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Several studies have highlighted the potential of pyroptosis as a target for cancer
treatment. This article focuses on the specific roles and clinical implications of
pyroptosis-related genes (PRGs) in soft tissue sarcoma (STS). By analyzing
differentially expressed PRGs in STS compared to normal tissue, our study
evaluates the interactions, biological functions, and prognostic values of PRGs
in STS. Through LASSO COX regression analysis, a five-gene survival related-risk
score (PLCG1, PYCARD, CASP8, NOD1, and NOD2) was created, which examined
both in TCGA cohort and training cohort (GSE21050, GSE30929, and GSE63157).
Furthermore, we developed a nomogram incorporating clinic factors and the risk
scores of the PRGs, which showed decent accuracy of prediction as evidenced by
calibration curves. Additionally, our study analyzed the Tumor Immune
Dysfunction and Exclusion Algorithm (TIDE) and IMvigor 210 cohorts to
investigate the immunotherapy response, and found that immunotherapy was
more beneficial for patients withminimal risk of PRGs than those exhibiting greater
risk. Finally, GDSC and CAMP databases were used to screen for effective
chemotherapy or targeted drugs that are sensitive to the high-risk populations,
including doxorubicin, imatinib, and sorafenib. In conclusion, this study provides a
comprehensive analysis of the PRG landscape in STS and constructs a novel risk
model to predict prognosis and different therapeutic responses of STS patients,
which is helpful for achieving precision medicine.
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1 Introduction

As a form of solid malignant tumor arising frommesenchymal tissue, soft tissue sarcoma
(STS) accounts for approximately 15% of malignancies amongst children and 1% amongst
adults (Raney, 2002). The specific mechanism of its formation and progression remains
unclear, likely due to the large number of subtypes and strong heterogeneity of STS.
Furthermore, traditional treatment methods have limited therapeutic effects on advanced
STS (Schuetze and Ray, 2005; Ray-Coquard et al., 2018). While emerging targeted therapies
and immunotherapies, such as anlotinib, pazopanib, and immune checkpoint inhibitors
(ICIs), have improved outcomes for STS patients in recent years (Chi et al., 2018; Gamboa
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et al., 2020; Zhu et al., 2020; Schmoll et al., 2021), the rate of efficacy
remains modest, and only a few patients experience long-lasting
effects. Therefore, precise biomarkers are urgently needed to
categorize STS patients into various risk categories and select an
appropriate treatment population for immunotherapy.

Pyroptosis is a unique type of programmed cell death that is
initiated by caspase activation and leads to lysis and granzyme
protease emission (Bergsbaken et al., 2009). Unlike traditional
apoptosis, pyroptosis mainly relies on the activation of caspase-
1/11 (Miao et al., 2010; Miao et al., 2011; Broz et al., 2012).
Pyroptosis is mainly involved in inflammatory diseases and has
been shown to be an important factor in the development of
cardiovascular and cerebrovascular diseases, such as coronary
atherosclerosis (Wang et al., 2020a). The intricate biological
activities of pyroptosis in cancer have been revealed through a
thorough understanding of cell pyroptosis (Wang et al., 2020b).
For instance, nucleotide-binding domain-like receptor 3
(NLRP3) can enhance the malignant proliferation of lung
cancer and lymphoma (Liang et al., 2020; Lu et al., 2021). A
recent study found that PD-L1 can promote tumor progression
by upregulating the expression of GSDMC, which is involved in
pyroptosis, suggesting that pyroptosis may be related to tumor
immune escape and providing new ideas for cancer prevention
and treatment (Hou et al., 2020). However, it remains unclear
whether genes related to pyroptosis affect the progression
of STS.

In this study, the transcriptomes of STS patients were analyzed
to identify pyroptosis-associated genetic markers. Based on the
characteristics of pyroptosis-related genes (PRGs), two distinct
subtypes of STS were identified. A comprehensive analysis was
then conducted to investigate the potential association between
various PRGs risk scores and clinical pathological data and
immunological status. Subsequently, a nomogram incorporating
clinical factors and PRG scores was developed to predict
prognosis for STS patients. Additionally, the likelihood of benefit
from anti-PD-L1 treatment for patients with specific PRG features
was predicted. Finally, several potentially sensitive small molecule
inhibitors for STS patients with different PRGs were proposed.

2 Materials and methods

2.1 Datasets

We retrieved the RNA sequencing (RNA-seq) profile of
TCGA-SARC through the GDC API (https://portal.gdc.cancer.
gov/repository). From this cohort, 263 STS and two typical soft
tissue samples were obtained. From the GTEx database,
864 normal tissues (386 subcutaneous fatty tissue and
478 skeletal muscle) were obtained (https://xenabrowser.net/
da-tapages) to assess the different PRGs between normal tissue
and STS. For independent validation cohorts, including
GSE21050, GSE30929, and GSE63157, whose RNA-seq and
clinical data were retrieved from the Gene Expression
Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo).
The GSE21050 cohort was used to validate disease-free survival
(DFS) time, whereas the GSE30929 and GSE63157 cohorts were
utilized to assess overall survival (OS) time.

2.2 Identification of differentially expressed
PRGs

Supplementary Table S1 displayed a list of PRGs. The expression
data from the TCGA and GETx datasets were transformed into
FPKM values before analyzing the differences. The “limma” R
package detected PRGs between typical and tumor tissues. The
differentially expressed PRGs were notated as follows: * if p < 0.05, **
if p < 0.01, and *** if p < 0.001 were used. The mutation landscape
and the correlation between mRNA expression level with
methylation rate were respectively analyzed by the “maftool”
package and GSCA Lite.

2.3 Development and validation of the PRGs
prognostic model

Moreover, the predictive significance of PRGs was examined
using LASSO cox regression analysis for evaluating correlations
among the genes as well as their status of survival in the TCGA-
SARC cohort. Five genes associated with survival were chosen for
further investigation. After centralization and standardization by
using R packaeg “scale”, the risk score was determined. The formula
for the risk score was as follows:
∑ i � Coefficient(mRNAi) × Expression(mRNAi).
Additionally, Kaplan-Meier analysis was used to compare the OS
times of the two groupings. Principal component analysis (PCA)
was done using the “prcomp” function from the “stats” R package.
The R packages “survival”, “survminer”, and “timeROC” were used
to analyze 1-, 2-, 3-, and 5-year ROC curves.

Three SARC cohorts from the GEO database were used to
validate the OS and DFS features (GSE21050, GSE30929, and
GSE63157). To verify the particular model used to the TCGA-
SARC cohort, the “scale” function was utilized in expression
normalization for every PRG. Afterward, risk scores were
calculated based on the usual technique in the TCGA cohort.

2.4 Independent prognostic analysis of the
PRGs-risk score

The regression model was constructed using factors such as age,
gender, tumor size (length, breadth, and depth), and PRGs-risk
score. The investigation was carried out using univariate and
multivariate cox regression models, with the findings shown
using a nomogram. The R package “timeROC” was used to
determine the predictive accuracy of the model, and then
decision curve analysis (DCA) was used to determine net benefit
(Vickers et al., 2008).

2.5 Evaluating the efficacy of
immunotherapy in different groups

We used tumor immune dysfunction and exclusion (TIDE) and
submap algorithms (https://cloud.genepattern.org/gp) to predict
anti-PD-1 or anti–CTLA-4 response rates in STS patients with
high PRGs-risk or low PRGs–risk scores. As an externally
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verified model for predicting immunotherapy response, The
IMvigor210 transcriptome and clinical data were retrieved
(http://research pub.gene.com/IMvigor210CoreBiologies) to
confirm that the PRGs-risk model could predict anti-PD-L1 efficacy.

2.6 Predicting response to chemotherapy
and targeted therapy

In addition, we used the biggest publicly available
pharmacogenomics database, the Genomics of Drug Sensitivity in
Cancer (GDSC, https://www.cancerrxgene.org/) (Yang et al., 2013),
to analyze and forecast the response of the two groups of patients to
the NCCN-approved medications for STS treatment. The
pRRophetic package of the R software was used to predict the
IC50 values of several medications for the two groups. A ten-fold
cross-validation of the GDSC training model evaluated the accuracy
of the drug sensitivity which predictive based on the PRGs-risk
score.

2.7 Identification of potential small molecule
drugs

As a database utilizing matching algorithms, connection Map
(CMAP) examines the link between drugs, expression of genes, and
changes in phenotypes (http://www.broadinstitute.org). We
submitted the PRGs to the CMAP database in order to find
possible small molecule inhibitors that could improve the
prognosis of STS patents (Fabbri et al., 2021). Enrichment scores
for small molecule medications were calculated on a scale of −1 to
1 to indicate the degree of similarity between the expression
spectrums. A negative enrichment score and p < 0.05 indicated
that the medication would be effective in the treatment of STS.

2.8 Cell cultures and quantitative real-
time PCR

DMEM (Gibco, United States) supplemented with 10% fetal
bovine serum (FBS) (Gibco, United States) cultured the following:
human undifferentiated pleomorphic sarcoma cell line (U2197),
human malignant embryonic rhabdomyosarcoma cell line (RD),
and human lung fibroblasts (HLF). Specifically, those were cultured
in a humidified incubator containing 5% carbon dioxide at 37 °C.
TRIZOL reagent was used to extract all RNA from the cell lines
(SigmaAldrich, United States). 1 μg of total RNA generated first-
strand cDNA. iQTM SYBR Green Supermix (Bio-Rad,
United States) conducted RT-PCR in accordance with the
recommendations of the manufacturer. The following primer
sequences were acquired from Ruibiotech (Guangzhou, China)
for this study’s targeted genes: PLCG1 (forward 5′- GGA AGA
CCT CAC GGG ACT TTG -3′, reverse 5′-GCG TTT TCA GGC
GAA ATT CCA-3′), PYCARD (forward 5′-TGG ATG CTC TGT
ACG GGA AG-3′, reverse 5′- CCA GGC TGG TGT GAA ACT
GAA-3′), CAPS8 (forward 5′- GTT GTG TGG GGT AAT GAC
AAT CT -3′, reverse 5′- TCA AAG GTC GTG GTC AAA GCC-3′),
NOD1 (forward 5′- TGA CAA GGT CCG CAA AAT TCT -3′,

reverse 5′- ACA GCA CGA ACT TGG AGT CAC -3′), NOD2
(forward 5′- CAC CGT CTGGAA TAAGGG TAC T-3′, reverse 5′-
TTC ATA CTG GCT GAC GAA ACC -3′) β-actin (Forward: 5′-
CGA GCA CAG AGC CTC GCC TTT GCC-3′, Reverse: 5′-TGT
CGA CGA CGA GCG CGG CGA TAT-3′). The primers of the
PRGs scores-related genes are as follows: Expression data were
normalized to the geometric mean of the housekeeping gene β-
actin and calculated as 2−ΔΔCT

3 Results

3.1 Identification of differentially expressed
PRGs between normal and tumor tissues

Supplementary Figure S1 shows the flowchart of our study.
Using the GTEx and TCGA datasets, the PRGs were compared in
864 samples of normal tissue and 263 samples from STS. There was a
total of 26 PRGs found (all <0.01). Among them, 25 genes were
significantly upregulated in STS, while GSDMC was enriched in
normal tissues (Figure 1A). Moreover, the correlation network
encompassing all PRGs was depicted in Figure 1B (red: positive
correlation; purple: negative correlation).

3.2 Landscape of single nucleotide variation
(SNV), copy number variation (CNV) and
methylation

We first analyzed the association between PRGs and SNV, CNV
and methylation in STS. We spotted that missense mutation, SNP,
and C > T were the most frequent styles of SNV, among the
differentially expressed PRGs (Figure 1C). In addition,
PLCG1 and NLRP1 were the two genes with the highest rank of
SNV mutations, accounting for 15% and 12% of all mutation cases,
respectively (Figure 1C). The detailed SNV map showed that only
19 genes altered for STS samples (Figure 1D). As for the CNV of
26 PRGs in STS, we found that CNV amplification or deletion
existed in all FRGs, especially in PLCG1, shown in Figure 1E. And
the methylation rate of AIM2 and NLRP1 is negatively correlated
with mRNA expression level (Figure 1F).

3.3 Development of prognostic gene model
in the TCGA cohort

This study associated 202 SARC samples to patients providing
full survival information. The univariate Cox regression analysis was
performed to conduct a preliminary screening of the genes related
with survival. Six genes (PLCG1, PYCARD, IL18, NOD1, NOD2,
CASP8) that met the criteria of p < 0.2 were maintained for further
analysis. Among them, 5 genes (PYCARD, IL18, NOD1, NOD2,
CASP8) were protective genes with hazard ratios (HRs) < 1, while
the PLCG1 was associated with increased risk (HRs >1) (Figure 2A).
By performing the LASSO regression analysis, a 5-gene signature
was constructed according to the optimum λ value (Figure 2B,C).
The PRGs-risk score was calculated as follows: risk score = (11.06E-
5* PLCG1.EXP) + (28.01E-5 * CASP8.EXP) + (−35.09E-5 *
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NOD1.EXP) + (−43.24E-5 *NOD2.EXP) + (−9.01E-5 *
PYCARD.EXP).

Based on the risk scoring formula’s median scores, the 202 samples
were equally split into two: low PRGs-risk and high PRGs-risk. PCA
findings indicated that patients with varying risks were effectively
separated into two (Figure 2D). Patients in the low-PRGs-risk group
lived for longer periods of time and had a higher proportion of survivors

(Figure 2E). Between the high- and low-PRGs risk groups, a substantial
discrepancy exists (p < 0.001, Figure 2F), but not in RFS (p = 0.052,
Supplementary Figure S2A–B). ROC analysis assessed the sensitivity
and specificity of the prognostic model. For OS, we discovered that the
area under the receiver operating characteristic curve (AUC) was 0.67,
0.67, 0.7, and 0.74 for 1-year, 2-year, 3-year, and 5-year models,
respectively (Figure 2G).

FIGURE 1
The expressions of the 33 pyroptosis-related genes and their interactions. (A)Heatmap (blue: low expression level; red: high expression level) of the
pyroptosis-related genes between the normal (N, blue) and the tumor tissues (T, red). The p values were showed as: **p < 0.01; ***p < 0.001. (B) The
correlation network of the pyroptosis-related genes (red: positive correlation; purple: negative correlation. The intensity of the color reflects the strength
of the relevance). (C) Summary of SNV of differently expressed FRGs in STS. (D) SNV onplot of 26 PRGs in the TCGA-SARC cohort. (E) The CNV status
of 26 PRGs in the TCGA-SARC cohort. (F) The correlation between 26 PRGs mRNA expression level with methylation rate.
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FIGURE 2
Construction of PRGs-risk model in the patients from TCGA cohort. (A) Univariate cox regression analysis of OS for each pyroptosis-related gene,
and 5 genes with p < 0.2. (B) LASSO regression of the six OS-related genes. (C) Cross-validation for tuning the parameter selection in the LASSO
regression. (D) PCA plot for STS based on the risk score. (E) Scatterplots in the top and bottom panels illustrate the distribution of the risk score and survival
status of patients in the TCGA cohort, respectively (low-risk population: on the left side of the dotted line; high-risk population: on the right side of
the dotted line). (F) The Kaplan-Meier curves of OS for patients in the low-risk and high-risk groups. (G) The time-dependent ROC curves demonstrated
the predictive efficiency of the risk score.
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3.4 External validation of the risk models

External validation was performed on 290 patients from
GSE21050 for RFS and 226 patients from GSE30929 and
GSE63157 for OS. Prior to further analysis, we normalized
gene expression data using the “Combat” program to
eliminate batch effects. The TCGA cohort algorithm was
applied to produce the risk scores, categorizing the patients
into low- and high-risk categories from their median scores.
Those belonging to the former group had a longer lifespan and

smaller rate of mortality compared to the latter group
(Figure 3A). The PCA results indicated that the two groupings
were sufficiently distinct (Figure 3B). Additionally, Kaplan-Meier
analysis revealed significant differences in OS and DFS between
the low- and high-risk groups ((both p < 0.001; Figure 3C;
Figure 3E). As illustrated in Figure 3D and Figure 3F, our
model exhibited a high predictive value (AUC for OS: 0.65 for
1 year, 0.66 for 2 years, 0.68 for 3 years, 0.71 for 5 years; AUC for
RFS: 0.61 for 1 year, 0.63 for 2 years, 0.63 for 3 years, 0.65 for
5 years).

FIGURE 3
Validation of the PRGs-risk model in the GEO cohort. (A) Distribution of patients in the GEO cohort based on the median risk score in the TCGA
cohort and the survival status for each patient (low-risk population: on the left side of the dotted line; high-risk population: on the right side of the dotted
line. (B) PCA plot for STS. (C, E) The Kaplan-Meier curves for comparison of the OS (GSE30929 and GSE63157) and DFS(GSE21050) between the patients
in the low-risk and the high-risk groups. (D,F) The time-dependent ROC curves of OS and DFS in the GEO cohort.
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3.5 Independent prognostic value of the
PRGs-risk scores

Only the TCGA-SARC cohort was utilized to test the
association between clinical features and PRGs-risks due to
insufficient clinical data from the GEO database. Upon
examination of the correlation between PRGs-risk groups and
various STS clinical parameters, there was insignificant
relationship between PRG-risk scores abd the patients’ gender,
age, and tumor depth and size (Figure 4A). Furthermore, the
genes’ mRNA expression levels with respect to the risk scores
were considerably elevated in sarcoma cell lines compared to
HLF, based on the qRT-PCR findings (Figure 4B). Afterward, it
was determined whether PRGs-risk scores may be independent
prognostic factors through univariate and multivariate cox
regression analyses. The high PRGs-risk score was strongly
related with poor survival in the TCGA-SARC cohort,
according to the univariate cox regression analysis (HR =
3.140, 95%CI:1.963–5.023; Figure 4C). It was further suggested
by the multivariate study that the PRGs-risk scores could be
independent predictive factors after regulating the other
confounding elements (HR = 3.706, 95%CI:2.281–6.021) for
patients with STS (Figure 4D).Additionally, a nomogram was
created to demonstrate quantitative prediction of OS for STS
patients (Figure 5A). The calibration curves for three- and 5-year
survival tended to adhere to the 45°standard line, showing that

the nomogram model performed well in terms of prediction
(Figures 5B,C). The DCA analysis revealed that the nomogram
model provides the greatest net benefit for decision making
across the majority of thresholds. (Figures 5D,E).

3.6 Comparison of the immune state
between different PRGs-risk subgroups

Based on the PRGs, analyses of GO enrichment and KEGG
pathways were subsequently conducted. Accordingly, PRGs were
typically associated with cheekiness-mediated signaling pathways,
immune response, and chemotaxis of inflammatory cells
(Supplementary Figure S3A–B). We then evaluated the 24 kinds
of immune cells’ enrichment scores, typical immunological
checkpoints, and activity of 13 immune-related pathways for
both risk groups and cohorts based on functional analysis. In this
case, R package “gsva” was utilized to undertake ssGSEA or single-
sample gene set enrichment analysis. Additionally, we assessed the
activity of immune-related pathways. In the TCGA cohort, the high-
risk subgroup with lower levels of immune cell infiltration
(especially CD8+ T cells, neutrophils, natural killer cells and
tumor-infiltrating lymphocytes) and immunosuppressed state
than the low-risk subgroup (Figures 6A–C). Similar conclusions
were drawn when analyzing the immune state of the GEO cohort
(Supplementary Figure S4A–C).

FIGURE 4
Univariate andmultivariate Cox regression analyses for the PRGs-risk score. (A)Heatmap depicting five genes different expression in high- and low-
PRGs-risk and the corrlection with clinical characteristics. (B) Results of qRT-PCR analysis. (C) Univariate analysis of the clinicopathological features and
the risk score for the TCGA cohort. (D) Multivariate analysis of the clinicopathological features and the risk score for the TCGA cohort.
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3.7 Patients with low PRGs-risk scores were
more likely to benefit from anti-PD-
L1 therapy

Patients with advanced STS may benefit from ICIs, according to
previous clinical trails, and some markers may be able to predict
whether or not they would respond to immunotherapy. In the TIDE
algorithm, low PRGs-risk patients would more likely benefit from
immunotherapy than high PRGs-risk ones (p < 0.05, Figure 7A). In
addition, patients with low PRGs-risk demonstrated a more
promising anti-tumor impact when treated with

anti-PD-1 treatments (Figure 7B, Bonferroni correction p < 0.05).
Transcriptomic data from uroepithelial carcinoma patients treated
with the anti-PD-L1 antibody atezolizumab (IMvigor210) were then
evaluated to verify the response of the two PRGs-risk groups. In the
low-risk group, the proportion of patients with partial response (PR)
and complete response (CR) was greater than in the high PRGs-risk
group. (low-risk group vs. high-risk group: 26% vs. 19%, p = 0.167;
Figure 7C). Notably, the non-respond group had a higher PRGs-risk
score than the response group (p = 0.042, Figure 7D). Furthermore,
high PRGs-risk patients livedmuch shorter than low PRGs-risk ones
(p = 0.019, Figure 7E).

FIGURE 5
Establishment of nomogram for soft tissue sarcoma patients in the TCGA cohort. (A) The nomogram for predicting overall survival(OS) of soft tissue
sarcoma patients based on combination of risk score and clinical features. (B–C) The calibration curves of nomogram regarding 3 years-OS and 5 years-
OS. (D–E) The decision curve analyses for nomogram. X-axis represents threshold probabilities, and Y-axis measures net benefit.
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3.8 The potential small molecule inhibitors
for STS patients with different PRGs-risk
group

For advanced STS, chemotherapy and targeted therapy are the
mainstays of treatment, however some patients did not benefit from
them. Therefore, it is vital to identify those patients who were more
responsive to chemotherapy and targeted medications, which may assist
clinicians to employ the optimal strategy.CMAP analysis was used to find

smallmolecular drugs for STS patients based on PRGs in order to explore
prospective molecular therapeutics. A total of 54 kinds of inhibitors with
47 types of mechanisms of action (MOA) were identified (Figure 7F).
Examples include the opioid receptor agonist salvinorina, the EGFR
inhibitor BIBU 1361, and the metalloproteinase inhibitor UK356618,
which were predicted to be potentially useful for the treatment of STS.

And the pRRophetic algorithm was utilized in conjunction with
the GDSC database to assess the response of two distinct PRGs-risk
groups to chemotherapeutic and targeted medicines licensed for STS

FIGURE 6
Comparison of the ssGSEA scores for immune pathways, immune cells and immune check points in the TCGA cohort. (A) Comparison of the
enrichment scores of 13 immune-related pathways between the low-risk (yellow box) and the high-risk (blue box) groups. (B) Comparison of the
infiltration of 24 types of immune cells between the low-risk (yellow box) and the high-risk (blue box) groups. (C) Comparison of the expression of
different immune checkpoints between the low-risk and the high-risk groups in the TCGA cohort. P values were showed as: ns not significant; * p <
0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001.
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patients. Remarkably, the estimated IC50 levels of doxorubicin (p <
0.001), sorafenib (p = 0.022), and imatinib (p < 0.001) were distinctly
lower in the patients of high-risk compared to those of low PRGs-
risk group, suggesting that patients in the high-risk subtype were
more sensitive to chemotherapy and targeted therapy(sorafenib and
imatinib) (Figure 7G).

4 Discussion

As a newly discovered type of programmed cell death,
pyroptosis is characterized by cell swelling, morphological
enlargement, and inflammasome release (Bergsbaken et al., 2009).
Various investigations have indicated the dual function of

FIGURE 7
Relationship between PRGS risk score and antitumor drug sensitivity and immunotherapy response. (A)Compared different PRGs-risk group benefit
from ICIs according to TIDE. (B) Subclass mapping analysis for predicting the likelihood of response to ICI therapy of patients with different PRGs-risk
score. (C) The proportion of patients in the IMvigor210 cohort with different responses (PR + CR vs. PD + SD) to PD-L1 blockade immunotherapy. (D) The
difference in the PRGs-risk score between the non-response and the response groups in the IMvigor210 cohort. (E) Kaplan-Meier graphs depicting
patients’ overall survival (OS) in the high-risk (red) and low-risk (blue) categories following PD-L1 immunotherapy in the IMvigor210 cohort. (F) Potential
targets of compounds and corresponding signaling pathway were employed in the CMAP database. (G) The boxplot showed a significant difference in
doxorubicin (p < 0.001), sorafenib (p = 0.022), and imatinib (p < 0.001) IC50 values predicted by the pRRophetic method using the GDSC database
between the high PRGs-risk group and the low PRGs-risk group.
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pyroptosis in cancer development. Pyroptosis cell-secreted
inflammatory substances may facilitate the malignant
transformation of normal cells (Wang et al., 2016a; Wang et al.,
2016b), while on the other hand, pyroptosis itself or triggered by
other factors can inhibit tumor progression or metastasis (Le et al.,
2020; Tan et al., 2020). To date, it remains unknown whether PRGs
are associated with the prognosis and development mechanisms of
STS. This research systematically examined the expressions of
33 PRGs in STS and their connection with prognosis.

In this study, we conducted a comprehensive analysis of the
expressions and prognostic values of PRGs in STS. Our results
indicated that, except for NLRP6 and GSDMC, the expressions of
most PRGs were higher in tumor tissues compared to normal
tissues. Among these, phospholipase C gamma 1 (PLCG1), a
membrane-associated enzyme involved in cell growth and
differentiation mediated by leucine kinase receptor signaling
pathway, has been shown to induce pyroptosis by increasing the
activity of GSDMD via intracellular calcium signaling, which is
implicated in fatal infection (Kang et al., 2018; Liu et al., 2020).
However, little is known about the association between PLCG1-
mediated pyroptosis and malignancies. Our findings showed that
PLCG1 was highly expressed in STS and was associated with low
survival, possibly due to negative regulation of pyroptosis.

Currently, it is widely recognized that NOD1 and NOD2, which
are important members of the intracellular PRR family, participate
in regulating innate immunity in vivo and inducing pyroptosis
together with NLRP3 (Jamilloux et al., 2013; Shi et al., 2020).
Caspase-8 was previously thought to be the main enzyme
inducing apoptosis, but recent studies have demonstrated its
potential in facilitating gasdermin C and gasdermin D cleavage,
thereby inducing pyroptosis (Sarhan et al., 2018; Fritsch et al., 2019;
Hou et al., 2020). Moreover, studies have revealed that α-KG can
induce pyroptosis to inhibit tumor growth by activating caspase-8
and cleaving gasdermin C, suggesting that caspase-8-mediated
pyroptosis may enhance the efficacy of antitumor drugs (Zhang
et al., 2021). Furthermore, we performed multivariate analysis and
external validation of the scoring system, and the data indicate that
the risk signature may serve as an independent predictor for STS. In
addition, we established and validated a novel nomogram based on
PRGs in STS patients for the first time, and demonstrated its high
accuracy in predicting the survival of STS patients.

To date, numerous studies have demonstrated that
chemotherapy or targeted drugs, such as cisplatin, lobaplatin, and
sorafenib, can augment their anti-tumor activity by inducing
pyroptosis of tumor cells, which leads to improved prognosis for
patients (Hage et al., 2019; Zhang et al., 2019; Chen et al., 2020).
However, most chemotherapy drugs achieve their anti-tumor effects
by promoting tumor cell apoptosis rather than pyroptosis.
Consequently, there is a growing interest in discovering
pyroptosis-inducing drugs. Small molecule inhibitors, including
DD8/9 inhibitors and apurinic/apyrimidinic endonuclease 1
(APE1) inhibitors, have been shown to induce pyroptosis and
enhance the prognosis of patients with malignancies (Johnson
et al., 2018; Long et al., 2021). In this study, we further evaluated
the effectiveness of drugs approved for STS patients, including
chemotherapy drugs and targeted drugs, by predicting their
efficacy in cases with varying scores of pyroptosis characteristics.
Our results demonstrated that only adriamycin, sorafenib and

imatinib could benefit patients in the high-risk group. Moreover,
we screened several specific small molecule inhibitors using the
CAMP database, which suggests that some of them may enhance
anti-tumor activity by inducing pyroptosis. Further in vivo and
in vitro studies are needed to identify more effective targeted STS-
based medications.

The tumor microenvironment plays a crucial role in
determining the progression of STS and the appropriate
therapeutic response. Petitprez et al. divided 608 patients with
STS into 5 groups based on the different components of their
immune microenvironment and found that patients with high
immune cell infiltration had higher expression levels of various
immune checkpoints, including PD-L1, PD-L2, CTLA-4, and TIM-
3, and had a better clinical prognosis (Petitprez et al., 2020). In this
study, we examined the functional signaling pathways and found
that the varying risks of STS patients with different PRGs were
associated with specific immune-related pathways, suggesting that
these PRGs could be involved in STS immune regulation. We also
found that the high-risk group had lower levels of impaired
immune-related pathway activities and immune cell infiltration
compared to the low-risk group. These findings indicate that the
microenvironment of STS patients in the high PRGs-risk group
exhibited an immunosuppressive condition, potentially a primary
cause for the poor prognosis among such patients. Further studies
are necessary to explore the potential of PRGs as therapeutic targets
for STS patients with an immunosuppressive microenvironment.

Petitprez et al. have reported that STS patients with significant
immune infiltration exhibit increased expression of immunological
checkpoints, such as PD-L1, PD-L2, CTLA-4, and TIM-3, and better
clinical outcomes (Petitprez et al., 2020). Our study found that high-
risk patients with low PRGs expression had a higher level of
immunological checkpoint expression, which is consistent with
previous research. High PD-L1 expression is considered to be a
marker of better response to immunotherapy. This study utilized
TIDE and IMvigor210 cohorts to predict the benefit of
immunotherapy in both groups and found that low-risk patients
potentially benefit more from anti-PD-1 treatment, presumably due
to their increased PD-L1 expression. It further revealed that the anti-
PD-1 antibody is more suitable for STS patients with attributes
similar to the low-risk group. Thus, the PRGs-based model may
serve as a reliable marker to predict the effectiveness of
immunotherapy.

This research categorized STS patients based on PRGs and
further demonstrated that the model provides a valid scheme to
predict prognosis and identify therapeutic groups. However, the
study is limited by its retrospective nature and the limited number of
STS patients available in the databases, which may lead to selection
bias. Therefore, large-scale and multicenter studies are necessary to
verify the reliability of the current model and optimize its
applicability. Additionally, in vivo and in vitro research is needed
to validate PRGs and examine relevant processes.

5 Conclusion

In conclusion, this study provides a reliable diagnostic tool for
STS prognosis. The PRGs model proposed in this research is an
independent marker that can effectively evaluate the prognosis of
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STS patients, facilitating the establishment of individualized and
targeted therapeutic approaches.
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SUPPLEMENTARY FIGURE S1
Flowchart of this study.

SUPPLEMENTAL FIGURE S2
The comparison of the RFS between the different risk groups in TCGA. (A)
Kaplan-Meier curves for comparison of the RFS between the low-risk and
the high-risk groups in the TCGA cohort. (B) Time-dependent ROC curves
for STS in the TCGA cohort.

SUPPLEMENTAL FIGURE S3
The results of functional analysis based on the PRGs between the two groups
in the TCGA cohort. (A) The barplot graph of KEGG pathway enrichment
analysis (the longer bar meant themore genes enriched, and the increasing
depth of red meant that the differences were more significant). (B) The
bubble graph for GO enrichment analysis (the bigger bubble meant the
more genes enriched, and the increasing depth of red meant that the
differences were more significant; p-value: the adjusted p-value.

SUPPLEMENTAL FIGURE S4
Comparison of the ssGSEA scores of immune-related pathway activity,
immune cell infiltration and immune check point expression in the GEO
cohort. (A) Comparison of the enrichment scores of 13 immune-related
pathways between the low-risk (yellow box) and the high-risk (blue box)
groups. (B) Comparison of the infiltration of 24 types of immune cells
between the low-risk (yellow box) and the high-risk (blue box) groups. (C)
The different immune checkpoints expression levels in the low-risk (yellow
box) and high-risk (blue box) groups. p values were showed as: ns not
significant; * p < 0.05; ** p < 0.01; *** p < 0.001; ****p < 0.0001.
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Glossary

STS Soft tissue sarcoma

TCGA The cancer genome atlas

LASSO Least absolute shrinkage and selection operator

ROC Receiver operating characteristic curve

OS Overall survival

GEO The gene expression omnibus database

TIDE The tumor immune dysfunction and exclusion

CMAP The connectivity map

NLRP3 Nucleotide binding domain-like receptor 3

PRGs Pyroptosis-related genes

DFS Disease-free survival

PCA Principal component analysis

DCA Decision curve analysis

GO Gene ontology

KEGG Kyoto encyclopedia of genes and genomes

ssGSEA Single-sample gene set enrichment analysis

GDSC The genomics of drug sensitivity in cancer

PPI The protein - protein interaction

AUC The area under the receiver operating characteristic curve

ICIs The immune checkpoint inhibitors

HRs Hazard ratios

PR Partial response

CR Complete response

MOA The mechanisms of action

APE1 Apurinic/apyrimidinic endonuclease 1

PD-L1 Programmed cell death-1

PD-L2 Programmed cell death-1

CTLA-4 Cytotoxic T lymphocyte-associated antigen-4

TIM-3 T cell immunoglobulin and mucin domain-containing protein 3

PYCARD PYD and CARD domain containing

CASP1 Cysteine-aspartic acid protease-1

IL1B Interleukin 1 beta

PLCG1 Phospholipase C gamma 1

IL18 Interleukin 18

NOD1 Nucleotide binding oligomerization domain containing 1

NOD2 Nucleotide binding oligomerization domain containing 2

CASP8 Cysteine-aspartic acid protease-8

NLRP6 NLR family pyrin domain containing 6

GSDMC Gasdermin C

NCCN The national comprehensive cancer network

Frontiers in Pharmacology frontiersin.org14

Liu et al. 10.3389/fphar.2023.1188473

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1188473

	Pyroptosis-related genes prognostic model for predicting targeted therapy and immunotherapy response in soft tissue sarcoma
	1 Introduction
	2 Materials and methods
	2.1 Datasets
	2.2 Identification of differentially expressed PRGs
	2.3 Development and validation of the PRGs prognostic model
	2.4 Independent prognostic analysis of the PRGs-risk score
	2.5 Evaluating the efficacy of immunotherapy in different groups
	2.6 Predicting response to chemotherapy and targeted therapy
	2.7 Identification of potential small molecule drugs
	2.8 Cell cultures and quantitative real-time PCR

	3 Results
	3.1 Identification of differentially expressed PRGs between normal and tumor tissues
	3.2 Landscape of single nucleotide variation (SNV), copy number variation (CNV) and methylation
	3.3 Development of prognostic gene model in the TCGA cohort
	3.4 External validation of the risk models
	3.5 Independent prognostic value of the PRGs-risk scores
	3.6 Comparison of the immune state between different PRGs-risk subgroups
	3.7 Patients with low PRGs-risk scores were more likely to benefit from anti-PD-L1 therapy
	3.8 The potential small molecule inhibitors for STS patients with different PRGs-risk group

	4 Discussion
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References
	Glossary


