocyanidins (GSP) is a general term for a large class of
polyphenolic compounds that have antioxidant activity. GSP has
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various biological activities and has been proven to have good anti-
tumor effects, as well as certain inhibitory effects on cervical cancer
(Li et al., 2022a), carcinoma of the urinary bladder (Yang et al.,
2021a), lung cancer (Xu et al., 2021a; Zhang et al., 2021; Mao et al.,
2023), colon cancer (Aiello et al., 2019; Zhang et al., 2019), liver
cancer (Feng et al., 2019), prostate cancer (Chen and Yu, 2019),
among others. In a study on liver cancer cells, GSP was found to
trigger ROS production, decrease matrix-metalloproteinases
(MMPs), and increase caspase-3 activity in HepG2 cells (Wang
et al., 2020), proving that GSPs may induce ROS production and,
consequently, lead to MMP reduction and caspase-3 activation. This
ultimately induces HepG2 cell apoptosis. GSP can reverse EMT by
inhibiting the TGF-β signaling pathway, effectively inhibiting the
migration and invasion of bladder cancer (BC) cells (Yang et al.,
2021b), suggesting that GSP can be used as a potential
chemotherapy drug for BC. GSP can also reduce the proliferation
activity of cancer cells (Habib et al., 2022). The mechanism of GSP
pertaining to GBM is related to the inhibition of proliferation,
induction of apoptosis, arrest of the cell cycle, and inhibition of
angiogenesis and metastasis (Yang et al., 2021b). Grape seed, as a
natural anti-cancer drug, holds great promise for the treatment of
glioma. However, further clinical research is necessary to fully
elucidate its role in the treatment mechanism.

3.4 Drugs related tomitochondrial apoptosis
and mitophagy

3.4.1 Sinomenine
The alkaloid sinomenine (SIN), namely 7,8-didehydro-4-

hydroxy-3,7-dimethoxy-17-methylmorphinan-6-one
(C19H23NO4), is extracted from the rhizome of the traditional
Chinese medicine plant Sinomenium acutum (Zheng et al.,
2021). SIN has anti-inflammatory effects and has been used to
treat rheumatoid diseases in humans (Lin et al., 2022b; Chen
et al., 2022). In recent years, SIN and its derivatives have been
reported to have strong anti-tumor activity against various
tumors, including BC (Xu et al., 2021b), prostate (Xu et al.,
2019), papillary thyroid (Zhang et al., 2022b), breast (Li et al.,
2022b; Gao et al., 2022), ovarian (Qu et al., 2021), and lung
cancers (Bai et al., 2021). SIN can inhibit cell proliferation (Sun
et al., 2018a; He et al., 2018), induce apoptosis (Liu et al., 2019)
and arrest the cell cycle at the G0/G1 phase in various cancers
(Yang et al., 2021a). SINI-WCJ-33 (SW33, C33H51NO5), a SIN-
derivative obtained by the acylation of 4-hydroxyl and 14-
carboxylic acid, can inhibit the proliferation, migration,
invasion, and colony formation of human glioblastoma cell
lines (Zheng et al., 2021). This derivative has higher anti-GBM
activity and safety than its parent compound (Liu et al., 2019).
The CCNB1/CDC2 complex is a key mediator of the G2/M
checkpoint (Park et al., 2000; Taylor and Stark, 2001; Cheng
et al., 2016). The polo-like kinase (PLK1)-dependent
phosphorylation of CDC25C is required for normal cell cycle
progression from the G2/M phase (Liu et al., 2020b; Tang et al.,
2020). SW33 can reduce the expression of P-CDC2, CDC2, and
CCNB1, as well as the protein levels of P-PLK1 and PCDC25C in
GBM cells. It can also increase the expression of P53 and its
transcriptional target P21, finally leading to the arrest of the GBM

cell cycle in the G2/M phase, causing mitochondrial dysfunction,
consequently releasing Cyt-C, activating caspase 3/9, and
inducing mitochondrial apoptosis (Zheng et al., 2021).

In addition, PI3K/AKT/MTOR, MAPK/MTOR, and AMPK/
MTOR have been widely reported to activate mitophagy (Zhang
et al., 2020b; Liu et al., 2021). Zheng et al. have shown that SW33 can
induce autophagy through the PI3K/AKT/MTOR and AMPK/
MTOR signaling pathways in patients with GBM, thus playing
an anti-GBM role, significantly inhibiting tumorigenesis, without
having obvious adverse effects on the body (Zheng et al., 2021).
Taken together, all these results suggest that SW33 may be a
promising drug for the treatment of GBM.

4 New advances in drug therapy
for GBM

4.1 The application of nanotechnology
in GBM

The BBB comprises multiple components with barrier functions,
including polarized endothelial cells connected by continuous
adhesive and tight junctions, endothelial and parenchymal
basement membranes, pericytes, and astrocyte foot processes
(endfeet) (Steeg, 2021). As a barrier between circulating blood
and brain parenchyma, it can prevent blood-borne pathogens or
toxic substances from entering the CNS, maintain the dynamic
balance of the CNS, and prevent the effective passage of cancer
treatment drugs, including antibodies and miRNAs (Sarkaria et al.,
2018). The concept of the BBB was first proposed by Edwin
Goldman in 1913, who observed the limited transport of dye
between the blood and brain. After injecting dye into the veins
and CSF of animals, dye was distributed in almost all organs, except
the brain (Langen et al., 2019). The disruption of the BBB during
tumor progression results in the formation of the blood-tumor
barrier (BTB) (Steeg, 2021). While the BTB is more permeable
than the BBB, its uneven permeability to molecules of different sizes
and uneven blood flow can lead to less than ideal drug accumulation
in brain tumors(Arvanitis et al., 2020; Steeg, 2021).With significant
advances in nanotechnology, various inorganic/organic/natural
nanomaterials that target ligands and/or cell-penetrating peptide
(CPP) surface modifications through the BBB have been created to
help drugs cross the BBB to induce mitochondrial dysfunction for
highly precise therapy (Tang et al., 2019).

4.1.1 Resveratrol
Resveratrol (3,5,4′-trihydroxystilbene) (RES) is a naturally

occurring polyphenol and phytoalexin that is abundant in red
wine, berries, peanuts, and soybeans and has anti-inflammatory,
anti-oxidant, anti-cancer, cardioprotective, and neuroprotective
effects (Baur and Sinclair, 2006; Catalgol et al., 2012; Neves et al.,
2012). Resveratrol is effective in the treatment of GBM through
various mechanisms, but its bioavailability is severely reduced due to
its poor water solubility, short biological half-life (approximately
9–14 min for primary molecules), chemical instability (oxidation
and photosensitivity), and rapid metabolism and elimination
(Jhaveri et al., 2018). If its shortcomings as a free drug can be
overcome, its in vitro activity could be enhanced, and the relevant
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therapeutic effect could be improved. Triphenylphosphine (TPP+) is
a lipophilic cation that can couple many bioactive molecules to
achieve mitochondrial targeting (Wang et al., 2021). According to a
report, paclitaxel-loaded liposomes prepared using TPP- modified
polyethylene glycol-phosphatidylethanolamine (PEGPE) have been
shown to be effective in targeting mitochondria in cancer cells
(Biswas et al., 2012). Loading RES into PEGylated liposomes
(RES-Ls) has been reported to overcome its drawbacks as a free
drug (Fu et al., 2021). Furthermore, transferrin is overexpressed on
most cancer cells, and transferrin-targeted RES-Ls may be an
effective nanomedicine for the treatment of various cancers,
including GBM, even though their biodistribution in vivo and
ability to cross the BBB remain unknown.

4.1.2 Berberine
Berberine (BBR) is a natural compound isolated fromChinese herbal

medicine, including the Coptis root (Huang Lian) and Amur corktree
(Huang Bai). It has a wide range of pharmacological effects, including
antidiarrheal, antibacterial, antioxidant, anti-inflammatory, and anti-
tumor aspects (Li-Weber, 2013; Li et al., 2015). BBR can inhibit
GBM cell growth, reduce cellular viability, and induce oncosis-like
death (cell swelling, cytoplasmic vacuoles, and plasma membrane
blebbing) (Sun et al., 2018b). We also found that BBR induces
autophagy as a protective effect and decreases the oxygen
consumption rate, which could inhibit mitochondrial aerobic
respiration by repressing phosphorylated extracellular regulated
protein kinases (p-ERK1/2), reducing its energy production efficiency
and, thereby, reducing metabolic activity (Sun et al., 2018b). The most
challenging aspect related to BBR or other therapeutics in GBM is
crossing the BBB. Glucose-coated nanodrugs and fructose-coated
nanoparticles can provide 10–100-times more uptake by tumor cells
in various models (Hu et al., 2015). The formation of nanoshapes by
simply dissolving BBR into 5% glucose solution provides a promising
strategy for drugs to cross the BBB (Wang et al., 2020).

4.2 Sonodynamic therapy

Sonodynamic therapy (SDT) is a technique that involves using
focused ultrasound (FUS) to increase the sensitivity of tumors to
sonosensitizers during sonication (Mess et al., 2023).It has shown
promise as a cancer therapeutic modality for GBM due to its high
tissue penetration and minimal radiation damage to normal tissues
(Zhang et al., 2021c). Despite the potential of SDT in eliminating
tumor cells, its effectiveness is limited by the BBB and the low
accumulation rate of sonosensitizers (Guo et al., 2022). As a result,
complete eradication of tumor cells cannot be guaranteed through
SDT.Therefore, to improve the efficiency of drug delivery and further
reduce adverse reactions, ultrasound-targeted microbubble
destruction has been developed. It is a non-invasive technology
that combines low-intensity FUS and microbubbles (MBs), which
can transiently and reversibly destroy the BBB and promote drug
delivery in the brain with a high degree of spatial and temporal
specificity (Gorick et al., 2018). Low-intensity FUS has been explored
as a drug delivery platform for the treatment of brain diseases
(Landhuis, 2017), which can promote the deep penetration of SDT
and the accumulation of tumor-specific sonosensitizing agents
(Yeshurun and Azhari, 2016). SDT often concomitantly initiates

an autophagic response during tumor cell apoptosis induction
(Zhao et al., 2011). Excessive ROS production by ACL-SDT
induces mitochondrial dysfunction and leads to MAPK/p38-
PINK1-PRKN-dependent mitophagy (Qu et al., 2020). Mitophagy
plays a protective role under oxidative stress, and inhibition of the
degradation pathway significantly enhances the SDT-induced
apoptosis of GBM cells (Qu et al., 2020). The lysosomal
chemoattractor hydroxychloroquine (HCQ) is the only clinically
available autophagy inhibitor (Cook et al., 2014). Qu et al.
designed an “all-in-one” nanosensitization platform incorporating
Ce6 and HCQ into angiopeptide-2 peptide-modified liposomes
and designated a smart nanosensitizer, that can be used to treat
GBMs in situ (Qu et al., 2020). Combining autophagy inhibitors with
non-invasive SDT therapy provides a promising anti-GBM strategy,
and the “all-in-one” nanosensitization platform is expected to be
extended to other sonotheranostics in future.Besides, the efficiency of
SDT can be enhanced by using a nano-platform biodegradation
technology called CSI. This involves encapsulating catalase (CAT)
into silica nanoparticles (CAT@SiO2) to alleviate tumor hypoxia, and
then loading it with the sonosensitizer indocyanine green, which
significantly improves the efficacy of SDT(Wu et al., 2022). The
combination of SDT and natural drugs targeted to mitochondria
can significantly enhance the therapeutic efficacy against glioma,
which holds great importance for precise treatment of this disease.

5 Summary

GBM is the most common primary malignant brain tumor with
high metabolic activity. Currently, GBM is treated by removing the
tumor to the maximum extent and combining it with chemotherapy
(Molinaro et al., 2022). However, due to its invasiveness, the total
resection rate is low, the residual tumor tissue has obvious resistance
to radiotherapy and chemotherapy, and the long-term survival rate
of patients with GBM is low (Yi et al., 2019). The presence of the BBB
further complicates the treatment process. Despite significant
progress in the standard of care for GBM, including surgery,
radiation therapy, and medical therapy such as chemotherapy
with TMZ, patient outcomes remain extremely poor with a low
median overall survival rate. GBM is still considered a fatal disease
with limited treatment options.Given the extremely low survival
rates of currently approved treatments for GBM, new therapeutic
strategies are urgently needed. The clinical reality of the BBB
contribution to GBM treatment failure suggests that renewed
efforts to optimize BBB disruption techniques, develop BBB
penetrators, and perfect impenetrable drug delivery technologies
that bypass the BBB are the focus of current GBM treatment
research. With the development of comprehensive treatment for
glioblastoma in recent years, the anti-cancer effects of natural
products and phytochemicals commonly used in traditional
Chinese medicine continue to attract widespread attention. But
the BBB presents a challenge for the effective delivery of
anticancer drugs to the brain, limiting their curative
effects.Modern nano-drug delivery technology targeting
mitochondria can achieve better drug release and deeper tissue
penetration, suggesting that mitochondria could be a new target
for intervention and therapy. The combination of drug targeting
mitochondrial apoptosis and autophagy pathways with
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nanotechnology is a promising novel approach for treating GBM.
However, it is a particularly challenging task to engineer
nanoformulations that can perfectly target mitochondrial
abnormalities in tumor cells without causing toxic effects on
nearby normal cells. Since most of our experiments were carried
out on animal models, further research is needed to explore the
safety parameters of ultrasound in GBM.With the rapid advances in
knowledge and nanomedicine for GBM, increasing numbers of
molecular targets have been identified, providing a solid
foundation for the development of precise nanotherapeutic
systems in future.We look forward to the development of more
effective drugs for GBM treatment, focused on the mitochondrial
pathway, and the emergence of more mature nanoagents combined
with nanotechnology to kill tumor cells specifically, improving the
therapeutic effects of medicine for GBM.
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