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The emergence of Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-
CoV-2) posed a serious worldwide threat and emphasized the urgency to find
efficient solutions to combat the spread of the virus. Drug repurposing has
attracted more attention than traditional approaches due to its potential for a
time- and cost-effective discovery of new applications for the existing FDA-
approved drugs. Given the reported success of machine learning (ML) in virtual
drug screening, it is warranted as a promising approach to identify potential SARS-
CoV-2 inhibitors. The implementation of ML in drug repurposing requires the
presence of reliable digital databases for the extraction of the data of interest.
Numerous databases archive research data from studies so that it can be used for
different purposes. This article reviews two aspects: the frequently used databases
in ML-based drug repurposing studies for SARS-CoV-2, and the recent MLmodels
that have been developed for the prospective prediction of potential inhibitors
against the new virus. Both types of ML models, Deep Learning models and
conventional MLmodels, are reviewed in terms of introduction, methodology, and
its recent applications in the prospective predictions of SARS-CoV-2 inhibitors.
Furthermore, the features and limitations of the databases are provided to guide
researchers in choosing suitable databases according to their research interests.
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1 Introduction

The alarming spread of pneumonia by the end of 2019 was witnessed worldwide.
Healthcare systems and researchers made remarkable efforts to investigate the situation. The
new pathogen was then identified as Severe Acute Respiratory Syndrome Corona Virus 2
(SARS-CoV-2). Due to the high rates of morbidity and mortality associated with the virus, it
was unrealistic nor practical to design a new drug, also known as the de novo drug
development (Zhou P. et al, 2020; Matta et al, 2020). This decision was made
considering numerous obstacles, including the limited data available about the virus
pathophysiology at the time of the outbreak, and the lengthy process of the
aforementioned strategy, which ranges between 10 and 17 years (Mtewa et al, 2022).
Furthermore, the costs estimated for de-novo drug development are at around
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1.5–2.5 billion euros (Nosengo, 2016; Correia et al., 2021). Along
with the escalated cost and the prolonged timeline, clinical trials are
associated with a high rate of failures. Most reported failures are due
to inadequate efficacy, toxicity, side effects, or the failure to align
with the required regulatory standards (Plenge et al, 2013).
Consequently, this traditional approach was unviable to combat
the spread of the rapidly transmitting virus.

SARS-CoV-2 is an enveloped, single-stranded, positive-sense RNA
(+ssRNA) virus. Its sequenced genome size is ~29.9kb, with a similarity of
82% (Chan et al, 2020) and ~79% sequence homology (Lu et al, 2020)
with SARS-CoV and a similarity of 50% with MERS-CoV (Chan et al,
2020; Lu et al, 2020). Fortunately, due to the high similarity between the
new virus and β-Coronaviruses, drug repurposing attracted attention to
find therapeutics against SARS-CoV-2 (Pushpakom et al, 2019; Zhou P.
et al, 2020; Matta et al, 2020). This process is also known as drug
repositioning, drug reprofiling, indication shift, indication expansion, and
eco-pharma (Zhou P. et al, 2020; Matta et al, 2020). It can be defined as
discovering new applications for existing drugs. These drug categories
include approved, investigational, withdrawn, shelved, and discontinued
drugs. Among them, Food and Drug Administration (FDA)-approved
drugs primarily attract attention in drug repurposing for many reasons
(Jin and Wong, 2014). The motives include: 1) the drugs have already
passed the required clinical trials, 2) have a safety profile, reported side-
effects, and toxicity, 3) both themechanismof action and interactionwith
some targets are being studied, 4) the drug pharmacodynamics and
pharmacokinetics are being studied and updated regularly, and 5) the
drug passed human clinical trials. In addition to the highlighted merits,
repurposed drugs can immediately go to preclinical testing and clinical
trials (Ashburn and Thor, 2004). Thus, it is considered as an efficient and
safe approach for the management of the new virus (David et al, 2022).
As an application, Remdesivir andBaricitinib arewell-known repurposed
drugs that showed significant inhibition activity against SARS-CoV-2 in
various clinical trials (FDA, 2020). Drug repurposing studies can be
conducted by several approach that can be broadly classified to
computational, experimental, and clinical approaches (Wang and
Guan, 2021).

Repurposing efficient drugs requires two main prerequisites: the
presence of comprehensive knowledge about the drugs and themolecular
basis of the targeted disease, and reliable analysis of these data. In the
previous years, there has been a persistent call for the establishment of
online databases to archive the immense biological and chemical data
generated fromexperimental studies, which led to the generation ofwide-
range online databases with different content for different purposes (Luo
et al, 2021). Along with the technological advancement, bioinformatics
approaches were shown to significantly benefit translational drug
discovery research through the analysis of this vast body of
knowledge (Wooller et al, 2017). Several computational approaches
were reported to be implemented in SARS-CoV-2 drug repurposing
studies, including network models (Li X. et al, 2021; Hamed et al, 2022;
Howell et al, 2022; Siminea et al, 2022), text mining (Kuusisto et al, 2020;
Tworowski et al, 2020; Muramatsu and Tanokura, 2021), molecular
docking and molecular dynamics (MD) simulation (Wang, 2020;
Egieyeh et al, 2021; Jalalvand et al, 2022), knowledge graph (KG) (Al-
Saleem et al, 2021), weight regularization matrix factorization (WRMF)
(Xu et al, 2022), and ensemble matrix completion model (Li W. et al,
2021). The application of artificial intelligence (AI) technologies was
reported to hasten drug repurposing studies among the existing
computational approaches (Zhou Y. et al, 2020; Levin et al, 2020).

The power of AI stems from its capability to imitate human
capabilities and successfully apply it to big data with minimum
errors, high efficiency, and without getting tiresome (Fleming, 2018;
Surianarayanan and Chelliah, 2021). A powerful division of AI is
machine learning (ML), which is currently widely applied to identify
new druggable targets and to detect and develop potential therapeutics
for a wide range of diseases (Vijayan et al, 2022). An illustration of the
discussed background is seen in Figure 1.

This paper reviews the frequently used databases in ML-based drug
repurposing studies for SARS-CoV-2, and the ML models developed
since 2019 for the prospective prediction of potential inhibitors against
the new virus. Both Deep Learning models, and conventional ML
models, are reviewed in terms of introduction, methodology, and
applications in predicting SARS-CoV-2 inhibitors. Furthermore, the
features and limitations of the databases are provided to guide
researchers in choosing suitable databases according to their research
scope. A visualization of the article structure is provided in Figure 2.

2 Databases for drug repurposing
studies

There have been onerous efforts to collate, archive, and digitize
life sciences research data worldwide, leading to a rise of hundreds of
online databases providing various features for specific purposes.
There are numerous repository classifications depending on the
classifier perspective. Bagherian et al (2021) categorized the
databases as drug-target interaction (DTI), drug/target-centered,
drug-target binding affinity, and supporting databases. Wu et al
(2022) classified the databases as drug combination databases and
databases listed in the other related databases section. Tanoli et al
(2021) grouped the databases as chemical, genomics, three-
dimensional protein structures, protein classifications and
interactions, reaction pathways, molecular omics, DTI, and
disease databases. Nevertheless, it is clear that various databases
fit under multiple categories. Given these observations, most
databases have different data types, therefore, they can be
referred to as heterogeneous databases. In this section,
20 frequently used repositories in drug repurposing studies have
been considered. An overview of the data types provided by each
database is rendered in Table 1. Within these databases, some of
them provide specific services considering relevant SARS-CoV-
2 data and are jointly represented in Table 2, while being
elaborated beneath each database section below.

2.1 ChEMBL

The European Molecular Biology Laboratory—European
Bioinformatics Institute (EMBL-EBI) established ChEMBL
(https://www.ebi.ac.uk/chembl/) as an open-access inclusive
resource for drug bioactivity data in 2009 to support drug
discovery research and informatics (Gaulton et al, 2017; Mendez
et al, 2019). The data is manually extracted from several medicinal
chemistry journals; therefore, it is a primary database. To date, more
than 19 million bioactivities have been compiled in the database. It
contains data on 2.3 million compounds, 14 thousand drugs, 1.
5 million in vivo assays, 757 tissues, 2 thousand cells, 15 thousand
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targets, 6.3 thousand mechanisms, 43 thousand drug indications,
and 1.2 thousand drug warnings. Three additional resources were
added to enhance and extend the repository data acquisition:
ChEMBL NTD, SureChEMBL, and UniChem. The first resource
was developed for researchers studying neglected tropical diseases
(NTD). SureChEMBL contains compounds and drugs mined from
patent studies. The UniChem system was developed to ensure the
efficiency of the collected chemical data by providing large-scale
cross-references between the widely known chemistry databases
covering a wide range of chemical compounds and molecules. A
researcher may refer to databases such as PubChem, DrugBank,
DrugCentral, KEGGDrug, BindingDB, TargetMol, TTD, Reactome,
DrugRepV, PharmGKB, ZINC, RepoDB, and DrugRepHub
databases to allocate drug related information. Each of these

databases are discussed below, besides, their features and
limitations are tabulated in Table 3 and Table 4.

2.2 PubChem

PubChem (https://pubchem.ncbi.nlm.nih.gov/) is a publicly
available database that was launched in 2004 at the National
Institutes of Health (NIH) to gather data primarily about small
molecules from high-throughput screening (HTS) experiments in
addition to various large molecules (Kim et al, 2023). The molecules
data annotations include chemical structure, properties, biological
activities, and health status. The database is represented as three
interlinked databases to ease access to compounds, substances, and

FIGURE 1
A brief graphical illustration of the research background. (A) The figure starts by addressing the initial stage of the pandemic where the cause of the
widely spread disease was unknown. Further on, researchers invested time and efforts to identify the pathogen identity. The pathogen was later identified
to be SARS-CoV-2 and the pandemic was given the name of COVID-19. (B) Considering de-novo drug development approach to combat the virus was
not a practical solution due to the rapid transmission rate of the virus, high rates of morbidity and mortality, and the limited information that was
available about SARS-CoV-2 by that time. These challenges were accompanied with the need of exorbitant funding, and prolonged time that is usually
accompanied with high risks. These limitations are reduced to a larger extent while adopting drug repurposing as an approach for investigating a potential
drug against the virus. (C) There are various approaches that can be used to conduct drug repurposing studies. Among the existing approaches, the
computational approach has been proved to accelerate the process furthermore and provide valuable predictions if the researcher had a coherent and
consistent understanding of the research methodology along with the required data to get the potential drug predictions. Machine learning gained
interest for its ability to mimic the human learning pattern without the feeling of boredom and with the capability of applying the learned learning pattern
on huge datasets, thus providing more efficient results. Generally, to run a machine learning model, one must know the database that is going to be used
to extract the needed datasets, then the researcher needs to identify the type of machine learning model to be used to preprocess and prepare the data
set accordingly. Moreover, the resulted predictions could be validated using in silico, in vitro, in vivo, or in clinical settings to prove or decline the efficiency
of the developed model.
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bioassays, thus named PubChem Compound, PubChem Substance,
and PubChem BioAssay, respectively. The Substance database
comprises biological targets such as genes, proteins, and nucleic
acids. Moreover, it also provides the interaction pathways between
chemicals and substances. Data records are collated from various
resources, including publications, chemical vendors, and
authenticated authorities. Currently, it features over 115 million
compounds, more than 300 million substances, and their
bioactivities. In aims to support the global scientific community’s
efforts to develop effective treatments and vaccines against COVID-
19, PubChem launched a specialized service called COVID-19/
SARS-CoV-2 Data. It provides a rich set of information related
to SARS-CoV-2 virus and COVID-19 disease. It includes data about
compounds used in SARS-CoV-2 clinical trials and research studies,
as well as information related to genes, proteins, pathways, and
bioassays pertinent to COVID-19 research.

2.3 DrugBank

DrugBank (DB) (https://go.drugbank.com/) was released in 2006 by
the Canadian Institutes of Health Research (CIHR) (Wishart et al, 2018).
It is a compendium of detailed data about drugs/molecules along with
their reported mechanism of action (MoA) to the annotated targets. The
molecules in the database are grouped into six groups: approved,
withdrawn, investigational, experimental, nutraceuticals, and illicit
drugs. DB provides information about the drug properties,
pharmacology, interactions, products that contain the active
ingredient, chemical identifiers, and the clinical trial status of the

selected drug. So far, the last statistical report reveals that the
repository comprises 15,790 drugs, 19,395 drug-target associations,
4,937 unique targets, 5,770 drug-enzyme associations, and 467 unique
enzymes. The database provides a section called COVID-19 Dashboard,
which centralizes data on COVID-19 related information such as drugs,
potential drug targets, and ongoing research initiatives including
investigations into molecular mechanisms, and drug discovery
repurposing efforts.

2.4 DrugCentral

DrugCentral (https://drugcentral.org/) is a drug-centred database
that was first released in 2016 to quantify the existing pharmaceutical
drugs and their targets (Avram et al, 2021). The Division of
Translational Informatics currently maintains it at the University
of New Mexico (UNM) in collaboration with Illuminating the
Druggable Genome (IDG) Consortium. This database provides
information on active ingredients, general drugs, FDA-approved
drugs, European Medicines Agency (EMA)-approved drugs, and
Pharmaceuticals and Medical Devices Agency (PMDA)-approved
drugs. Drug annotation includes drug dosage, absorption,
distribution, metabolism, excretion, and toxicity (ADMET), adverse
events for both males and females, pharmacologic action, drug use,
pharmaceutical products, bioactivity, and new drug applications. Also,
this repository offers target search to allocate the drugs acting on them.
DrugCentral compiles 4,927 active ingredients and 112,359 FDA drug
labels. The last updated database release comprises 226 veterinary drugs
along with 804 targets.

FIGURE 2
An overview visualization of the review article sections. (A) General scheme of the databases section content. (B) General scheme of machine
learning section content. (C) General scheme of the discussion section content.
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TABLE 1 General overview of data types provided by each database.

No. Database Data type

Target data Therapeutics data Interaction data Disease
data

Genes Proteins RNA Molecules Approved
drugs

Bioactivity Side
effects

Drug-target
interaction

Protein/Gene-Protein/
Gene interaction

Binding
affinities

Clinical
features

1 ChEMBL √ √ √ √ √ √ √ √ √ √ -

2 PubChem √ √ √ √ √ √ √ √ √ √ -

3 DrugBank √ √ √ √ √ √ √ √ √ - √

4 DrugCentral √ √ √ √ √ √ √ √ √ - √

5 KEGG √ √ √ √ √ - - √ √ - -

6 BindingDB √ √ √ √ √ - - - - √ -

7 Reactome √ √ √ - √ - - √ √ - -

8 DrugRepV √ √ √ √ √ - √ - - - √

9 TargetMol √ √ √ √ √ - - - - - -

10 Drug
Repurposing Hub

√ √ - √ √ √ - - - - -

11 PharmGKB √ √ - - √ - - √ √ - -

12 PDB √ √ √ - - - - √ - - -

13 TTD √ √ √ - √ - - - - - -

14 GenBank √ √ √ - - - - - - - -

15 OMIM √ √ - - - - - - - - √

16 UniProt √ √ - - - - - - √ - -

17 ZINC - - - √ √ - - - - - -

18 SIDER - - - - - - √ - - - -

19 RepoDB - - - - √ - - - - - √

20 GISAID - - - - - - - - - - √
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2.5 KEGG

Kanehisa Laboratories developed Kyoto Encyclopedia of
Genes and Genomes (KEGG) (https://www.genome.jp/kegg/)
in 1995 (Kanehisa et al, 2017). This resource provides
numerous rich databases for multiple purposes. KEGG-Drugs
database gathers information about approved drugs in Japan, the
US, and Europe. Two additional databases are associated with the
KEGG-Drug database, KEGG-pathway database, and KEGG-
Medicus database. The former database provides information
about the drug pathway, whilst the latter database delivers
reported drug-target interaction. Furthermore, the known
drug-target interaction pairs can be extracted from the KEGG-
Brite database. KEGG-COMPOUND database collects the most
relevant compounds in the biological system. The database is
integrated with other KEGG databases and provides information
about the chemical properties, reactions, pathways, modules, and
enzymes associated with the compound of interest. Moreover,
KEGG-Genes are a collection of gene and protein sequences of
cellular organisms and viruses from public databases, mainly
NCBI RefSeq and GenBank. As per 2023 statistics,

46,086,588 and 648,811 genes expressing proteins are
appended for organisms and viruses, respectively. The counts
for proteins are 312 for viruses and 4,125 for other organisms.
The similarity among the sequences is generated through KEGG
(Sequence Similarity DataBase) SSDB. Furthermore, the
molecular function of functional orthologs in many biological
pathways are provided in KEGG-KO database. Each functional
ortholog is given a KO entry which is cross-referenced with
experimental evidence. Additionally, the KEGG-Genome
database collects detailed genomic information about many
cellular organisms and viruses. Besides, there is the KEGG-
Enzymes database that collects information about enzymatic
reactions.

2.6 BindingDB

The binding affinities data between druggable proteins
(targets) and ligands are provided in the BindingDB database
(https://www.bindingdb.org/rwd/bind/index.jsp). This database
was first introduced in 2000 by Xi Chen et al at the University of

TABLE 2 Specific SARS-CoV-2 services provided by different databases.

Database Service Description

PubChem COVID-19/SARS-CoV-2 Data
A package that compiles compounds that are used in SARS-CoV-2 clinical trials
and research studies. In addition to genes, proteins, pathways, and bioassays
related to COVID-19 studies.

RCSB PDB COVID-19/SARS-CoV-2 Resources
A feature that enables access to PDB structures of SARS-CoV-2 related data
from scientific publications. Also, it delivers educational resources.

TargetMol Anti-COVID-19 Compound Library
A collection of 1,160 compounds with confirmed inhibition against SARS-
CoV-2.

PharmGKB Therapeutic Resource for COVID-19

A facility that gathers all possible pharmacogenomics factors that may impact
drug choice for COVID-19 due to implied risks for side-effect or drug-drug
interactions. Also, it provides approved treatments for COVID-19, drugs
involved in COVID-19 clinical trials, and genes associated in COVID-19.

DrugRepV SARS Coronavirus-2 repurposed drugs
A service that provides repurposed drugs that were determined to be effective
against SARS-CoV-2.

Reactome COVID-19 Disease Pathways
A precise modelling service of SARS-CoV-1 and SARS-CoV-2 molecular
pathway within the host.

TTD Target and Drug Data for Coronavirus
A compendium that gathers anti-coronavirus therapeutics with their
corresponding targets data from archived and recent coronavirus research.

UniProt COVID-19 Portal
A service that accommodates pre-release UniProtKB data for SARS-CoV-
2 virus outbreak.

IntAct COVID-19 Dataset
A dataset of protein-protein and RNA-protein interactions for SARS-CoV-
2 and SARS-CoV viruses.

DrugBank COVID-19 Dashboard
A console that provides comprehensive description of promising drugs,
potential drug targets, clinical trials, and publications related to COVID-19.

BindingDB Coronavirus Data A pool of studies that identified SARS-CoV-2 inhibitors.

BioGrid COVID-19 Coronavirus
A project that provides curated data of SARS-CoV-2 proteins and their
interactions with the host cell.

Guide to Pharmachology Coronavirus Information A service that collects ligands and targets relevant to SARS-CoV-2.

GISAID CoVsurver
A tool that automatically determines the input type and the closest reference
sequence among current strains to compare, thus provide mutation analysis of
hCoV-19.
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TABLE 3 Features and limitations for each database.

No. Database Features Limitations

1 ChEMBL • Specific information about the molecule/drug bioactivities. • Due to the manual curation of huge amounts of data, some
information could be misallocated to molecules/drugs, in
addition to data duplication.

• User-friendly web interface.

• Allows to measure similarity by sketching chemical
structure.

2 PubChem • Detailed information about the drugs/molecules. • Comprehensive information does not exist for large
molecules.

• Three-dimensional visualization of drugs/molecules.

• Provide PubChemRDF service that eases the user
experience while downloading the desired data.

• Allows query search by drawing the chemical structure and
uploading the ID list.

3 DrugBank • Provide inclusive details about drugs, targets, pathways, and
indications.

• To download a non-commercial dataset, the user must
request access from the database managers.

• Delivers validated pharmacogenomics,
pharmacometabolomics, pharmacotranscriptomics, and
pharmacoproteomics.

• Offers drugs and food interaction services to learn the
reported drug-drug interactions (DDIs) and drug-food
interactions, respectively.

• Provide specific precision medicine datasets.

4 DrugCentral • Offers to search the query by chemical substructure
searching.

• The target search is not specific.

• Enables similarity search for the query.

• Incorporate a machine learning service called Redial that
predicts the activity of the drug against SARS-CoV-2.

• Include a Drug-gene signature profile similarity.

• Ease in downloading the query files with explicit data
annotation.

5 KEGG • Comprehensive graphical representation of metabolic
pathways.

• It is not a public domain and thus requires a license request
to download and use data.

• Deliver genome comparison, sequence similarity, and
chemical similarity tools.

• Offers sequence similarity search.

• Clear data annotation.

6 BindingDB • Provides three-dimensional structure for the docked target-
ligand complex.

• Since the database relies on several resources, the collected
data collection is prone to errors if the authors did not
notify the database managers about the updated/observed/
corrected errors.• Offers a service that allocates ligand/target for the query

ligand/target.

• Render virtual screening tools that aid in identifying potential
compounds that is active against the query target of interest.

7 Reactome • Offers simple visualizing pathway browser. • Users are unable to re-construct the data upon their aim,
analysis results, and research interest.

• Provides analysis tools for analyzing gene lists and gene
expressions, pathway comparison among different species, and
for viewing the pathway of interest in several human tissues.

• Include ReactomeFlViz service that allows the user to assign
pathway patterns in many disease types.

• Peer-reviewed

(Continued on following page)
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TABLE 3 (Continued) Features and limitations for each database.

No. Database Features Limitations

8 DrugRepV • Comprehensive and precise data annotation for the
database fields.

• There are no clear instructions on how to extract/download
the data.

• Implement CYTOSCAPE software to provide efficient
interactionmaps for each virus family and the repurposed drugs.

9 TargetMol • The CADD services are performed by professionals. • User must pay charges to access the database services.

• The libraries are comprehensive and of high-quality.

10 Drug Repurposing Hub • Diverse coverage of repurposed drugs. • The downloadable data are provided only in.txt file format.

• User-friendly data visualization interface.

• Allows to search the query by sketching the chemical
structure.

11 PharmGKB • Provide clinical interpretation of the data. • It contains both peer-reviewed and non-peer-reviewed
content thus the obtained results require further validation
(Hippman and Nislow, 2019).• Useful resource of pharmacogenomic information to decide

the necessity of performing the pharmacogenomic testing.

• Proper guidelines about the data annotation so it can be
interpreted correctly by the user.

• Facilitate the downloading of primary data files.

12 PDB • Enables high-quality three-dimensional visualization of
biological targets.

• There is data redundancy in structure and sequence
similarity.

• Offers various analysis tools including determining
symmetry of the query, calculating pairwise structure
alignment, and protein-protein interface classifier.

13 TTD • Offers the user to search by biomarkers, pathway, or target
sequence/drug structure similarity.

• One target has several IDs depends on the number of
ligands reported to it.

• Organized annotation of the data in the downloaded files

14 GenBank • Provide summarized accurate information about genes and
its products.

• Limited information of genes and their products.

• Considers the data type (gene seq, transcripts seq, and
protein seq) when downloading the datasets.

15 OMIM • Comprehensive information for genes and phenotypes. • Not all genes have allelic variants (Amberger and Hamosh,
2017).

• Offers MIMmatch tool that allows researchers to contact
other researchers working on the same entry of interest.

• Provide clinical synopsis, PheneGene Graphics, and
Phenotypic series.

16 UniProt • Interactive three-dimensional visualization of protein
features

• Limits on ID mapping entries.

• Provide SwissBioPics service that enables the visualization
of subcellular components.

17 ZINC • Allows bulk download. • Several fields in the database are either not filled or out of
service.

• Provide one substance or many substances search.

• Collate the reported minor and major drug targets from
other databases.

• Offers the service of locating gene orthologs.

• Implement similarity ensemble approach to connect genes
to substances or vice versa.

19 SIDER • Obvious and clear data annotation. • Not updated regularly, therefore the information are not
up-to-date.

• Enables user to search the query by the side effects or drugs.

• User-friendly web interface.

(Continued on following page)
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Maryland (Chen et al, 2001). It was established to ease the access
of experimental and computational scientists to target-ligand
interaction to robust drug discovery research. The target
information is exported from well-known databases, including
PDB, MMDB, Reactome pathway, KEGG, UniProtKB/SwissProt,
B-MOAD, DrugBank, and Antibodypedia, in addition to Google
Scholar. Ligands data are obtained from patents and databases
such as ChEMBL, MMBD, PubChem, and PDB. There is a wide
range of units used to represent the binding affinity, including the
equilibrium constant (Kd), association rate constant (Kon),
dissociation rate constant (Koff), inhibitory constant (Ki), half
maximal inhibitory concentration (IC50), and half maximal
effective concentration (EC50). The database currently
contains 2.7M data for 1.2M compounds and 9K targets. The
Coronavirus Data Portal on BindingDB aggregates articles,
linked via their PMIDs, detailing protein-ligand binding data
for SARS-CoV-2 and related coronaviruses. This facilitates the
understanding of potential therapeutic interactions with viral
proteins.

2.7 Reactome

Given the challenges associated with gathering the required
data from the abundant information present in publications, the
Reactome database (https://reactome.org/) project was
introduced in 2003 to facilitate researchers’ access to data
from literature published on human biological reaction
pathways (Gillespie et al, 2022). This project is led by Lincoln
Stein of Ontario Institute for Cancer Research (OICR), Peter
D’Eustachio of NYU Langone Health, Henning Hermjakob of
EMBL-EBI, and Guanming Wu of Oregon Health and Science
University (OHSU). The repository provides detailed
information for each entity involved in the reaction pathway.
The data curation process is performed manually by experts in
the designated fields of each molecular or cellular reaction
pathway. All the information is extensively cross-referenced to
more than 100 bioinformatics and cheminformatics resources.
These resources include Ensembl, Uniprot, ChEBI, and PubMed
databases. In response to the COVID-19 pandemic, Reactome
has developed a specialized section called COVID-19 Disease

Pathways. It provides a detailed overview of the various biological
pathways involved in the SARS-CoV-2 lifecycle and the
subsequent host response, including viral entry, replication,
and the host immune responses and potential pathological
events. As of the latest version of this database released in
2023, the database contains 2,629 human pathways,
14,628 reactions, 11,396 proteins, 2,004 small molecules, and
1,114 drugs.

2.8 DrugRepV

DrugRepV (https://bioinfo.imtech.res.in/manojk/drugrepv/)
is a public access database that was established by Rajput et al, in
2021 as a comprehensive resource for the enhancement of the
discovery of effective therapeutics against emerging viruses by
entailing drug repurposing approach (Rajput et al, 2021a). It is
the first manually curated database compiling validated
repurposed antivirals for viruses. At this time, the database
collated 8,485 repurposed antivirals that were experimentally
tested on 23 viruses mined from 360 articles. The collected
antivirals included chemicals and drugs. Moreover, the
repository provides the clinical trials in which the drugs were
involved, and the cell assays used to test the antiviral activity.
DrugRepV is cross-linked with central databases such as
PubChem, NCBI, WHO, PubMed, Clinicaltrials.gov, and
DrugBank. As of the current update, DrugRepV’s introduced a
section that hosts information on 342 repurposed drugs for
SARS-CoV-2 called SARS Coronavirus-2. The information
entities include drug type, primary and secondary indications,
strain specificity, involved pathways, assay methods, assay
methods, activity against the virus, and the current clinical
status for the drugs.

2.9 TargetMol

TargetMol (https://www.targetmol.com/index) is one of the
leading providers of compounds to aid chemical and biological
scientists in their research scope. It is maintained by TargetMol
Chemicals Inc. company. To date, it contains over 170 compound

TABLE 3 (Continued) Features and limitations for each database.

No. Database Features Limitations

18 RepoDB • Allow the user to specify the phase and category of the query
drugs.

• Limited coverage as the database solely depends on two
resources.

• Ease of downloading specific and bulk datasets.

20 GISAID • Consider genomic variants and mutations. • Inconsistent cross-referencing and low quality metadata
(Gozashti and Corbett-Detig, 2021).

• Provide audacity instant app.

• Comprehensive representation of influenza genomic
epidemiology.

• Open-access and free access to data upon the user
consideration of database access agreement.
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TABLE 4 Overview of Specific Features Provided by each Database.

Database Standalone data format Platform search
functionality

Availability

SDF CSV XLSX XML RDF
formats

JSON FASTA ASNT KGML TSV SBML TXT YAML PDB SVG GMT SBGN BioPAX PSI-
MITAB

CIF MOL2 Searchable Non-
searchable

Open
access

Require
License

ChEMBL √ √ √ √ √ √ √ - - √ - √ √ - √ - - - - - - √ - √ -

PubChem √ √ - √ √ √ - √ - - - - - - - - - - - - - √ - √ -

DrugBank √ √ - √ - - √ - - - - - - - - - - - - - - √ - √ √

DrugCentral √ √ - - - - - - - √ - - - - - - - - - - - √ - √ -

KEGG - - - - √ - - - √ - - - - - - - - - - - - √ - √ √

BindingDB √ - - - - - √ - - √ - √ - - - - - - - - - √ - √ -

Reactome - - - - - - - - - - √ √ - - √ √ √ √ √ - - √ - √ -

DrugRepV - - - - - - - - - - - - - - - - - - - - - √ - √ -

TargetMol √ - √ - - - - - - - - - - - - - - - - - - √ - - √

Drug

Repurposing

Hub

- - - - - - - - - - - √ - - - - - - - - - - √ √ -

PharmGKB - - - - - √ - - - √ - - - - - - - √ - - - √ - √ -

PDB √ - - √ - - √ - - - - √ - √ - - - - - √ √ √ - √ -

TTD √ - √ - - - - - - - - √ - - - - - - - - - √ - √ -

GenBank - - - - - - √ - - - - √ - - - - - - - - - √ - √ -

OMIM - - - - - - - - - - - √ - - - - - - - - - √ - √ √

UniProt - - √ √ √ √ √ - - √ - √ - - - - - - - - - √ - √ -

ZINC √ √ - √ - √ - - - - - √ - - - - - - - - √ √ - √ -

SIDER - - - - - - - - - √ - - - - - - - - - - - √ - √ -

RepoDB - √ - - - - - - - - - - - - - - - - - - - √ - √ -

GISAID - - - - - - √ - - - - - - - - - - - - - - √ - √ √
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libraries, more than 16,000 natural products, and a wide range of
inhibitors, activators, peptides, and antibodies. Their services aid
experimental and computer-aided drug design (CADD) research
studies. For the latter studies’ benefit, abundant libraries are
prepared by experienced teams to assist in silico projects. The
libraries include a bioactive compound library, an FDA-
approved drugs library, and a drug repurposing compounds
library. Also, they provide three computer-based services:
virtual screening, molecular docking-based virtual screening,
and pharmacophore-based virtual screening. TargetMol has
launched the Anti-COVID-19 Compound Library, a curated
collection of 1,160 compounds carefully selected through
literature reports and in silico screening for their potential
activity against SARS-CoV-2.

2.10 Drug repurposing hub

The drug repurposing hub database (https://clue.io/
repurposing) was established by Corsello et al (2017) in 2017 to
serve as a comprehensive library for experimentally confirmed
repurposed drugs. Drugs are annotated by the clinical phase,
disease area, mechanism of action (MOA), target, vendor, and
purity. These annotations are gathered from various databases,
including DrugBank, PubMed, FDA Orange Book, NPC, and
Citeline Pharma projects. Currently, the database contains
2,183 biological targets (proteins), 7,934 compounds, and
670 drug indications. It provides a valuable service where the
user can request specific repurposed compounds and screen them
against the target of interest either in their laboratory or in the center
for the development of therapeutics (CDoT), to unveil the potential
of the compounds against the chosen biological target.

2.11 PharmGKB

Curated knowledge about the genetic variation effect on drug
metabolization in the human body is provided in Pharmacogenetics
Knowledge Base (PharmGKB) database (https://www.pharmgkb.org/).
Generally, it contains information about pharmacogenomics
relationships between genes, drugs, and diseases. Specifically, it
includes information about drug-centred pathways, pharmacogenetic
summaries, and drug-dosing guidelines, and the labels collected from
pharmacogenomics (PGx) studies. This project was initiated in 2000 and
became available online in 2001 (Whirl-Carrillo et al, 2021). At the time
of writing, 218 pathways, 68 potential pharmacogenes, 26,402 variant
annotations, 762 annotated drugs, 428 FDA drug label annotations, and
201 clinical guideline annotations were deposited in the consortium.
PharmaGKB has developed Therapeutic Resource for COVID-19, which
focuses on COVID-19 related therapeutic aspects. It includes details on
potential drug targets, therapeutic agents, clinical trials, drug interactions,
and pharmacogenomic factors.

2.12 PDB

The Research Collaboratory released the protein data bank
(PDB) (https://www.rcsb.org/) for Structural Bioinformatics

(RCSB) in 1971 (wwPDB consortium, 2019). The PDB has
three data centers worldwide, in the US, United Kingdom, and
Japan, each of which is titled as RCSB PDB (https://www.rcsb.
org/), PDBe (https://www.ebi.ac.uk/pdbe/), and PDBj (https://
pdbj.org/) respectively. To ensure up-to-date data quality, the
information is updated weekly. Following a recent database
update, the data available in this database are cross-referenced
with other repositories, including KEGG pathways, Gene
Ontology (GO), Enzyme NCBI, and Enzyme Commission.
Also, data obtained from x-ray crystallography, nuclear
magnetic resonance (NMR), and electron microscopy are
archived. A unique dataset provided in this repository is the
Binding MOAD (mother of all databases) (http://www.
bindingmoad.org/) dataset that contains 41,409 protein-ligand
structures and 15,223 binding data, as per the last release
statistics. Moreover, the binding affinities data for all
molecules and complexes deposited in the PDB database are
provided by the PDBbind-CN database (http://www.pdbbind.
org.cn/). PDB offers COVID-19/SARS-CoV-2 resources with
experimentally determined protein structures, aiding research
on viral proteins and potential drug targets. It includes the
monthly Molecule of the Month feature, which is dedicated
section for COVID-19 molecular structures and provides
related scientific publications and educational resources.
UniProt database is also a comprehensive resource providing
data on protein sequences, functions and structures, and it is
discussed within the databases below. Each database provides a
unique features which is detailed in Tables 3, 4.

2.13 TTD

Therapeutic target database (TTD) (https://db.idrblab.net/
ttd/) is one of the Pharmainformatics databases provided by the
Bioinformatics and Drug Design Group (BIDD) launched in 2002
(Zhou et al, 2022). The group gathered almost all the known and
explored therapeutic targets, targeted disease conditions, and the
ligands/drugs reported to target these targets. The database
provides a wide range of targets and drug classifications, in
addition to drug resistance mutations and target expression
profiles from the patients’ data. Target annotations include
successful targets, clinical trial targets, co-targets, non-binders,
target regulators, and target interacting proteins. Drugs are
annotated as approved drugs, multi-target agents, nature-
derived drugs, and prodrugs. The last statistics provided by
the group in 2022 revealed that the database currently
contains 3,578 targets and 38,760 drugs. The database added
three services to help researchers in drug-based research studies.
The services include the molecular interactions/regulations of the
target, different human system profiles of the target, and cell-
based expression variations of the target of interest. TTD also
introduced a service called Target and Drug Data for
Coronaviruses. As the name implies this section provides a
comprehensive collection of information related to therapeutic
targets and drugs that have been studied or proposed for the
treatment of coronavirus infections, including SARS-CoV-2. The
information includes target information, drug binding data,
therapeutic agents, and clinical trial information.
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2.14 GenBank

GenBank (https://www.ncbi.nlm.nih.gov/genbank/) was
built by the National Center for Biotechnology Information
(NCBI) and released in 1982 (Sayers et al, 2020). It is a
comprehensive, publicly available database of nucleotide
sequences. The data was collected from sequence data
submitted by authors, high-throughput screening data
collected from sequencing centers, genome survey sequence
(GSS), bulk submission of expressed sequence tag (EST), and
nucleotide sequences issued in patents. The database is divided
into 20 divisions according to the specific sequencing strategies.
As a node in International Nucleotide Sequence Database
Collaboration (INSDC) along with the European Molecular
Biology Laboratory - European Bioinformatics Institute
(EMBL-EBI) and DNA Data Bank of Japan (DDBJ) center,
GenBank ensures the daily and uniform comprehensive update
of the available data. The NCBI provides the Sequence Read
Archive (https://www.ncbi.nlm.nih.gov/sra/) to collect and
accept Next-Generation reads, GenBank database to collect
Assembled Sequences from researchers, BioSample database
(https://www.ncbi.nlm.nih.gov/biosample/) that contains
descriptions of biological source materials used in
experimental assays, and BioProject database (https://www.ncbi.
nlm.nih.gov/bioproject/) that provides a collection of biological data
that is originating from the same institute, or the same initiative.
Likewise the DDBJ center provides the Sequence Read Archive
(https://www.ddbj.nig.ac.jp/dra/index-e.html), DDBJ (https://www.ddbj.
nig.ac.jp/ddbj/index-e.html), BioSample (https://www.ddbj.nig.ac.jp/
biosample/index-e.html), and BioProject (https://www.ddbj.nig.ac.jp/
bioproject/index-e.html) consequently. EMBL-EBI provides the
European Nucleotide Archive (https://www.ebi.ac.uk/ena/browser/
about) for the collection and archival of sequence data. As of June
2023, the current release, GenBank 256.0, contains about one trillion base
pairs and about two million nucleotide sequences, yet the records are
doubling up continuously.

2.15 OMIM

Online Mendelian Inheritance in Man (OMIM) (https://www.
omim.org/) is a corpus database that holds information about all
knownmendelian disorders and genes (Hamosh et al, 2021). For each
gene, the following information is available: gene locus structure, gene,
function, and variants; gene-phenotype relationship; cloning and
expression details; molecular genetics; genotype/phenotype
correlation; and the animal models on the searched gene. The
database idea was introduced early in 1960 by Dr. Victor A.
McKusick and was called the MIM database. Later, in 1955, the
database was developed for the world wide web, following
collaboration with NCBI. The last statistics released in 2023 show
the collation of 7,331 phenotypes (with known molecular basis) and
4,753 genes (with phenotype-causing mutation). Along with OMIM,
there are other archieves that serves a resource for human genes and
genetic disorders, some of which include ClinVar database (ncbi.nlm.
nih.gov/clinvar/), GeneReviews (https://www.ncbi.nlm.nih.gov/
books/NBK1116/), and Orphanet database (https://www.orpha.net/
consor/cgi-bin/index.php).

2.16 UniProt

Universal Protein Resource (UniProt) (https://www.uniprot.org/)
was developed following collaboration between the European
Molecular Biology Laboratory - European Bioinformatics Institute
(EMBL-EBI), Swiss Institute of Bioinformation (SIB), and the protein
information resource (PIR) in 2002 (The UniProt Consortium, 2022).
This database is free-accessible and rich in various protein sequences
from different organisms. It also contains three sub-databases, namely,
UniProt Knowledgebase (UniProtKB), UniProt Archive (UniParc), and
UniProt References (UniRef). There are two releases of UniProtKB,
UniProtKB/Swiss-Prot and UniProtKB/TrEMBL. The former release is
manually curated, while the latter release comprises automatically
annotated entries. To date, each release contains over 569 thousand
and 206 million amino acids, respectively. UniProt has launched a
dedicated portal named COVID-19 Portal, which provides the latest
pre-release UniProtKB data for the SARS-CoV-2 coronavirus.

2.16 ZINC

ZINC database (https://zinc.docking.org/) was first released in
2005 at the University of California by Irwin and Shoichet
Laboratories. The last release of this database, ZINC 20, contains 1.
4 billion smallmolecules that are ready to be used in docking experiments
and for other research purposes (Irwin et al, 2020). Among these
compounds are 892 FDA-approved drugs available with their
references. All the substances are annotated based on the molecular
weight, hydrophobicity, presence of rings, heavy and hetero atoms, many
bond characteristics, and three-dimensional features that are significant
for drug-target interaction. Also, information about the activity of the
drug and the clinical trials involving these compounds are listed.

2.17 SIDER

Drug side effects are gaining research interest for the potential of
relating them to the drug’s chemical structure to predict both novel
drug-target interactions and side effects for other drugs. Therefore,
Kuhn et al (2016) announced SIDER (Side Effect Resource) database
(http://sideeffects.embl.de/) in January 2010 to aggregate adverse
drug reactions (ADR) of drugs to aid academics in their research.
The detection of the indications was mined using natural language
processing (NLP) from literature, electronic indication systems,
animal studies, clinical trials, and package inserts. As of
2015 statistics, a collection of 140,064 drug-ADR pairs and
5,868 ADR for 1,430 commercial drugs are present in the repository.

2.18 RepoDB

Brown and Patel introduced Drug Repositioning Database
(https://unmtid-shinyapps.net/shiny/repodb/) in 2017 to facilitate
drug repurposing studies (Brown and Patel, 2017). It contains four
main types of repurposed drugs, namely, 8,506 approved drugs,
2,495 terminated drugs, 846 withdrawn drugs, and 90 suspended
drugs. The drugs activity was reported against 1,294 diseases. The
drugs are categorized in RepoDB as approved drugs (true positives)
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and failed drugs (true negatives). Two central databases were utilized
to build this database, Drug Central and AACT database. The
former database extracted approved indications, while the latter
was for the failed indications.

2.19 GISAID

The H5N1 avian influenza spread in 1997 embraced the
necessity of developing an internationally trusted repository for
sharing influenza genetic sequence data collected from both
published and unpublished data. Thus, in 2008, Dr. Yuelong Shu
and Dr. John McCauley developed the GISAID (Global Initiative on
Sharing All Influenza Data) database (https://gisaid.org/) (Khare
et al, 2021). Currently, the database involves data considering all
influenza viruses and coronaviruses to assist researchers in
epidemics and pandemics. The database provides the genomic
sequences and metadata associated with that sequence. Moreover,
it encourages worldwide collaborations and data sharing to aid in
accelerating the process of identifying the full genetic sequence of the
viruses and their genetic variation. Accordingly, GISAID developed
CoVsurver as an automated tool that is designed to analyze
mutations of SARS-CoV-2 (hCoV-19) virus and assist in
studying the genetic variation of the virus and up to date, it
received 15,781,410 hCov-19 genome sequences.

3 Machine learning models

Machine learning (ML) is a distinct division of artificial
intelligence (AI) that gained attention in drug repurposing
field for its appealing advantages. It was proven to have an
efficient intervention to accelerate the prediction of potential
SARS-CoV-2 inhibitors and to prioritize drugs for in vitro
testing (Yang et al, 2022). A significant feature of ML models
is their ability to learn and explore functional relationships in
the given data set that humans could hardly investigate. Usually,
ML workflow comprises four steps: 1) data curation and pre-
processing, 2) feature extraction, 3) model fitting, and 4)
interpretation (Angermueller et al, 2016). Upon the human
intervention intensity in each step, the ML can be classified
into conventional ML models and deep learning (DL) models. In
the former models, significant human intervention is required
compared to the latter models. Specifically, in DL models, the
feature extraction step is automated, unlike in the conventional
ML models where it is done manually (Sarker, 2021). Both
models can be implemented for classification, regression,
clustering, or pattern recognition problems (Carracedo-
Reboredo et al, 2021).

This section covers two main areas: 1) deep learning models and
2) conventional machine learning models. The deep learning models
section will be divided into two sections: 1) deep learning
methodology and 2) application in drug repurposing. Likewise,
the conventional machine learning model section will be divided
into three sections: 1) ensemble learning model, 2) support vector
machine model, and 3) Naïve Bayes model. Each section is
subdivided into its methodology and its application in drug
repurposing.

3.1 Deep learning models

Deep learning (DL) also known as deep structured learning or
hierarchical learning, refers to a learning system composed of several
information processing layers (LeCun et al, 2015) (Yang et al, 2019). The
model is related explicitly to artificial neural networks (ANN). Therefore
the two terms are often used interchangeably (Sarvepalli, 2015;
Schmidhuber, 2015; Di Franco and Santurro, 2021). Accordingly, in
this review article, both ANN and DL will be used to represent the same
concept. Originally, ANN was introduced by Fran Rosenblatt in 1957
(University of Massachusetts Amherst, 2022), followed by consistent
research in this area until 1998 (Schmidhuber, 2015; Emmert-Streib et al,
2020). The field gained recognition again in 2006 (Hinton et al, 2006),
where the current flow of DeepNeural Networks (DNN) is growing. The
quality ofDNNoutcomes relies on implementing the correct architecture
to solve the problem (Miikkulainen et al, 2019). DNN comprises many
models with different architectures for different applications and
purposes.

The models can be categorized into three categories (Sarker,
2021): (Matta et al, 2020) DNN for supervised or discriminative
learning (Zhou P. et al, 2020); DNN for unsupervised or generative
learning; and (Mtewa et al, 2022) DNN for hybrid learning which is
the integration of discriminative and generative learning.
Discriminative learning provides a discriminative function in
classification applications, and this category generally includes
Multi-Layer Perceptron (MLP), Convolutional Neural Networks
(CNN or ConvNet), and Recurrent Neural Networks (RNN or
cyclic). RNN includes Long short-term memory (LSTM),
Bidirectional LSTM (Bi-LSTM), and Gated Recurrent units
(GRU). Generative learning includes Generative Adversarial
Network (GAN), Autoencoder (AE), Self-Organizing Map
(SOM), Restricted Boltzmann Machine (RBM), and Deep Belief
Network (DBN). Hybrid learning includes the integration of models
from both discriminative and generative learning.

3.1.1 Deep learning methodology
The ANN model name and structure was inspired the brain

information processing pathway (Keijsers et al, 2010). As the name
implies, it consists of a processing unit mimicking a neuron as a
fundamental building block of the network. Several neurons are
compiled to form a neural network (NN). The number of neurons in
the model is dependent on the problems complexity. These neurons
are arranged in interconnected layers. The number of assembled
layers decides the depth of the network; when more layers are
assembled, the network is called a deep neural network (DNN) and
called a shallow neural network (SNN) if vice versa (Hinton, 2007;
LeCun et al, 2015). Generally, there are three types of layers, input,
hidden and output layers, designed for classification and regression
problems. The model is involved in two main procedures: the feed-
forward and the back-propagation procedures. Assuming that the
training set is represented as follows (Gao et al, 2022).

xi, yi( )
∣∣∣∣xi ∈ Rm, yi ∈ Rl}

n

i�1{ [1]

Where n is the sample number, and m is the number of features.
l represents the number of classes and l ∈ Z. If l = 1, the training set
is set for a regression problem, while if l > 1, the model is then
designed for classification problems. Assume xi ∈ Rm is a feature
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representation, the feed-forward starts from the input layer to the
first hidden layer defined as

z1 � f WT
1 xi + b1( ) [2]

Where the weight from the input layer to the first hidden layer is
represented asW1 ∈ Rm×h1 , and the bias from the input layer to the
fist hidden layer is represented by b1 ∈ Rh1 . The number of neurons
in the first layer is h1, and f represents the activation function. If
another hidden layer is added, similar Eq. 2 is defined with
considering the previous layer output as the new layer input,
thus defined as below

z2 � f WT
2 z1 + b2( ) [3]

The weight of the second added layer isW2 ∈ Rh1×h2 and the bias
from the first input layer to the second input layer is b2 ∈ Rh2 . The
number of neurons in the second layer is represented as h2. The last
hidden layer is represented as the jth hidden layer, and its output to
the output layer is defined as

ŷi � zj+1 � WT
j zj + bj [4]

Where the weight of the last hidden layer, bias, and the number of
neurons is represented as Wj ∈ Rhj×l, bj ∈ Rl, and hj respectively.

3.1.2 Application in drug repurposing
Beck et al (2020) implemented their pre-trained deep learning-

based model called molecule transformer-drug target interaction
(MT-DTI) to foresee SARS-CoV-2 inhibitors by targeting specific
proteins, namely, 3C-like proteinase (3CLpro), RNA-dependent RNA
polymerase (RdRp), helicase, 3′-to-5′ exonuclease, endoRNAse, and
2′-O-ribose methyltransferase, through the screening of 3,410 FDA-
approved drugs. This model is based on natural language processing
(NLP) and was used to predict the binding affinities between the
existing anti-viral medications and the target proteins. The model
predicted 12 drugs for 3CLpro, 26 drugs for RdRp, 25 drugs against
the helicase, 22 drugs against the 3’-to 5’-exonuclease, 19 drugs
against endoRNAse, and five drugs against the 2’-O-ribose-
methyltransferase. Among the predictions, the authors suggested
Atazanavir and Remdesivir as promising inhibitors of all the six key
targets. Moreover, Ganciclovir was predicted as a potential drug to
inhibit SARS-CoV-2 replication by binding it to the replication
complex subunits. Against helicase, three potential drugs were
predicted to have a promising inhibition activity, Lopinavir,
Ritonavir, and Darunavir.

Zhang H. et al (2020) proposed a dense fully convolutional neural
network (DFCNN) deep learning-based model to screen large-scale
molecules from five libraries (approved drugs, natural compounds,
bioactive compounds, tripeptides, and small molecules) to determine
their inhibition activity against the 3C-like protease (3CLpro) of SARS-
CoV-2. Among the significant predictions reported in the article, eight
approved candidates with a DFCNN score of approximately 0.999 were
suggested to have high potential to inhibit the 3CLpro enzyme, viz.
Meglumine, Vidarabine, Adenosine, D-Sorbitol, D-Mannitol, Sodium
Gluconate, and Ganciclovir, and Chlorobutanol.

Che et al (2021) designed a model called graph convolutional
network with attentional mechanism for drug–disease interaction
(Att-GCN-DDI) for the prediction of potential drugs for

COVID-19. The model input is a COVID-19 knowledge graph
(KG). The network was constructed with five entities: drugs, genes,
disease, pathway, and side effects. The target genes for COVID-19
were RNA-dependent RNA polymerase (RdRp), ACE2, pp1ab,
human immunity virus type 1 protection (pol). The model was
trained based on known drug–disease interactions (DDIs) and then
reconstructed on the basis of COVID-19 node to extract drug
candidates against SARS-CoV-2. The predicted drugs were 30,
and after the analysis and literature validation, five drugs were
prominent candidates for virus inhibition. The listed drugs were
Tenofovir, Lopinavir, Darunavir, Ritonavir, and Ribavirin.

Ke et al (2020) established a deep learning system, deep neural
network (DNN), to detect potential inhibitors of SARS-CoV-2. The
model was integrated with an in vitromodel to determine the efficacy of
the predicted drug candidates. Depending on the cell assay activity
feedback results, the model was subjected to a re-learning process,
hence called the modified AI-model. The latter model was then used
to mine potential drugs for the lethal virus, followed by further in vitro
experimental validation. Overall, eight drugs among the 80 predictions
showed significant inhibition activity in the designed in vitro experimental
model. The predicted drugs were Bedaquiline, Brequinar, Celecoxib,
Clofazimine, Conivaptan, Gemcitabine, Tolcapone, and Vismodegib.

Ton et al (2020) screened 1.3 billion molecules to investigate
potential drugs against SARS-CoV-2 main protease (3CLpro), also
referred to as Mpro, using the deep docking (DD) platform. The
platform comprised deep learning models based on quantitative
structure-activity relationship (QSAR) models that were trained on
docking scores. The results provided a valuable 1,000 compounds
that could have a potential anti-3CLpro activity.

Zeng et al (2020) employed deep learning to hasten drug discovery
by locating potential treatments for COVID-19. Themodel is based on the
construction of a knowledge graph (KG). The authors built a
comprehensive KG representing 39 relationships between drugs,
diseases, proteins, genes, pathways, and the gene expression from
various publications. The deep learning system identified 41 potential
drugs, including Dexamethasone, Indomethacin, Niclosamide,
Tetrandrine, Estradiol, Rifampicin, Idoxuridine, Sirolimus, andAmpicillin.

Choi et al (2020) implemented the previously developed MT-DTI
model andmolecular docking analysis to predict drugs that may block the
virus entry by inhibiting the binding of the viral proteins to the human
Angiotensin-converting enzyme 2 (ACE2) receptor and Transmembrane
protease, serine 2 (TMPRSS2) receptor. The study identified 20 drug
predictions for both receptors. The ACE2 inhibitors list included
Enalaprilat, Zofenopril, Lisinopril, Benazepril, Cilazapril, Trandolapril,
Perindopril, Ramipril, Fosinopril, Moexipril, and Spirapril. While for
the TMPRSS2 inhibitors, the drugs include Dasatinib, Pentostatin,
Tazemetostat, Tiotropium, Eluxadoline, Pimecrolimus, Tacrolimus, and
Ombitasvir. Drugs such as Aclidinium, Buprenorphine, Emtricitabine,
Lurasidone, and Tiotriopium appeared in both ACE2 and
TMPRSS2 inhibitors.

Morselli Gysi et al. (2021) designed a graph convolutional
network (GCN) for COVID-19, where nodes represented drugs,
genes, proteins, and disease annotations (signs, symptoms, etc.) and
edges described the interactions between the nodes, including gene-
protein interactions, protein-protein interactions, and drug-target
interactions. Along with the GCN model, network diffusion and
network proximity were implemented to screen drugs that have the
potential to disturb the virus activity. The study identified
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77 potential drugs against the virus. The top predictions included
Chloroquine, Azelastine, Folic acid, Methotrexate, Digoxin,
Omeprazole, and Auranofin.

Ge et al (2021) proposed an integrative framework for COVID-
19 drug repurposing. The pipeline of the framework consists mainly
of six phases: construction of a knowledge graph (KG),
implementation of a network-based knowledge mining algorithm
(CoV-DTI), application of a deep learning model (BERE), manual
curation, execution of connectivity map analysis approach, and
experimental testing using in vitro assays. The KG emphasized
the interactions between three types of nodes, drugs, human
targets, and viral targets, then the CoV-DTI algorithm proposed
a list of initial predictions of effective drugs against the virus. The list
was narrowed down by using the BERE model based on text-mining
evidence for each drug’s antiviral activity from the literature. The
extracted list was subjected to a manual curation followed by further
refining using the connectivity map analysis approach. Among the
41 predicted drugs, Mefuparib (CVL218) was prioritized for in vitro
experimental validation and exhibited significant inhibition activity
against SARS-CoV-2 replication by interacting with nucleocapsid
(N) protein with high affinity.

Karki et al (2021) proposed a tiered in silico approach of machine
learning and molecular docking to accelerate the discovery of effective
drugs against SARS-CoV-2. The authors used a pre-trained algorithm
called SSnet to predict the protein-ligand interaction (PLI) probability
of approved drugs and natural therapeutics to the open and closed
conformation of the ACE2 receptor and the ACE2-S1 complex. The
pairs with high binding affinity scores were further analysed by
molecular docking analysis using Smina software. The study
returned numerous probable drugs for each target. Among the
predictions, Naldemedine, Dihydroergotamine, Sorafenib Beta-D-
Glucuronide, Entrectinib, Irinotecan, and Capmatinib are the drugs
that scored the highest SSnet and Smina scores for the three targets.

In the pipeline introduced by Sugiyama et al (2021), the authors
implemented GCN and biased random walks algorithms to capture
the biological processes of the available treatments of the COVID-19
disease. These biological processes were represented as a multiscale
interactome network. The GCN model extracted several viral-host
targets for repurposing leads. A total of 26 drugs were identified to be
potential drugs against SARS-CoV-2. Capmatinib was selected for
further in vitro experimental investigation against SARS-CoV-2 and
other corona viruses. The drug showed inhibition activity against the
viruses, and thus was suggested to hold a promise against SARS-
CoV-2 variants and was proposed for further clinical investigations.

Majumdar et al (2021) presented 33 ligands that are expected to
have an inhibition effect against the spike protein of SARS-CoV-2.
These ligands were predicted by the implementation of 1D-CNN
model to predict drug-target interaction (DTI) values represented by
KIBA scores. The authors suggested that these ligands could be used
to develop drugs effective for COVID-19.

Hu et al (2022) proposed a multi-task deep learning model
(classification and regression) to screen commercially approved
drugs for effective viral inhibitors that target the viral RdRP,
3CLpro, PLpro, and helicase. The model predicted ten potential
drugs including Abacavir, Darunavir, Itraconazole, and Daclatasvir.

Anwaar et al (2022) modified the DeepDTA model to predict
KIBA scores (binding affinities) of 10,608 drugs composed of
2440 FDA-approved drugs and 8,168 investigational drugs

against 24 SARS-CoV-2 viral proteins acquired from the Zhang C.
et al. (2020) study, to identify potential anti-viral drugs.
Furthermore, the drugs with the highest KIBA values were
selected for molecular docking analysis. The study generated
49 promising FDA-approved drugs; among them, 16 drugs were
prioritized to have a potential effect against SARS-CoV-2 viral
proteins, including Anidulafungin, Velpatasvir, Glecaprevir,
Rifapentine, Flavin adenine dinucleotide (FAD), Terlipressin, and
Selinexor.

Amilpur and Bhukya (2022) designed a stacked LSTM model
and aggregated it with molecular docking analysis to identify novel
drug candidates that can hinder SARS-CoV-2 replication by
targeting the viral main protease, 3CLpro. On the basis of the
binding affinity values, ten drugs were prioritized. The top drug
candidate, idsan0431, scored the highest binding affinity to 3CLpro,
even higher than remdesivir in their study, from the generated list
and was suggested for further analysis.

3.2 Conventional machine learning models

The primary purpose of conventional ML models is to expose
computational algorithms to empirical data and develop a functional
model (Edgar et al, 2017; Bangert and Bangert, 2021). However, the
quality of this process mainly depends on human intervention for
preprocessing the input data and extracting the features of interest.
To overcome this constraint, a proper understanding of the feature
annotation and the model performance must be adopted. Generally,
there are two models that the ML model can learn through:
supervised and unsupervised ML (Bangert and Bangert, 2021).

Supervised ML requires a labeled dataset in the form of (input
and output) to operate upon. With a fixed output, the model starts
learning the pattern between each pair to have an overall learning
pattern to predict the outputs of future unlabeled inputs (Yeturu
et al, 2020). Examples of supervised ML include ensemble learning
(EL), support vector machine (SVM), and the Naïve Bayes model.
On the opposite side, unsupervised ML models, also known as
knowledge discovery models, explore and investigate the hidden
features and patterns in unlabeled and unclassified data (El
Bouchefry et al, 2020). This learning approach is widely used in
clustering problems to group cases based on inherent unique
attributes (Schneider et al, 2022). This method is helpful to have
an initial insight into the given data. Some known algorithms are
principal component analysis (PCA) and k-means clustering.

3.2.1 Ensemble learning model
Ensemble learning (EL) methods are considered one of the most

active areas in supervised machine learning (Dietterich, 2000;
Valentini and Masulli, 2002). This concept was introduced
during 1990s through numerous research works (Wolpert, 1992;
Freund, 1995; Breiman, 1996). It was reported by Valentini and
Masulli (2002) in 2002 that a variety of terms were used in literature
to define the combination of several models to solve a specific task by
producing a classifier or regressor model (Moreira et al, 2012). The
fundamental concept in EL is that combining several models, known
as learners, to solve a particular problem is more promising than
when each learner solves it by its own (Walker and Jiang, 2019). The
combined learners could be of the same class, called homogenous

Frontiers in Pharmacology frontiersin.org15

Elkashlan et al. 10.3389/fphar.2023.1182465

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1182465


ensemble learning model (Hosni et al, 2019), or of different classes,
known as heterogenous ensemble learning model (Mao et al, 2021).
In a homogenous ensemble, the learner is called base learner, while
in a heterogenous ensemble the learner is called an individual or
component learner. The efficiency of the ensembles was reported to
enhance the performance of the algorithms (García-Pedrajas et al,
2005; Moreira et al, 2012; Singh and Pal, 2020).

There are two main ensemble methods, the dependent method
and the independent method (Sagi and Rokach, 2018). In the former
method, the output generated by each learner affects the next
learner’s construction sequentially. In the latter method, the
learners are constructed independently and combined using a
combiner to generate the final output. The learner can be any
machine learning model (Zhou et al, 2009; Sagi and Rokach,
2018). Two tree-based methods are well-known examples of EL:
gradient boost decision tree (GBDT) and random forest (RF). RF is
the most popular ensemble method used due to its simplicity,
predictive performance, and easily tuned method (Breiman, 2001;
Sagi and Rokach, 2018). Therefore, RF will be considered as an
example of the EL methodology.

3.2.1.1 Ensemble learning methodology
The building block in the tree-based models is the classification

and regression tree (CART). RF uses many independent CARTs.
These independent trees process in parallel and produce a certain
prediction outcome. The correlation between any two trees and the
strength of each tree determines the forest error rate. All the
predictions are combined with a combiner and are subjected to a
process such as a majority voting or averaging to reduce the risk of
overfitting. The RF can be described as

h x,Θk( ), k � 1, ..{ } [5]
Where h(x,Θk) is the classifier. The variable k represents the kth

tree, Θk is a random vector, and x is the input vector (Breiman,
2001).

3.2.1.2 Application in drug repurposing
Gao et al (2020) developed a GBDT model to predict potential

drugs with inhibition activity against 3CLpro based on the binding
affinities. The proposed model predicted potential 8,565 drugs, where
1,553 are FDA-approved drugs, while 7,012 are investigational drugs. By
further implementation of MathPose predictor, 20 inhibitors from each
category were prioritized. The top promising FDA-approved drugs
include Proflavine, Chloroxine, Demexiptiline, Fluorouracil, Oteracil,
and Tilbroquinol.

Decision stump (DS) is a simple decision tree classifier usually
employed in ensemble learning. Also, it can be used as a standalone
classifier. Nand et al (2020) ran a sequence similarity between 3CLpro

of both SARS-CoV-2 and avian coronavirus and found a high
similarity between the main protease of the two viruses. Therefore,
the team employed a DS model to screen potential drugs against
3CLpro of avian coronavirus from 1,528 drugs with known inhibitory
effects on human immunodeficiency virus (HIV). By further applying
several in silico tools, the study identified two compounds, which
showed a significant activity against the target enzyme of the avian
coronavirus, as promising drug candidates against SARS-CoV-2 main
protease. Their suggestion was supported by evidence from published
studies. The two identified drugs were 4-{[5-(2-Nitrophenyl)-2-furyl]

methylene}-3-phenyl-5(4H)-isoxazolone and 4-Chloro-N-(1-methyl-
1H-benzimidazole-5-yl) benzamide.

Loucera et al (2020) used a multi-task learning model composed
of a multi-output random forest (MORF) regressor model
accompanied by SHapley additive exPlanations model (SHAP) to
identify the relationship between the 2045 known drug-target
(KDT) proteins and the 277 signaling circuits from the
constructed COVID-19 disease map to repurpose potential drugs
for SARS-CoV-2. The circuits represented the sub-pathways
containing the proteins that connect a receptor protein to an
effector protein. The proposed approach showed that 380 KDTs
targeted by 679 different drugs had a direct influence on at least one
signaling circuit in the disease map. As a result, the study generated a
list of potential drugs that could effectively combat the virus. The list
included Vinblastine, Irbesartan, Gefitinib, Resveratrol, Lapatinib,
Miglustat, Fostamatinib, and Afatinib.

Batra et al (2020) trained an RF model to predict inhibitors of
the isolated viral spike (S-protein) protein of SARS-CoV-2, and at
the interface of the viral (S-protein)-human Angiotensin-converting
enzyme 2 (ACE2) receptor to limit or inhibit the virus binding to the
human receptor, thus debilitating the infection based on the drug-
target binding affinity. Docking analysis was performed on the ML
predictions. Among the validated 187 predictions, 75 drugs were
approved by FDA. Pemirolast, Sulfamethoxazole, Valaciclovir,
Sulfamerazine, and Tazobactam are among the top approved
predictions.

Ivanov et al (2020) developed an RF classifier algorithm based on
the quantitative structure-activity relationship (QSAR) methodology to
identify potential inhibitors for SARS-CoV-2 main protease, 3CLpro. The
study returned 3,457 predicted drugs, including 37 promising FDA
drugs. The approved drugs include Thorazine hydrochloride,
Ritonavir, Lopinavir, Clonazepam, Dalfampridine, Melphalan, and
Singulair.

Ahmed et al (2022) developed a drug repurposing framework
called SperoPredictor. Predictions were made using different RF
model configurations, individual RF model predictions; and RF
model combined with the tree ensemble (TE) model. Both
configurations were used to predict drugs that can target six
proteins, namely, human Transmembrane protease seriene 2
(TMPRSS2), furin, Angiotensin-converting enzyme 2 (ACE2), AP2-
associated protein kinase (AAK1), Cyclin-G-associated kinase (GAK),
and Procathepsin L protein. Gene sequence extraction was done for the
proteins and fed to the trained configurations for predictions. Overall,
there were 25 predictions, but further validation reduced the number to
12 predicted drugs. Two of them were predicted by the model’s synergy,
while the other 10 were predicted by the RFmodel. The predictions were
docked and prioritized based on the docking score. Furthermore, the six
prioritized molecules were re-docked to enhance the accuracy of the
predictions. The four final predictions were Cortivazol, Velusetrag, 16-
alpha Bromoepiandrosterone, and Balaglitazone.

3.2.2 Support vector machine model
Support vector machine (SVM) model was introduced by Cortes

and Vapnik in 1995 to aid in binary classification problems (Cortes
and Vapnik, 1995). This method was based on an algorithm
presented by Boser, Guyon, and Vapnik in 1992 (Boser et al,
1992). Support vector regression (SVR) is the support vector
applied to regression problems by introducing an alternative loss
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function (Drucker et al, 1996). In classification problems, the classes
to be separated could be linearly separable or non-linearly separable
in the input space. The aim is to achieve maximum class separation
by a hyperplane with maximum margins, known as optimal
separation hyperplane (Cristianini et al, 2000). Finding this
optimal hyperplane reduces classification errors and increases the
generalization ability of a model.

A hyperplane can separate linearly separable classes with either a
hard margin or soft margin (Carmichael and Marron, 2018). Non-
linearly separable classes are mapped into a higher dimensional
space (to increase the distance between the classes), known as feature
space, by kernelization, meaning the application of kernel functions,
also referred to as kernel trick (Burges, 1998; Kutateladze, 2022). The
trick refers to the fact that in the feature space, the classes can be
linearly separable (Pradhan, 2012). Mercer’s conditions must be
satisfied for a function called kernel function (Cristianini et al, 2000).
Common kernel functions were reported, including linear,
polynomial, quadratic, sigmoid, radial basis function (RBF),
gaussian, and radial (Cervantes et al, 2020). Each kernel function
introduces a unique mapping to separate non-linear classes.

3.2.2.1 Support vector machine methodology
The SVM model consists of two phases: the training phase and

the classification phase. During the training phase, the model learns
to differentiate between elements belonging and not belonging to a
class based on the supplied labeled data (Brown et al, 2000). By the
end of the training phase each element is assigned a weight to be
used in the classification phase. The model then assigns a score for
each element on the basis of their weight. Accordingly, the element is
placed into or out of the class. The linear classifier can be
mathematically described assuming that the training set is (Gao
et al, 2022)

xi, yi( ) xi| ∈ Rm, yi ∈ −1,+1{ }{ }ni�1 [6]

Here, xi is the input sample, and yi represents the class label.
The model prediction function will be

ŷi � wTxi + b [7]
Where b is the bias and w ∈ Rm are the weights. If the data is

linearly separable, then the aim is to minimize ||w|| to yi

(wTxi − b)≥ 1. While if the data is not linearly separable, the
hinge loss function must be introduced as max (0,1 - yi(wTxi −
b)) and the aim is to minimize

λ w‖ ‖ + 1
n
∑n

i�1max 0, 1 − yi wTxi − b( )( ) [8]

Where the regularization term is represented by λ. If the data is not
linearly separable, then kernel functions are introduced. Its general
feature is represented by Φ(x, z). There are several types of kernel
functions, some of which are the linear, polynomial, RBF, and sigmoid
kernels, each of which is denoted as xTz, (αxTz + r)d, e−(‖x−z‖/σ)μ , and

1
(1+e−γxTZ), respectively, where r, α, γ, σ and μ are constants.

3.2.2.2 Application in drug repurposing
Ivanov et al (2020) developed an SVM (radial kernel) model

based on QSAR methodology to predict inhibitors of SARS-CoV-
2 RdRp protein. The model screened three datasets, FDA-approved

drugs dataset, molecules from the COVID-19 Antiviral dataset, and
molecules from published research studies on SARS, MERS, and
SARS-CoV-2. Among the total predictions, 92 FDA-approved drugs
were suggested as RdRp inhibitors. Some of which are Thalomid,
Grazoprevir, Sildenafil, Ruxolitinib, Duvelisib, Moxifloxacin,
Acalabrutinib, and Telmisartan.

Kowalewski and Ray (2020) aimed to mine potential drugs for
COVID-19. Instead of considering a particular target, the authors
gathered a compendium of 65 human proteins which were proven to
interact with SARS-CoV-2 proteins as targets from bioassay data.
Three RBF-SVM models for classification and regression were
combined (ensemble model) and implemented for all the targets.
For only one target, namely, EIF4H, regularized random forest
(RRF) was aggregated along with the SVM ensemble model.
After training, the ML models were utilized to predict inhibitors
against the targets from a set of approved and registered drugs.
Predictions were categorized and curated based on the estimated
mammalian toxicity and vapor pressure. The team constructed a
network of the predicted drugs and targets. The targets with few
drug candidates were excluded. The multi-target drug predictions
comprise Phenazopyridine, Abemaciclib, Promazine, Tyverb,
Pirenzepine, and Ebastine.

Rajput et al (2021b) implemented SVM to predict anti-SARS-
CoV-2 drugs. The model predicted 12 drugs: Verteporfin,
Argatroban, Reboxetine, Guanfacine, Telotristat ethyl, Betrixaban,
Leuprolide, Trovafloxacin, Peramivir, Salmeterol, Oxybuprocaine,
andWarfarin. These predictions were further validated bymolecular
docking to investigate the binding affinity of the drugs against the
complex of spike protein and ACE2 receptor. The authors decided that
the most potential candidates are those having binding affinities ranging
from −9.5 kcal/mol to -8 kcal/mol. Accordingly, seven molecules were
prioritized: Verteporfin, Alatrofloxacin, Metergoline, Rescinnamine,
Goserelin, Leuprolide, and Telotristat ethyl.

3.2.3 Naïve Bayes model
Naïve Bayes classifier model is a probabilistic classifier based on the

Bayes theorem that was introduced by Thomas Bayes during the 18th
century (Bayes, 1763). The termNaïve means simple, which reflects the
simplicity of the classifier due to the ease of implementing it to solve
problems. The model ignores any interactions between the input
features, so it assumes that each input feature is independent of
other present features. Thus, it assumes that each feature has an
equal contribution to the outcome (Shobha et al, 2018). This
assumption never occurs in real life, but remarkably, it is reported
to enhance the classifier accuracy when classifying inputs (Miner et al,
2012). With its simplicity, it is reported to outperform other classifiers
(Kononenko, 2001).

3.2.3.1 Naïve Bayes model methodology
This classifier is reported to be the simplest classifier that returns

accurate and reliable results despite the sample size. Briefly, the
equation is presented below (Kamble et al, 2022) (Dey et al, 2020)

P y
∣∣∣∣X( ) � P X

∣∣∣∣y( )P y( )
P X( ) [9]

The equation solves the probability of the class variable y given
that the dependent input feature X is true. Feature X is also referred
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to as the evidence. If several dependent features are independent of
each other, X is represented as (x1, x2, x3,...,xn) where n represents
the number of features. Therefore, the equation can be rewritten as

P y
∣∣∣∣x1, x2, x3, .., xn( ) � P x1

∣∣∣∣y( )P x2
∣∣∣∣y( )P x3

∣∣∣∣y( )...P xn
∣∣∣∣y( )P y( )

P x1( )P x2( )P x3( )...P xn( )
[10]

P (y|X) in Eq 9 is the posterior probability/distribution, P (X|y) is
the maximum likelihood, P(y) is called the prior/class probability/
distribution. Creating a classifier model requires finding the
probability of a given input set for all possible values of y and
yielding the output with maximum probability. Considering that the
conditional probability is expressed as P(xi|y), the classifier can be
defined as

y � argmax
y

P y( )∏n
i�1P xi

∣∣∣∣y( ) [11]

3.2.3.2 Application in drug repurposing
Mohapatra et al (2020) applied the Naïve Bayes classifier model to

predict drugs that may be effective against SARS-CoV-2. Among the
2,388 approved drugs, the model predicts about 471 drugs that could
have a potential inhibition activity against the virus. These drugs were
further docked with the 3C like protease (3CLpro) and resulted in
28 potential drugs. These drugs were further docked with the target
protein to increase the accuracy of the predictions. The top ten drugs
were suggested according to theML accuracy results and docking scores.
The ten molecules were Amprenavir, Fosamprenavir, Indinavir,
Saquinavir, Darunavir, Ritonavir, Paritaprevir, Lopinavir, Atazanavir,
and Tipranavir. Amprenavir had the lowest global energy value
of −59.90 kcal/mol and therefore was recommended for further
consideration and investigation.

Gawriljuk et al (2021) utilized the Naïve Bayes model provided
by the Assay Central platform to predict potential drug candidates
with anti-viral activity against SARS-CoV-2. The model predicted
seven drugs: Lumefantrine, Artesunate, Naloxone, Nilotinib,
Tiamulin, Budesonide, and Tetrabenazine. Lumefantrine was
prioritized for further validation according to the authors
reliability and applicability criteria. They aimed to investigate the
potential of Lumefantrine to hinder the binding of the viral spike
protein to the host ACE2 receptor. However, the Lumefantrine-S
protein and ACE2-S protein binding affinity (Kd) was reported to be
259 nM and 4.7 nM, respectively. Therefore, suggesting that
Lumefantrine binds to the S proteins but cannot compete with
the ACE2 receptor binding. This hypothesis was further tested by
antiviral activity and cytotoxicity against SARS-CoV-2 in various
cell lines. The authors found that the selectivity index (SI) value was
3.2, which is not a significant inhibition activity.

4 Discussion

The rationale in drug repurposing studies can be condensed into
two statements. First, known drugs might have an unreported
indication that can be used as a treatment for a known or a new
disease. Second, a new disease might have a known pathway/target that
could be treated by a drug targeting the same pathway/target in another
disease. A proper combination of existing pharmacological, biological,

chemical, biochemical, and disease datasets must be considered to
explore such novel drug-target interactions. Accelerating the
identification of potential drugs against SARS-CoV-2 using ML
requires the availability of inclusive online resources. Bioinformatics
and cheminformatics provide valuable tools and resources that allows to
mine and collate data from various life sciences researches to establish a
wide range of databases (Loging et al, 2011). Most repositories integrate
more than one type of data to have ameaningful and comprehensive data
representation. This significantly benefittedmultidisciplinary researchers,
where one source can serve as an integrative interface for disparate data
types. A primary challenge that researchers may face is identifying the
reliability of these resources. Therefore, to ease this challenge, we reviewed
20 reliable and frequently used databases to help researchers acquire the
desired data for ML-based drug repurposing studies. A comparison
between the features and limitations (technical and general) are stated in
Table 3. Moreover, specific features such as the scalability of the database
platform, the data formats provided by the database, and the availability
of the database, are listed in Table 4. It is important to note that hundreds
of valuable databases were not addressed in this review, and others have
not been explored yet. Significant efforts have been made to collate as
many databases as possible in numerous published studies. Readers may
refer to (Xue et al, 2018; Gns et al, 2019; Ko, 2020; Pulley et al, 2020;
Bagherian et al, 2021; Tanoli et al, 2021; Masoudi-Sobhanzadeh et al.,
2020; Zamami et al, 2021; Pan et al, 2022;Wu et al, 2022) for an overview
of other existing repositories.

The utilization of ML models has the potential to predict
probable SARS-CoV-2 inhibitors. Tables 5,6 provide an overview
of the developed DL and conventional ML models, respectively. In
the previous descriptive text, few potential predicted drugs by each
ML models were listed. There are various ways to evaluate the ML
model performance. One way is by the literature review and the
existing body of knowledge on each predicted drug. The other way is
by considering statistical performance evaluation metrics for each
model. To assess the binary classification model performance,
several statistical metrics should be considered, starting by
constructing a confusion matrix to calculate the accuracy,
precision, sensitivity, specificity, F1 Score, and the Area Under
the Receiver Operating Characteristic curve (AUROC). While for
multi-class classification problems, the logarithmic loss can be used
to determine the accuracy of the predictions. For regression models,
the metrics used to evaluate the model performance include the
Mean Squared Error (MSE), RootMean Square Error (RMSE), Mean
Absolute Error (MAE), the coefficient of determination (R2), and the
Pearson’s correlation coefficient (PCC). The majority of the discussed
MLmodels are not accompanied with statistical performance evaluation
metrics, and the model performance is rather accessed by the drug
predictions, meaning that the predictions are validated by performing
literature review, and consulting experts in medical sciences to prioritize
the promising predictions for further validation in vitro, in vivo, or in
silico experimental settings. Moreover, to provide a comparison between
the ML models’ performance statistically, each classification and
regression model studies must provide a similar performance metrics
to allow a comprehensive comparison, however, the discussed studies
provided varying performance evaluation metrics thus preventing us
from comparing the ML models performance in a comprehensive and
objective aspect. It is worth mentioning that few studies considered the
performance evaluation metrics for the ML training set only without
calculating them again for the testing set, while some of those who
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TABLE 5 Overview of deep learning models utilized in SARS-CoV-2 drug repurposing studies.

Authors Model Year Database/s Target/s

Beck et al (2020) MT-DTI/NLP 2020 GenBank, DTC, and BindingDB.` 3CLpro, RdRp, helicase, 3′-to-5′ exonuclease,
endoRNAse, and 2′-O-ribose-methyltransferase.

Zhang et al (2020a) DFCNN 2020 GISAID, PDB bind, ChemDiv, Tri-amino acid
peptide, and TargetMol.

3CLpro

Che et al (2021) Att-GCN-DDI 2020 DrugBank, KEGG Drug, TTD, DID, PharmGKB,
and SIDER.

RdRp, ACE2, pp1ab, and pol.

Ke et al (2020) DNN 2020 DrugBank SARS-CoV-2 proteins

Ton et al (2020) DD 2020 PDB, ZINC15, and DUD-E. 3CLpro

Zeng et al (2020) CoV-KGE 2020 GNBR, DrugBank, and CMap COVID-19

Choi et al (2020) MT-DTI 2020 DrugBank, ZINC, PubChem, DTC, Touchstone,
BindingDB, CMap, UniProt, and NCBI.

Human ACE2 and TMPRSS2 receptors.

Morselli Gysi et al. (2021) GCN 2021 HI-Union, Interactome3D, Instruct, Insider, PINA,
LitBM17, MINT, BioGRID, HINT, HIPPIE,
InWeb, BioPlex, QUBIC, KinomeNetworkX,

PhosphoSitePlus, SignaLink, InnateDB, CoFrac,
APID, DrugBank, and GTEX.

Various viral targets (proteins, pathways)
embedded in the network.

Ge et al (2021) BERE 2021 UniProt, DrugBank, ChEMBL, TTD, IUHAR_BPS,
BindingDB, GHDDI, BioGRID, Instruct, MINT,

PINA, HuRI, SignaLink, and innatedb

Various viral targets (proteins, pathways)
embedded in the network.

Karki et al (2021) SSnet 2021 ZINC, DrugBank, SANCDB, NuBBE, and
BindingDB.

Two conformations of ACE2 receptor (Open and
close), and ACE2-S1 complex.

Sugiyama et al (2021) GCN-based approach 2021 PolypharmDB, PDB, SwissModel, DrugBank, Drug
Repurposing Hub, and BioGRID.

10 main targets: UGGT2, SDF2, NLRX1, MOGS,
HEPACAM, IRAK4, ADAM15, CD46, LILRA3,

and CHPF2,

Supplementary targets: TARS2, GOLGA3, MDN1,
THUMPD2, and ZBTB37.

Majumdar et al (2021) 1D-CNN 2021 GISAID, DUD-E, and PDBbind. Spike protein

Hu et al (2022) Multi-task deep learning
model

2022 NCBI, PDBbind, PubChem, DUD-E, KIBA,
Human, C. elegans, GHDDI, and DAVIS.

RdRP, 3CLpro, PLpro, and helicase.

Anwaar et al (2022) Modified-DeepDTA 2022 DrugBank, PubChem, C–I-TASSER, and PDB. 24 SARS-CoV-2 viral proteins

Amilpur and Bhukya
(2022)

LSTM-based framework 2022 Moses, ChEMBL, PDB, and Scubidoo. 3CLpro

TABLE 6 Overview of conventional machine learning models utilized in SARS-CoV-2 drug repurposing studies.

Authors Model Year Database/s Target/s

Gao et al (2020) GBDT 2020 PDBbind, ChEMBL, and DrugBank. 3CLpro

Nand et al (2020) DS 2020 CMC, PubChem, ChEMBL, NCI and PDB 3CLpro

Loucera et al (2020) Multi-task Learning Model 2020 GTEx portal, DrugBank, and KEGG. KDTs

Batra et al (2020) RF 2020 SWEETLEAD, CureFFI, DrugCentral, and
BindingDB

S-protein, and S-protein-human ACE2 interface

Ivanov et al (2020) RF and SVM (Radial) 2020 Drugs@FDA and CAS database 3CLpro and RdRp

Ahmed et al (2022) SperoPredictor (RF and TE) 2022 DrugBank, PubChem, ChEMBL, SIDER,
DisGeNET, Uniprot, Ensembl, and Monarch.

TMPRSS2, Furin, ACE2, AAK1, GAK, and
Procathepsin L.

Kowalewski and Ray
(2020)

SVM (RBF) and RRF 2020 ZINC15, ChEMBL 25, FDAUNII, DrugBank, TTD,
HSDB, DSSTox, and Acutoxbase.

65 SARS-CoV-2 targets

Rajput et al (2021b) SVM 2021 DrugRepV, DrugBank, and ZINC. S-protein complexed with ACE2 receptor.

Mohapatra et al (2020) Naïve Bayes classifier model 2020 PubChem and DrugBank 3CLpro

Gawriljuk et al (2021) Bayesian machine learning
model

2021 ChEMBL and PubChem Spike protein
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provided the calculations did not specify whether it was calculated for the
training set or the test set. Only two studies provided the calculation for
both the training and testing datasets. From these findings, there happen
to be an inconsistency in reporting the model performance statistically,
therefore, it is important for the researchers to calculate the standard
statistical performance evaluation metrics for the implemented ML
models based on the model type to allow the evaluation of the given
predictions statistically. Generally, in data science, the model
performance is highly dependent on the appropriate selection of the
model, which is dependent on the data set size and type. Due to the
ability of DL models to extract and process complex and big data
features, some studies reported that it outperforms conventional ML
models and providesmore reliable outcomes (Chen et al, 2018; Playe and
Stoven, 2020). Nevertheless, it requires huge training data for the DL
model to have efficient performance; otherwise, the results are unreliable
(Liu et al, 2022). Alternatively, shallow deep learning or conventionalML
models such as the discussed Naïve Bayes classification model, and
decision tree model should be considered if the training dataset was
small. As shown previously, different studies have varying input data
type, size, and quantity based on their proposed principles, leading to the
generation of different predictions. Accordingly, the researchers must
have a clear understanding of the target and the adopted research
methodology, as this will affect their data selection and the rationale
behind the variation between the expected and the predicted predictions.
To confirm the reliability of the predictions, it is necessary and
highly recommended to examine the drug activity against the
target in vitro, in vivo, and clinical settings after the in silico
validation. This will help to diminish the arbitrary perception
of the ML predictions. Adding to this, it will also aid in the
collaboration of various scientists from the life sciences and
information technology research fields to improve the model
performance, so the predictions can be deemed reliable without
further experimental validation. This will undoubtedly accelerate
and improve drug discovery research by establishing a rescue tool
for sudden unforeseen pandemic situations.

5 Conclusion

Drug repurposing using machine learning (ML) models is
considered as one of the promising approaches that was reported to
aid in controlling and preventingCOVID-19with the least consumption

of resources and time. However, this approach is intensely dependent on
the quality and the identity of the input data provided to the model.
Thus, to have reliable model predictions, the researcher must have up-
to-date knowledge about the virus pathophysiology and life cycle at the
molecular level, and the databases that contains the data of interest. In
that way, this review paper presented the frequent used databases inML-
based drug repurposing studies for SARS-CoV-2 along with their
features and limitations. Then, we explored the ML models, both DL
and conventional ML models, in terms of their methodology and
application in drug repurposing for COVID-19.
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