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Advances in biomedical research have demonstrated that inflammation and its
related diseases are the greatest threat to public health. Inflammatory action is the
pathological response of the body towards the external stimuli such as infections,
environmental factors, and autoimmune conditions to reduce tissue damage and
improve patient comfort. However, when detrimental signal-transduction
pathways are activated and inflammatory mediators are released over an
extended period of time, the inflammatory process continues and a mild but
persistent pro-inflammatory state may develop. Numerous degenerative
disorders and chronic health issues including arthritis, diabetes, obesity, cancer,
and cardiovascular diseases, among others, are associated with the emergence of
a low-grade inflammatory state. Though, anti-inflammatory steroidal, as well as
non-steroidal drugs, are extensively used against different inflammatory
conditions, they show undesirable side effects upon long-term exposure, at
times, leading to life-threatening consequences. Thus, drugs targeting chronic
inflammation need to be developed to achieve better therapeutic management
without or with a fewer side effects. Plants have been well known for their
medicinal use for thousands of years due to their pharmacologically active
phytochemicals belonging to diverse chemical classes with a number of these
demonstrating potent anti-inflammatory activity. Some typical examples include
colchicine (alkaloid), escin (triterpenoid saponin), capsaicin (methoxy phenol),
bicyclol (lignan), borneol (monoterpene), and quercetin (flavonoid). These
phytochemicals often act via regulating molecular mechanisms that synergize
the anti-inflammatory pathways such as increased production of anti-
inflammatory cytokines or interfere with the inflammatory pathways such as to
reduce the production of pro-inflammatory cytokines and other modulators to
improve the underlying pathological condition. This review describes the anti-
inflammatory properties of a number of biologically active compounds derived
from medicinal plants, and their mechanisms of pharmacological intervention to
alleviate inflammation-associated diseases. The emphasis is given to information
on anti-inflammatory phytochemicals that have been evaluated at the preclinical
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and clinical levels. Recent trends and gaps in the development of phytochemical-
based anti-inflammatory drugs have also been included.
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1 Introduction

Chronic inflammation and associated disorders are the biggest
public health issues and expected to increase enormously in the
United States during the next 30 years (Pahwa et al., 2020).
Inflammation is the pathological response of the body towards
the external stimuli such as infectious, chemical, mechanical, and
autoimmune stressors. Depending on post inflammatory responses,
inflammation may be acute or chronic. Acute inflammation
concentrates immune cells at the site of infection to combat
dangerous foreign material while chronic inflammation is defined
by the type of inflammatory cells in tissues when acute inflammation
persists for a longer time (Ward, 2010). Advances in molecular
studies show that chronic inflammation causes diabetes, heart
disease, cancer, stroke, arthritis, and obesity (Pahwa et al., 2020)
(Figure 1). It should be noted that inflammation is a self-healing
process that proceeds in three crucial steps which are interconnected
and occur sequentially such as swelling, redness, immobility, pain,
and heat (Yatoo et al., 2018). Firstly, it starts from an increased
vascular permeability followed by infiltration of immune cells that
finally results in granuloma formation and tissue repair (Eddouks
et al., 2012). Activated immunogenic response triggers mitogen-
activated protein kinase (MAPK), Janus kinase/signal transducers
and activators of transcription (JAK-STAT), and nuclear factor-κB
(NF-κB) pathways, as well as the production of inflammatory
cytokines, such as tumor necrosis factor-α (TNF-α), interleukin
(IL) 1β (IL-1β), and chemokines (Afonina et al., 2017). Cytokines
and chemokines both are critical for attracted activating additional
immune cells at infection site, such as circulating neutrophils that
boost interferon γ (IFN-γ), proteases, and reactive oxygen species
(ROS). Cytokines also increase cyclooxygenase-2 (COX-2) that

promotes the synthesis of inflammatory prostaglandins (Gandhi
et al., 2017). After removing the immunogenic factor, the immune
system reprograms signaling pathways to resolve inflammation in a
dynamic process regulated by several biological systems. First,
deployed effector cells are killed and reduced to baseline levels
following elimination of proinflammatory agents and signals. Non-
inflammatory macrophages remove apoptotic neutrophil vesicles
and restores tissue equilibrium (Maskrey et al., 2011). However,
sometimes the underlying conditions of the body interrupts with
this phenomenon and lead to dysregulation of the inflammatory
system, resulting in uncontrolled pathways and the production of
inflammatory mediators that cause chronic inflammation and other
degenerative diseases. One evidencemeets here with regards to a link
between inflammation and obesity (Stepien et al., 2014). In the
present review, we have postulated a basic understanding of
inflammation, obesity and other related complications while
more emphasized on recent investigations of medicinal
phytochemicals for their anti-inflammatory properties using
preclinical and clinical studies.

2 Inflammation, obesity and related
complications

Chronic inflammation is a condition that typically lasts for a
long time and is characterized by the presence of immune cells such
as lymphocytes and macrophages along with the proliferation of
blood vessels and connective tissues. One remarkable discovery
postulated that obesity is the biggest cause of chronic
inflammation, following severe disorders (Ellulu et al., 2017).
World Health Organization (WHO) estimated that 1.9 billion
people are overweight and 600 million are obese (World Health
Organization, 2015). Obesity increases pro-inflammatory IL-6 and
TNF-α levels and decreases anti-inflammatory hormone
adiponectin (Stepien et al., 2014). The overexpressed pro-
inflammatory cytokines are considered to be the link between
obesity and inflammation and this sustained chronic
inflammation is a strong risk factor for developing many
metabolic disorders and cancer (Hotamisligil, 2006).

The adipose tissues are the determining factor of the occurrence
of obesity. These tissues respond to additional nutrients by
hyperplasia and hypertrophy, causing adipocyte expansion and
obesity, which reduces blood flow and causes hypoxia (Cinti
et al., 2005). Hypoxia is thought to cause necrosis and
macrophage infiltration into adipose tissue, which leads to
increased pro-inflammatory mediator production, including
leptin, adiponectin, IL-6, TNF-α, monocyte chemoattractant
protein-1 (MCP-1), and resistin (Lafontan, 2005). IL-6 induces
hepatocytes to produce and release inflammatory molecules,
c-reactive protein (CRP) that indicates liver-caused systemic
inflammation which controls obesity regardless of race and

FIGURE 1
Complications caused by chronic inflammation.
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gender (Choi et al., 2013). Klisic et al. (2014) measured CRP and
metabolic markers among normal weight and overweight
postmenopausal women and reported higher levels of CRP and
triglycerides (TG) in overweight women. Adiponectin and leptin
have a major role in inflammation; IL-6 also modulates the secretion
of these hormones (Matsuda et al., 2002; Matsuzawa, 2006; Klisic
et al., 2014). IL-6, adiponectin, leptin, and CRP are significant
mediators of localized inflammation in adipose tissues when
abnormalities are present. In this situation, obesity-related
comorbidities develop, indicating an inflammatory state that
contributes to the onset and progression of many diseases
(Trayhurn and Wood, 2004; Hansson, 2005; Danesh et al., 2008;
Zhang et al., 2009; Sansone and Bromberg, 2012) (Figure 2).

Obesity and inflammation have interrelated effects on the
immune system, body weight, and metabolism (Castanon et al.,
2014; McNelis and Olefsky, 2014). A study found a link between
inflammation and ω-3 and ω-6 polyunsaturated fatty acids (PUFA)
ratio. Larger consumption of ω-3 fatty acids reduces
proinflammatory cytokines, IL-2, IL-6, and TNF-α, and increases
anti-inflammatory IL-10 and tumor growth factor- β (TGF-β)
(Alfano et al., 2012). High ω-6 PUFA diets increase adipokine
levels, pro-inflammatory cytokine production, and
hyperinsulinemia (Chan and Norat, 2015; Ghose et al., 2015). In
animal studies, Polyak et al. (2014) found that chemokine fractalkine
receptor knockout animals gained less weight and had less white
adipose tissue than controls. These animals also had lower adipose
MCP-1, IL-1α, and TNF-α levels (Polyak et al., 2014). IL-18
knockout animals fed a high-fat diet gained weight and burned
less energy. Additionally, central IL-18 infusion reduced high-fat
meal consumption, demonstrating that IL-18 can influence food
intake centrally (Zorrilla and Conti, 2014). In conclusion,
chemokine/cytokines, fractalkine, and IL-18 affect weight gain

and metabolic diseases, indicating an interdisciplinary approach
to inflammation and high-fat diet/obesity. The data also shows a link
between obesity, diet, and chronic inflammation, which causes
multiple diseases/disorders.

2.1 Birth complications

Preeclampsia (PE) has a global incidence of 2.16% during
pregnancy (Abalos et al., 2014) and causes proteinuria,
thrombocytopenia, renal insufficiency, and liver disease
(Pennington et al., 2012; Abalos et al., 2014). In a healthy
pregnancy, the processes that promote uteroplacental vascular
remodeling can lead to placental ischemia after placental
inflammation, which releases substances into the maternal
circulation. These substances stimulate immune cells in the
body’s periphery, especially T and B lymphocytes, which cause
endothelial cell dysfunction, vascular dysfunction, and high blood
pressure (LaMarca et al., 2013; Roberts, 2014). Since pro-
inflammatory processes influence placental ischemia-induced
hypertension, these mechanisms are likely amplified in obese
people. Obesity before pregnancy is linked to high levels of pro-
inflammatory cytokines in the placenta and circulating IL-6
throughout pregnancy. Overweight women have thicker placental
blood vessel walls than normal-weight women (Roberts et al., 2011).
Increased leptin gene expression may also contribute to PE (Lepercq
et al., 2003; Iwagaki et al., 2004), decreased uterine natural killer cells
(Parker et al., 2014), and increased CD4+ T cells (Wallace et al.,
2001).

2.2 Cognitive and behavioral disorders

Obesity-related inflammation also affects the neonatal child
and gives birth to neurological complications and brain disorders
(Edlow, 2018). Thus, obesity-induced or direct inflammation
during pregnancy make autism, schizophrenia, attention-deficit
hyperactivity disorder and major depressive disorder more
prevalent (Patterson, 2009; Knuesel et al., 2014; Estes and
McAllister, 2016). Schizophrenia is characterized by delusions,
hallucinations, disordered thinking, and cognitive impairment. Its
prevalence rose from 13.1 million in 1990 to 20.9 million in 2016
(Charlson et al., 2018). Severe infections and autoimmune diseases
may increase the lifetime risk of schizophrenia and schizophrenia
spectrum disorders (Meyer, 2011; Benros et al., 2014). In response
to maternal inflammation, placental cytokines (IL-1, IL-6, and
interferon-γ) increase fetal oxidative stress (Meyer et al., 2009).
This irreversible dysregulation affects brain growth and function
and increases schizophrenia risk. Proinflammatory cytokine IL-6
may link maternal inflammation to fetal brain development and
later psychopathology (Kohli et al., 2007; Buss et al., 2012). A
recent study with 84 newborns used machine learning and resting-
state functional magnetic resonance imaging. It showed that
variations in maternal IL-6 concentrations across the course of
pregnancy are associated with individual differences in functional
brain networks in the neonatal period and relate to future working
memory performance (Rudolph et al., 2018).

FIGURE 2
Relation between maternal obesity, inflammation and birth
complications.
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2.3 Cardiovascular diseases

Inflammation plays a key role in atherosclerosis, which raises
risk of cardiovascular diseases (CVD) (Steinberg, 2006).
Atherosclerosis begins with low-density lipoproteins (LDL) build
up in abnormally permeable artery endothelium. Overexpression of
IL-6 in atheromatous fatty streaks, endothelium, smooth muscle,
and adipose tissue accelerates atherosclerosis (Szekanecz et al., 1994;
Hlatky et al., 2009). TNF-α plays a role in endothelial dysfunction,
vascular dysregulation, monocyte adherence to endothelial cells,
vascular oxidative stress, apoptosis, and the atherogenic response,
which lead to thrombosis and coagulation (Ueland et al., 2012;
Zhang and Zhang, 2012). Leptin and adipokine influence
atherosclerosis after CVD (Chen et al., 2003; Sierra-Johnson
et al., 2007). Obesity is a risk factor for endothelial dysfunction-
related cardiovascular diseases like arterial hypertension and
atherosclerosis. Adipokines affect triglyceride metabolism and
adipocyte hypertrophy, which can lead to macrophage expansion
in adipose tissue, inflammation, and increased production of
proinflammatory cytokines TNF-α and IL-6 (Samad et al., 1997;
Fried et al., 1998; Mahabadi et al., 2009). Increased macrophages and
local inflammation may cause obesity-related metabolic
dysfunctions like systemic inflammation and atherosclerosis.

2.4 Osteoarthritis

Arthritis is another chronic inflammatory condition that causes
disability and pain and hinders socioeconomic life. Osteoarthritis
(OA) affects 250 million people worldwide, mostly the elderly (Kotti
et al., 2014). Cartilage degeneration, subchondral bone remodeling,
osteophyte production, and synovium and joint capsule
inflammation characterize OA (Goldring and Goldring, 2010).
Numerous soluble mediators, like cytokines or prostaglandins,
can stimulate chondrocyte matrix metalloproteinases (MMP)
synthesis, causing inflammation. OA causes an imbalance
between pro-inflammatory and anti-inflammatory cytokines in
the synovium (Kulkarni et al., 2021). Osteophytes are pro-
inflammatory due to high mast cell activity (Kulkarni et al.,
2022). Once thought to be cartilage-driven, OA is characterized
by inflammatory synovium (Goldring and Otero, 2011; Kapoor
et al., 2011; Loeser et al., 2012). In obese people, obesity may link
OA and inflammation where obese people have twice the risk of OA
as normal-weight people (Yusuf et al., 2010). Obesity imbalances
adipokines and other cytokines, which may cause osteoarthritis
(Gomez et al., 2011). White adipose tissue is the most common
source of adipokines, but the knee’s infrapatellar fat pad also may
produce inflammatory mediators like IL-6, TNF-α, adipsin,
adiponectin, and visfatin that reach the synovium and cartilage
(Clockaerts et al., 2010; Klein-Wieringa et al., 2011).

2.5 Diabetes

The International Diabetes Federation (IDF) predicts
578 million cases of diabetes by 2030 and 700 million by 2045
(International Diabetes Federation, 2019). Diabetes is characterized
by impaired glucose tolerance and hyperglycemia caused by insulin

deficiency or resistance (Blair, 2016). Type 1 diabetes is caused by β-
cell death due to autoimmune disorder whereas type 2 diabetes
(T2DM) is linked to genetics, ethnicity, age, overweight, unhealthy
diet, and lack of exercise. Growing evidence suggests these causal
variables follow the same inflammatory pathways as a shared
pathogenetic mediator in diabetes progression (Shoelson et al.,
2006). Diabetes etiology, relationship with obesity, and biological
function of adipose tissue are studied extensively. The amount of
inflammatory factors produced by adipose tissue macrophages
defines obesity (Weisberg et al., 2003; Xu et al., 2003). When
macrophages and immune cells move into adipose tissue, they
cause chronic low-grade inflammation. The latter produces TNF-
α, IL-1, IL-6, IL-10, leptin, adiponectin, MCP, angiotensinogen,
resistin, and other cytokines and chemokines (Kanda et al., 2006;
Shoelson et al., 2007; Antonopoulos et al., 2015) that serve as the
pathologic link between obesity, insulin resistance and diabetes
(Nikolajczyk et al., 2011).

2.6 Cancer

Lifestyle and environmental factors, rather than inherited
genetic defects, regulate the development of 90%–95% of all
cancers (Aggarwal et al., 2009). Chronic inflammation produces
reactive oxygen species (ROS) leading to mutations and
proliferation of the pro-cancerous cells. Cancer-promoting
cytokines like IL-6, IL-11, TNF-α, IL-1β, and IL-23 vary by
tumor type and stage. Thus, inflammation is a central
component of tumor development and progression. In tumor
microenvironments, inflammatory cells and mediators promote
proliferative signaling, migration, metastasis, and blood vessel
growth (Anand et al., 2008; Hanahan and Coussens, 2012).
Inflammation accelerates many phases of metastasis, a key factor
in cancer mortality (Hanahan and Weinberg, 2011). One recent
study has estimated that 3.6% of all new cancer cases worldwide are
attributable to excess adiposity and that uterine, postmenopausal
breast, and colon cancer account for 63.6% of cancers attributable to
high body mass index (BMI) (Arnold et al., 2015). As obesity-
induced chronic inflammation is a cancer precondition, it increases
cancer incidence and death. Obesity modifies release of adipokines
and cytokines, affecting many systemic processes, including the
tumor environment. Adiponectin, leptin, IL-6, TNF-α, YKL-40
(chitinase-3-like-protein-1), osteopontin, and plasminogen
activator inhibitor-1 (PAI-1) are all produced by adipocytes and
stimulate cancer growth, progression, and metastasis (Quail and
Dannenberg, 2019).

In summary, obesity and inflammation are two sides of the same
coin; it doesn’t matter which comes first. Both conditions are
subjected with one causing the other and give rise to multiple
health complications. Moreover, the facts about inflammation-
related diseases and disorders, with an emphasis on obesity, show
that chronic inflammation is the main cause of these complications.
The information on diseases associated with inflammation
demonstrates that chronic inflammation is the primary outcome
of these complications. Our immune effector cells produce ROS and
cytokines that trigger paracrine and autocrine inflammation.
Unchecked oxidative stress can cause inflammation and tissue
damage (Bennett et al., 2018). Chemically synthesized drugs can

Frontiers in Pharmacology frontiersin.org04

Nisar et al. 10.3389/fphar.2023.1177050

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1177050


treat these inflammatory complications. Two drug classes 1) Steroid-
based anti-inflammatory drugs (SAIDs) and 2) Non-Steroidal Anti-
Inflammatory Drugs (NSAIDs) were developed to overcome the side
effects and limitations of steroidal anti-inflammatory drugs (Celotti
and Laufer, 2001; Rainsford, 2007). Even though high-class drugs
are available, there are cost, availability and most importantly, side
effect restrictions. To address these disadvantages, medicines must
target underlying inflammation to make therapeutic advances with
no or fewer adverse effects. Since inflammation is complex, it
requires multidimensional treatment. In this regard, medicinal
herbs are gaining importance to prevent and treat inflammatory
disorders. In traditional use, clinical trials, and experimental studies,
multiple plants have shown anti-inflammatory effects (Arulselvan
et al., 2016; Allegra, 2019).

3 Plant derived drugs: a historical
perspective

Historical observation of folklore medicines reveals Ayurveda
and herbalism with ancient plant uses (4500 BC) (Karunamoorthi
et al., 2013). Herbal medicine is the practice of treating disease with
plants, plant extracts, herbal preparations, and finished herbal
products called phytomedicines that contain phytochemicals as
active ingredients (Pan et al., 2014). Traditional Chinese, Indian,
and Arabic herbal medicine are the three main herbal treatment
systems today. Archaeological evidence shows that Iraq and China
have used herbal medicine for 6,000 and 8,000 years ago,
respectively (Leroi-Gourhan, 1975; Pan et al., 2014). The earliest
records of natural products are from Mesopotamia (2600 B.C.),
where clay tablets documented the use of oils derived from
Commiphora species (myrrh) and Cupressus sempervirens L.
(Cypress) to treat coughs, colds, and inflammation (Cragg and
Newman, 2005). In the past 40 years, both developing and
developed countries have used more herbs and herbal products
for health. Aspirin, or acetylsalicylic acid (Salix alba L., White
willow), is a well-known anti-inflammatory drug. Other
important drugs include morphine and codeine (opium poppy),
digitoxin (lady’s glove), anti-malarial quinine, and Pilocarpine
(Pilocarpus jaborandi Holmes, Pilocarpus) (Tarver, 2014). With
advances in technology and chemical sciences, herbal active
ingredients are being isolated and studied for pharmacological
uses. This revolution in phytopharmacology has led to the
development of various phytomedicines. Table 1 lists plant-based
chemicals that have been shown to treat illness.

4 Phytochemicals evaluated in anti-
inflammatory properties

Increasing knowledge of folklore medicinal plants as a
therapeutic target opened the door for anti-inflammatory plant
extracts. Polyherbal formulation of Ashwagandharishta,
Balarishta, Dashmoolarishta, and Triphala extract reduces
synovial inflammation (Ingale et al., 2018). Pawar et al. (2011)
tested Withania somnifera L. root extracts in an inflammatory
bowel disease (IBD) rat model (Pawar et al., 2011). Piper ovatum
Vahl leaves have been examined for their anti-inflammatory

properties by Rodrigues Silva et al. (2008). Ayurveda describes
fermented Asava and Arishta formulations. These formulations
are plant extracts fermented with microbes, allowing biological
transformation and potentially generating novel fermentative
products of phytochemicals with superior bioavailability and
anti-inflammatory activity (Bhondave et al., 2014). Carrageenan-
injected rats showed anti-inflammatory effects from Eulophia
ochreata L. tubers extract (Jagtap et al., 2009). An animal model
of carrageenan-induced inflammation was used to test the anti-
inflammatory properties of the ethanolic root extract of Swertia
chirata Buch.-Ham. ex Wall (Das et al., 2012). To understand the
plant’s anti-inflammatory role and mechanism, researchers are
isolating and characterizing phytochemicals and organizing them
by structure and chemical properties. Understanding phytochemical
mechanisms of action could lead to new anti-inflammatory drugs.

5 Preclinical trials

First, phytochemicals are tested in vitro, then in vivo using animal
models, and finally in humans. Selecting the right experimental model
prevents bias and errors. This study examined in vitro and in vivo anti-
inflammatory phytochemicals and plant-based anti-inflammatory
drug possibilities. In this section, potential phytochemicals
(Figure 3) studied for anti-inflammatory diseases/complications in
preclinical experiments are discussed (Tables 2, 3).

5.1 Flavones

5.1.1 Apigenin (APG)
Apigenin (APG) is found in Chamaemelum nobile (L.) All.

(Asteraceae) ligulate flowers, celery, parsley, coriander, and
peppermint. Anti-inflammatory activity of APG involves
inhibiting of NF-κB translocation by suppressing
p65 phosphorylation (Nicholas et al., 2007). In an IFN-γ
activated murine microglia cell model, APG’s effect on
STAT1 phosphorylation reduced IL-6 and TNF-α levels (Rezai-
Zadeh et al., 2008). APG and APG-rich diets may have anti-
inflammatory effects in vivo by lowering lipopolysaccharide
(LPS)-induced microRNA-155 (Arango et al., 2015). Diet-
induced obesity in male C57BL/6J mice was used to study APG’s
effects on inflammatory and motor abnormalities in the colon. APG
(10 mg/kg) stopped the increase in body fat, epididymal fat, and
metabolic indexes. There was also a reduction in malondialdehyde
(MDA), IL-1β, IL-6, eosinophil infiltration, substance P, and
inducible nitric oxide synthase (iNOS expression) (Gentile et al.,
2018). Alzheimer’s, Parkinson’s, and Huntington’s are
neurodegenerative diseases caused by neuroinflammation. APG
showed strong anti-inflammatory properties in a human-induced
pluripotent stem cell (iPSC) model of familial and sporadic
Alzheimer by protecting neurites and cell viability by
downregulating cytokine and nitric oxide (NO) release in
inflammatory cells (Balez et al., 2016). Non-alcoholic
steatohepatitis (NASH) causes a fatty, inflamed liver. APG
(0.005%, w/w) reduced inflammation by lowering plasma MCP-1,
IFN-γ, TNF-α, and IL-6 levels in mice with NASH and a high-fat
diet (Jung et al., 2016). In diabetic rats, APG (10, 30, 50 mg/kg)
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reduced metabolic inflammation by successfully polarizing
infiltrating macrophages to an anti-inflammatory M2 phenotype.
The mechanism involved binding and activating peroxisome
proliferator-activated receptor gamma (PPAR-γ) and the
subsequent suppression of the NF-κB pathway (Feng et al., 2016).

5.1.2 Luteolin
This is a common flavone found in rosemary (Rosmarinus

officinalis L., Lamiaceae), pomegranate (Punica granatum L.,
Lythraceae) and artichoke (Cynara scolymus L., Asteraceae).
Luteolin suppresses chronic inflammation in adipocytes and
macrophages coculture, as well as c-Jun N-terminal Kinase (JNK)
phosphorylation in macrophages (Ando et al., 2009). In the C57BL/
6J obese mice model, luteolin (10 mg/kg) reduces MCP-1 and
resistin in blood, while elevated adiponectin level that improved
insulin resistance (IR) and T2DM (Liu et al., 2014b). Multiple
sclerosis (MS), a neurodegenerative and immune-inflammatory
disorder, causes problems throughout the body.
Immunomodulatory effects on peripheral blood mononuclear
cells (PBMC) derived from MS patients were observed in the
presence of luteolin where it suppressed pro-inflammatory
cytokines, including IL-1β, MMP-9, and TNF-α (Sternberg et al.,
2009). The effects of luteolin were also examined on irinotecan-
induced mice model of intestinal mucositis. It reduced ROS levels
and inflammation by lowering TNF-α, IL-1β, and IL-6 whereas
increased the levels of IL-4 and IL-10 (Boeing et al., 2020). Severe
acute pancreatitis (SAP) is pancreatic inflammation and the
outcome may be life-threatening. Xiong et al. (2017) studied the
effects of luteolin in an ICR mouse model induced by cerulein/LPS
where luteolin (100 mg/kg) reduced SAP symptoms by lowering
TNF-α and IL-6 levels while raising IL-10 via NF-κB p65 and IκBα
expressions (Xiong et al., 2017). In a study, skin from BALB/c mice
donors was grafted in C57BL/6 mice recipients and allografts were
treated with luteolin (25 and 50 mg/kg). The recipient mice survived
longer showing decreased cellular infiltration and proinflammatory
cytokine gene expression (Ye et al., 2019).

5.1.3 Baicalin and baicalein
Scutellaria baicalensis Georgi (Lamiaceae) is a traditional

Chinese herb that contains the compounds baicalin and
baicalein. IBD is a long-term, idiopathic inflammation which
causes small and large intestine complications. Zhu et al. (2016)
studied the baicalin (100 mg/kg) effects on macrophage polarization
and IBD therapy. He found that LPS-stimulated mouse peritoneal
macrophages had a lower ratio of M1 to M2 macrophages,
indicating a shift from M1 to M2 polarization, especially

TABLE 1 Plant derived drugs for commercial use in various diseases.

Drug Class of drug Plant source Disease References

Paclitaxel Taxanes Taxus brevifolia Breast cancer Cragg (1998)

Ingenol 3-O-angelate Polyhydroxy diterpenoid Euphorbia peplus Skin cancer Kedei et al. (2004); Ogbourne et al.
(2004)

PG490-88(14-succinyl triptolide
sodium salt)

Diterpene-diepoxide Tripterygium
wilfordii

Autoimmune and inflammatory
diseases

Kiviharju et al. (2002); Fidler et al.
(2003)

Tiotropium Muscarinic receptor
antagonist

Atropa belladonna Asthma and COPD Kumar and Reddy (2003)

Arteether Sesquiterpene lactones Artemisia annua Antimalarial Newman and Cragg (2007)

Grandisines A and B Indole alkaloids Elaeocarpus grandis Analgesic Carroll et al. (2005)

Galantamine hydrobromide Amaryllidaceae alkaloid Galanthus nivalis Alzheimer’s Howes et al. (2003)

Apomorphine Dopamine Papaver somniferum Parkinson’s Deleu et al. (2004)

FIGURE 3
Chemical structure of some phytochemicals used in pre-clinical
trials.
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TABLE 2 List of anti-inflammatory phytochemicals used in pre-clinical trials.

Class Phytochemicals Botanical name
(family)

Molecular targets References

Flavones Apigenin Chamaemelum nobile
(Asteraceae)

NF-κB and STAT 1 Signalling pathways,
expression of miR-155, activation of PPAR-γ

Nicholas et al. (2007), Arango et al. (2015),
Feng et al. (2016)

Luteolin Rosmarinus officinalis
(Lamiaceae)

JNK, NF-κB p65 Signalling pathways Ando et al. (2009), Xiong et al. (2017)

Baicalin and Baicalein Scutellaria baicalensis
(Lamiaceae)

Fizz1 expression, CHOP/STAT pathway Kim et al. (2018), Zhu et al. (2016)

Flavonols Quercetin Malus domestica (Rosaceae) NF-κB p65, ERK, JNK and STAT pathways, AKT
Signalling modulation

Bian et al. (2018), Maurya and Vinayak,
(2017)

Kaempferol Camellia sinensis
(Theaceae)

NF-κB, STAT, and JNK Signalling pathways Bian et al. (2019), Park et al. (2015)

Flavanone Naringenin Citrus paradise (Rutaceae) NF-κB activation, NF-kB/IL-6/STAT-3 pathways,
NO-cGMP-PKG KATP channel Signalling

Pinho-Ribeiro et al. (2016), Zhang et al.
(2018b), Manchope et al., (2016)

Hesperidin Citrus limon (Rutaceae) expression of p65, Foxo1, Foxo3, and
Nrf2 Signalling pathways

Xiao et al. (2018), Tsai et al. (2019)

Isoflavones Genistein Genista tinctorial
(Fabaceae)

NF-κB/Akt Signalling pathway, AMPK activation,
expression of p65

Howes and Simmonds (2014), Lee et al.
(2019), Yuan et al. (2019)

Puerarin Pueraria lobate (Fabaceae) NF-κB activation, Fizz1 expression,
Nrf2 regulation

Liu et al. (2014a), Nguyen Ngo Le et al.
(2019), Jeon et al. (2020)

Catechins Epigallocatechin gallate Camellia sinensis
(Theaceae)

Suppression of neuronal apoptosis, NF-κB/p65/
IκB-α Signalling pathway

Cai et al. (2014)

Anthocyanidins Cyanidin-3-O-glycoside Lonicera caerulea
(Caprifoliaceae)

MAPK and NF-κB Signalling pathway, regulation
of iNOS and COX-2 expression

Wu et al. (2017), Pereira, Almeida, and
Dinis (2018)

Monoterpenes Cineole Eucalyptus globulus
(Myrtaceae)

PPAR-γ dependent modulation of NF-κB, PRR
pathways, NF-κB/MAPKs/MKP-1 Signalling
pathways

Linghu et al. (2019), Yadav and Chandra
(2017)

Paeoniflorin Paeonia lactiflora
(Paeoniaceae)

Nrf2/HO-1 Signalling pathways, MAPK pathway,
ERK1/2 and Akt regulation, NF-κB/p65/IκBα
signalling pathways

Wu et al. (2019), Yu et al., (2017), Gong et al.
(2015), Yu et al. (2019)

Sesquiterpenes Parthenolide Tanacetum parthenium
(Asteraceae)

NF-κB and MAPKs signalling pathways Nrf2/
Keap1 signalling pathway

Kim et al. (2019), Li et al. (2015)

Zerumbone Zingiber zerumbet
(Zingiberaceae)

NF-κB/HO-1 signalling pathway, NF-κB/MAPK/
PI3K-Akt signalling pathways

Kim et al. (2009), Haque et al., (2018)

Diterpenoids Ginkgolides Ginkgo biloba
(Ginkgoaceae)

Regulation of Caspase-1/NF-κB P65 expression,
CD40-NF-κB signal pathway

Chen et al. 2018b), Zhang et al. (2018)

Triterpenoids Ursolic acid Glechoma hederacea
(Lamiaceae)

NF-κB/p65 signalling pathway Zhao et al. (2018)

Escin Aesculus hippocastanum,
(Sapindaceae)

mRNA expression of NF-κB/reduction of TNF-α,
P-selectin, and VCAM-1

Wang et al., (2014), Zhao et al. (2018)

Withaferin A Withania somnifera
(Solanaceae)

IKKβ/NF-κβ pathway, regulation of LPS/
TLR4 pathway

Martorana et al., (2015), Batumalaie et al.,
(2016)

β –sitosterol Glycine max (Fabaceae) SHP-1/NF-κB regulation, NLRP3/caspase-
1 signalling pathway

Valerio and Awad (2011), Liao et al., (2018)

Curcuminoids Curcumin Curcuma longa,
(Zingiberaceae)

TLR4/MyD88/NF-κB signalling pathway, PI3K/
Akt/NF-κB signalling pathway, NF-κB/PPAR-γ
signalling, MAPK/ERK/p38/Akt/NF-κB pathway,
HO-1, and Nrf-2 pathway

Zhu et al. (2014), Song et al., (2013), Liu
et al., (2016b), Yu et al., (2018)

Stilbenes Resveratrol Vitis vinifera (Vitaceae) Modulation of AP-1/NF-κB/COX-2, ICAM-1,
iNOS, and IL-1β mRNA expression, VEGF/p38-
MAPK/NF-κB pathway

Latruffe et al., (2015), Huang et al., (2017),
Yan et al., (2018)

Phenolic acids Rosmarinic acid Rosmarinus officinalis
(Lamiaceae)

NF-κB and p65 expression, NF-κB/p65/
pSTAT3 pathway

Cao et al., (2016), Jin et al., (2017)

(Continued on following page)
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Fizz1 expression in M2a subtypes. Baicalin has also been found
effective in colitis, an auto-immune or infectious colon
inflammation. A report suggested that baicalin upregulated both
interferon regulatory factor 4 and 5 in lamina propria mononuclear
cells isolated from dextran sulfate sodium (DSS)-induced colitis
mice model (Zhu et al., 2016).

Multiple studies are also present that emphasize the anti-
inflammatory properties of baicalein. Kim et al. (2018) showed
that baicalein blocks NO, cytokines, chemokines and growth
factors through the endoplasmic reticulum stress CHOP/STAT
pathway in RAW 264.7 murine macrophages induced by dsRNA
(Kim et al., 2018). Tubular-interstitial nephritis is characterized by
kidney inflammation and cell damage. A report suggested that
baicalein alleviated LPS induced cell viability and apoptosis of
renal tubular epithelial cells, while decreased the activation of
NF-κB and MAPKs (Chen et al., 2018a). Hepatic ischemia/
reperfusion (I/R) is an inflammatory liver pathology. It was
found that baicalein (300 mg/kg) preconditioning reduced NF-κB
expression and pro-inflammatory cytokine production whereas
TNF-α/IL-10 ratio and leukocyte infiltration were reduced
(Mahmoud et al., 2019). Furthermore, in a report, baicalein
(20 mg/kg) consistently suppressed T-cell proliferation in
collagen-induced C57BL/6J male mice of arthritis (CIA) (Xu
et al., 2018a). Mastitis is a breast inflammation which is usually
caused by a bacterial infection. In BALB/c mice with LPS-induced
mastitis, baicalein (20 mg/kg) reduced mammary gland damage,
myeloperoxidase activity, TNF-α and IL-1β levels, while blocked the
TLR4 expression. Baicalein suppressed TLR4-mediated NF-κB and
MAPK signaling, reducing inflammation (He et al., 2015).

5.2 Flavonol

5.2.1 Quercetin
Quercetin is a common flavonol found in fruits and vegetables

(Malus domestica Borkh., Rosaceae). Activated endothelial cells
control leukocyte trafficking to inflammation sites in early
atherosclerosis. One report found that quercetin reduced COX, 5-
LOX 9 (arachidonate 5-lipoxygenase), MPO, NOS, CRP, and IL-6

mRNA expression in Sprague-Dawley (SD) rats on a
hypercholesterolemic diet (Bhaskar et al., 2016). Interstitial
inflammation is the primary pathogen following a kidney insult,
as inflammatory macrophages become polarized. Quercetin
(20 mg/kg) reduced tubulointerstitial damage and inflammatory
factor production in ICR/JCL mice with obstructed kidneys while
CD68+ macrophages infiltrated the renal interstitium less often.
Reduced iNOS and IL-12 levels and increased F4/80+/CD11b+/
CD86+ macrophages in kidneys of renal injury patients suggested
quercetin prevented M1 macrophage polarization (Lu et al., 2018).
Inflammation in IBD requires activated microvascular endothelial
cells and cell adhesion. In LPS-stimulated rat intestinal
microvascular endothelial cells, quercetin reduced intercellular
adhesion molecules (ICAMs) and vascular cell adhesion
molecule-1 (VCAM-1) protein levels. This phytochemical
reduced TLR4, NF-κB p65, extracellular signal-regulated kinase
(ERK), JNK, STAT phosphorylation and IκB-α degradation (Bian
et al., 2018). AKT (protein kinase B) signaling is often activated in
cancer, which keeps the tumor microenvironment oxidized for
adaptability. A report found that quercetin reduced cell survival,
inflammation, and angiogenesis in lymphoma-bearing mice
(Maurya and Vinayak, 2017). Khan et al. (2018) explained that
quercetin (30 mg/kg/day) reduced activated gliosis and
inflammatory markers and stopped neuroinflammation in adult
male of C57BL/6N brain and hippocampal regions (Khan et al.,
2018).

5.2.2 Kaempferol
It is a flavonoid found in tea [Camellia sinensis (L.) Kuntze,

Theaceae] and many fruits and vegetables (also known as
kaempferol-3 or kaempferide). Intervertebral disc degeneration
has been considered an irreversible process when cell viability
decreases, type II collagen is synthesized and the nucleus
pulposus is dehydrated. Research proved that in the presence of
Kaempferol, proinflammatory cytokines decreases while IL-10
increases (Zhu et al., 2017). Wang et al. (2018) reported that
kaempferol suppressed concanavalin A-induced T-cell
proliferation and NO/ROS generation in LPS-infected RAW
264.7 macrophage cells (Wang et al., 2018). It is known that

TABLE 2 (Continued) List of anti-inflammatory phytochemicals used in pre-clinical trials.

Class Phytochemicals Botanical name
(family)

Molecular targets References

Ellagic acid Punica granatum
(Lythraceae)

expression of RANTES protein, IRAK4/TRAF-6/
IKK-β/NF-κB/p65 expressions

(Promsong et al., (2015), Zhou et al., 2019)

Gallic acid Camellia sinensis
(Theaceae)

TLR-4/NF-κB/PPARγ signalling pathway Fan et al. (2018)

Protocatechuic acid Allium cepa
(Amaryllidaceae)

SIRT1/NF-κB signalling pathway PI3K/Akt-
mediated nuclear-factor-κB activation, STAT-6/
PPAR-γ pathway

Kaewmool et al. (2020)

Vanillic acid Vanilla planifolia
(Orchidaceae)

Nrf2/HO-1 expression Calixto-Campos et al. (2015)

6-gingerol Zingiber officinale Rosc.
(Zingiberaceae)

PI3K and p-Akt expression, RANKL/
PGE2 expressions

Xu et al. (2018b), Hwang et al. (2018)

Caffeic acid phenethyl
ester

Populus nigra L. (Salicaceae) NF-κB/p65 signalling pathway, Nrf2/HO-
1 signalling pathway

Takakura et al. (2018)
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endothelial expression of cytokines and adhesion molecules triggers
IBD. One report emphasized the role of kaempferol where it stopped
rat intestinal microvascular endothelial cells from making too much
TNF-α, IL-1β, IL-6, ICAM-1, and VCAM-1 via NF-κB and STAT
signaling pathways (Bian et al., 2019). The NF-κB pathway, is critical
in inflammation, proliferation, and carcinogenesis. Kaempferol
reduced NF-κB activity in secreted embryonic alkaline

phosphatase (SEAP)-driven NF-κB reporter cells with varying
TNF-α concentrations (Kadioglu et al., 2015). Allergic asthma is
a respiratory condition which causes airway inflammation.
kaempferol (20 mg/kg) reduced allergic asthmatic mucus
production in BALB/c mice by disrupting TGF-β-triggered ER
stress signaling of inositol-requiring enzyme 1α/TNF receptor-
associated factor 2/c-Jun N-terminal kinase (Park et al., 2015).

TABLE 3 List of some animal models with the target pathologies in pre-clinical trials.

Phytochemicals Animal models Target pathologies References

Apigenin Male C57BL/6J Colonic inflammatory and motor abnormalities Gentile et al. (2018)

Luteolin C57BL/6J Obese mice model Insulin resistance (IR) and type 2 diabetes
pathophysiology

Liu et al. (2014b)

Baicalin and Baicalein LPS-induced mastitis in BALB/c mice Mastitis He et al. (2015)

Quercetin Male C57BL/6N mice Angiogenesis in lymphoma-bearing mice Khan et al. (2018)

Kaempferol BALB/c mice models Allergic asthma Park et al. (2015)

Naringenin Male Swiss mice Superoxide anion-driven inflammatory pain Manchope et al. (2016)

Hesperidin Sprague-Dawley rats Diabetic neuropathy Visnagri et al. (2014)

Genistein Diethyl nitrosamine induced C57BL/6 N mice Hepatocellular carcinoma Lee et al. (2019)

Puerarin Male Sprague-Dawley rats Streptozotocin (STZ)-induced diabetes Liu et al. (2014a)

Epigallocatechin gallate Male adult Sprague–Dawley (SD) rats Chronic constriction injury Cai et al. (2014)

Cyanidin-3-O-glycoside TNBS-challenged mice Inflammation in colitis Gan et al. (2019)

Cineole Male Kunming mice LPS-induced acute inflammatory injury Linghu et al. (2019)

Paeoniflorin Adult male Sprague-Dawley rats Chronic constriction injury Zhou et al. (2019b)

Parthenolide Collagen antibody-induced arthritis (CAIA) BALB/c mouse
model

Rheumatoid arthritis Williams et al. (2020)

Zerumbone Mono-iodoacetate (MIA)-induced male SD rat OA model Osteoarthritis Chien et al. (2016)

Ginkgolides Male Sprague-Dawley rats Myocardial ischemia/reperfusion Zhang et al. (2018a)

Ursolic acid 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-
intoxicated Parkinson mouse model

Neuroinflammation Rai et al. (2019)

Escin Swiss albino mice Indomethacin-induced gastric ulcers Wang et al. (2014)

Withaferin A BALB/c mice Spinal cord tissues in traumatized mice Yan et al. (2017)

β –sitosterol CIA mice model Arthritis Liu et al. (2019a)

Curcumin BALB/c mice Allergic asthma Shahid et al. (2019)

Resveratrol Cigarette smoke COPD mouse models Chronic obstructive pulmonary disease Chen et al. (2016)

Rosmarinic acid DSS-induced colitis mouse model Splenomegaly Jin et al. (2017)

Ellagic acid streptozotocin-induced diabetic nephropathy mouse model Diabetic Nephropathy Zhou et al. (2019a)

Gallic acid sulfonic acid (TNBS)-induced ulcerative colitis (UC) mouse
model

Ulcerative colitis Zhu et al. (2019)

Protocatechuic acid castrated rats Benign prostatic hyperplasia Akanni et al. (2020)

Vanillic acid carrageenan-induced inflammatory pain mouse model Analgesic and anti-inflammatory effects Calixto-Campos et al.
(2015)

6-gingerol Sprague-Dawley rats myocardial infarction Xu et al. (2018b)

Caffeic acid phenethyl
ester

rat model of optic nerve crush (ONC) injury Glaucoma Takakura et al. (2018)
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5.3 Flavanones

5.3.1 Naringenin
Grapefruits contain bitter, colorless flavonoid naringenin

(Citrus paradisi Macfad., Rutaceae) which is known to reduce
inflammatory and nerve pain. It was reported that oxidative
stress, hyperalgesic cytokines (IL-33, TNF-α and IL-1β), and NF-
κB activation were inhibited in mice paw skin treated with
naringenin (16.7–150 mg/kg) (Pinho-Ribeiro et al., 2016).
Naringenin also reduced colitis by inhibiting myeloid-derived
suppressor cells, pro-inflammatory mediators, and the NF-κB/IL-
6/STAT-3 cascade in colonic tissues (Zhang et al., 2018).
Naringenin’s anti-inflammatory and anti-allergy properties were
tested on mice models of ear edema caused by arachidonic acid
and tetradecanoylphorbol-13-acetate (TPA). Naringenin showed
anti-inflammatory effects against otitis media in female CD-1
mice at 1% in arachidonic acid and 50% in TPA (Escribano-
Ferrer et al., 2019). Narringenin (50 mg/kg) reduces nociceptive
effects and inflammation in male Swiss mice by activating the NO-
cGMP-PKG-KATP channel signaling pathway involving nuclear
factor erythroid 2-related factor 2/heme oxygenase-1 (Nrf2/HO-1)
(Manchope et al., 2016).

5.3.2 Hesperidin
Flavonoid hesperidin is found in citrus fruits, especially oranges

and lemons (Citrus limon (L.) Osbeck, Rutaceae). Diabetic
neuropathy (DN) is one of the most common long-term
complications of diabetes mellitus. In the diabetic neuropathy
model of SD rats, hesperidin (50 and 100 mg/kg) reduced IL-1β
and TNF-α (Visnagri et al., 2014). Moreover, hesperidin effectively
enhanced chondrogenesis of human mesenchymal stem cells
(MSCs) by inhibiting pro-inflammatory cytokines IFN-γ, IL-2,
IL-4 and IL-10, and suppressing the expression of p65 to
facilitate cartilage tissue repair (Xiao et al., 2018). Oxidative stress
can cause chondrocytes to secrete inflammatory mediators, causing
a senescence-associated secretory phenotype. Hesperidin showed
chondroprotective properties, increased cellular antioxidant
capacity, decreased COX-2, IL-1β, TNF-α, MMP-3, MMP-9
mRNA levels, and increased IL-10, tissue inhibitors of
metalloproteinases-1, SRY-box transcription factor 9, and altered
forkhead box O 1 (Foxo1), Foxo3, and Nrf2 signaling pathways in
H2O2 stimulated primary human chondrocytes (Tsai et al., 2019).
OA is one of the degenerative and chronic diseases of articular joints
with chondrocytes degeneration. Hesperidin reduces IL-1β-induced
MMP-3 and MMP-13 expression in OA chondrocytes and NF-κB
(Fu et al., 2018). Hesperidin (100 mg/kg) inhibited inflammation in
an Alzheimer’s disease (AD) APP/PS1 mouse model, restored APP
synthesis and Aβ peptide deposition, and improved nesting and
social interactions (Li et al., 2015a).

5.4 Isoflavones

5.4.1 Genistein
Genistein is an isoflavone polyphenol extracted from Genista

tinctorial L., the dyer’s broom (Fabaceae). Genistein suppresses NF-
κB activation, reduces TNF-α and IL-6 production, and reactivates
insulin-mediated Akt and endothelial NO synthase phosphorylation

to improve insulin resistance-related endothelial dysfunction.
Endothelin-1, a cytokine that plays a role in insulin’s mitogenic
effects, was also downregulated by the treatment and VCAM-1
overexpression (Howes and Simmonds, 2014). Genistein also
inhibited NO, Prostaglandin E2 (PGE2), IL-1, TNF-α, TLR4 and
MyD88 in LPS-induced BV2 microglia (Jeong et al., 2014). It has
been evidenced that chronic inflammation develops hepatocellular
carcinoma (HCC) and other malignancies. When C57BL/6N mice
were given 80 mg/kg of Genistein, it slows down HCC development
while AMP-activated protein kinase activation killed hepatocytes
through caspase pathways and reduced liver macrophage
inflammation (Lee et al., 2019). Breast cancer is the most
common malignancy in women of developed countries. The
effects of the phytoestrogen genistein on the inflammatory profile
in breast cancer cell lines were studied. Genistein-dependent
expression of inflammatory-related genes was seen through its
interaction with alpha and beta estrogen receptors (ER), and its
effects depend on the ERα/ERβ ratio (Pons et al., 2019). In
experimentally induced condylar cartilage degradation in male
rats, genistein (180 mg/kg) treatment had significantly reduced
the expression of p65 and inflammatory cytokines (IL-1β and
TNFα) showing therapeutic effects on condyle cartilage damages
of OA rats (Yuan et al., 2019).

5.4.2 Puerarin
Puerarin is a key component of Pueraria lobata (Willd.) Ohwi

(Pueraria lacei Craib) (Fabaceae). Xue et al. (2016) reported that
puerarin inhibited MDA, NO, NF-κB, TNF-α, IL-1β, and IL-6
production in an animal I/R model (Xue et al., 2016). In
streptozotocin induced diabetic male SD rats, Puerarin reduced
spinal cord inflammation and neuropathic pain by inhibiting NF-
κB activation and cytokine upregulation (Liu et al., 2014a). A rat
model (rAION) of anterior ischemic optic neuropathy was used to
test puerarin’s antiapoptotic and anti-inflammatory effects. Anti-
apoptotic factors were increased by reducing iNOS, IL-1β, TNF-α,
and IL-10 and inducing IL-10, arginase-1, and Fizz1 (found in
inflammatory zone protein) (Le et al., 2019). In vitro and in vivoOA
models were used to study the therapeutic effects of puerarin. It
increases OA chondrocyte proliferation and suppresses IL-1β
induced inflammatory cytokines and monocytes/macrophages. In
a mono-iodoacetate-induced OA mouse model, puerarin
(50 mg/kg) reduced inflammatory monocyte recruitment and
cartilage destruction (Peng et al., 2019). Ulcerative colitis is an
IBD accompanied by abdominal pain, diarrhea, and rectal
bleeding. Puerarin was given to male BALB/c mice with DSS-
induced colitis at 10 and 50 mg/kg, where it showed antioxidant
mechanism by controlling the Nrf2 pathway and antioxidant
enzymes. It also inhibited NF-κB and pro-inflammatory
mediators of inflammation (Jeon et al., 2020).

5.5 Catechins

5.5.1 Epigallocatechin gallate (EGCG)
Green tea leaves (Camellia sinensis (L.) Kuntze, Theaceae) have the

most EGCG catechins. Chronic constriction injury (CCI)-induced
neuropathic pain in male adult SD rats are improved by intrathecal
injection of EGCG (1 mg/kg), which reduces TLR4, NF-κB, High
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mobility group box 1, TNF-α, and IL-1β and increases spinal cord IL-10
(Kuang et al., 2012). Infrasound, a common source of vibroacoustic
illness, can harm the central nervous system (CNS). EGCG inhibited
infrasound-induced microglial activation in rat hippocampi, as
evidenced by reduced expression of IL-1, IL-6, IL-18, and TNF-α
cytokines and decreased neuronal apoptosis. EGCG reduced
microglia IκBα and infrasound-induced nuclear NF-κB, p65, and
phosphorylated IκBα (Cai et al., 2014). Sun et al. (2017) reported
that EGCG improved renal pathology and reduced inflammatory
markers in diabetic mice, including ICAM1 and VCAM-1 (Sun
et al., 2017). EGCG (50 mg/kg) reduced macrophage and T-cell
infiltration in Dahl salt-sensitive rats (Luo et al., 2020). In Balb/c
mouse models with bronchial asthma, EGCG (20 mg/kg) reduces
airway inflammation via the TGF-1β pathway and eventually
reduced Th17 cells and increased Treg cells (Shan et al., 2018).

5.6 Anthocyanidins

5.6.1 Cyanidin-3-O-glycoside (C3G)
C3G is a pigment in red and blue fruits and vegetables. Lonicera

caerulea L contains anti-inflammatory anthocyanins
(Caprifoliaceae). C3G inhibits the NF-κB pathway in epithelial
cells, protecting against chronic gut inflammatory diseases
(Ferrari et al., 2017). C3G may reduce LPS-induced inflammation
through TAK1 (transforming growth factor-β-activated kinase 1)
mediated MAPK and NF-κB pathways, according to a mouse paw
edema and macrophage cell model (Wu et al., 2017). Researchers
used an LPS-activated macrophage cell line (RAW264.7) to test C3G
and 5-aminosalicylic acid’s anti-inflammatory properties. iNOS and
COX-2 expression inhibition were more effective than 5-
aminosalicylic acid at countering LPS-induced NO and
prostaglandin release (Pereira et al., 2018). 2,4,6-trinitrobenzene
sulfonic acid (TNBS)-induced colitis in mice and LPS-stimulated
C3G and cyanidin were used to examine Caco-2 cell monolayer
inflammation. Chronic exposure to TNBS reduced the animal’s
clinical symptoms and histological brain damage. Activation of
myeloperoxidase and release of inflammatory cytokines TNF-α,
IL-1β, IL-6, and IFN-γ were dramatically reduced. Caco-2 cells
treated with LPS produced less nitric oxide and inflammatory
cytokines when C3G or Cy was added (Gan et al., 2019).
Microglia are resident macrophages involved in many
neurodegenerative diseasescause brain inflammation. Pre-
treatment with C3G reduced microglial activation and the
production of neurotoxic mediators like NO, PGE2, and pro-
inflammatory cytokines (IL-1β and IL-6). C3G suppressed NF-κB
and p38 MAPK signaling pathways, reducing iNOS, COX-2, and
proinflammatory cytokines (Kaewmool et al., 2019).

5.7 Monoterpenes (terpenoids)

5.7.1 Cineole
Cineole is also called eucalyptol or 1,8-cineole and the main

volatile oil in Eucalyptus spp. (Myrtaceae). In vitro studies of
normal and non-smoking monocytes showed IL-6 was inhibited
more than IL-1β, IL-8, and TNF-α at 0.15–1.5 µM of 1,8-cineole
(Juergens et al., 2017). 1,8-cineole protects vascular endothelium

in LPS-induced mice, and human umbilical vein endothelial cells
(HUVECs), inhibits IL-6 and IL-8 and boosts serum IL-10. Male
Kunming mice given LPS had less inflammation and VCAM-1
expression in the thoracic aorta. In vitro and in vivo results
showed that 1,8-cineole reduced LPS damage to endothelial cells
through PPAR-dependent NF-κB modulation (Linghu et al.,
2019). Eucalyptus oil, long used in traditional medicine, is
helpful in aromatherapy for respiratory problems. Yadav et al.
(2017) studied 1,8-cineole and eucalyptol regulate anti-
inflammatory pathways by downregulating pattern recognition
receptors (PRR) receptors (TREM-1 and NLRP3) and
downstream signaling cascade partners (NF-κB, MAPKs,
MKP-1) (Yadav and Chandra, 2017).

5.7.2 Paeoniflorin (PF)
The main ingredient in Paeonia lactiflora Pall is paeoniflorin

(PF) (Paeoniaceae). When LPS was added to Caco-2 cells, PF
blocked COX-2, iNOS, TNF-α, IL-6, and MMP-9 and inhibited
NF-κB signaling by activating Nrf2/HO-1 (Wu et al., 2019). It was
shown that PF-treated psoriasis animal models had thinner
epidermis, less parakeratosis, and less lymphocyte infiltration. PF
suppressed IL-6, IL-17A, and IL-22 mRNA. It also stopped HaCat
cells from making IL-22, possibly by blocking the MAPK pathway
(Yu et al., 2017). PF inhibited astrocytes and microglia from
activating chronic constriction-injured rats. It reduced
inflammation-promoting cytokines in the spinal cord, such as
TNF-α, IL-1β, IL-6, and chemokine (C-X-C motif) ligand (Zhou
et al., 2019b). PF also inhibited IL-8 mRNA expression and secretion
by lowering ERK1/2 and Akt phosphorylation in human hepatic
sinusoidal endothelial cells (Gong et al., 2015).When LPS was added
to human oral keratinocytes, PF inhibited the production of pro-
inflammatory cytokines such as TNF-α and IL-6. It also suppressed
the phosphorylation of NF-κB p65 and IκBα proteins, which
hampered NF-κB and p65 from moving into the nucleus (Yu
et al., 2019).

5.8 Sesquiterpenes

5.8.1 Parthenolide (PAR)
Feverfew [Tanacetum parthenium (L.) Sch. Bip.], an Asteraceae

medicinal herb, contains PAR. PAR inhibited the inflammatory
response in 3T3-CM-cultured macrophages co-cultured with
adipose tissue by downregulating IL-6 and MCP-1. PAR reduced
adiponectin and resistin dysregulations in macrophage-conditioned
medium-cultured adipocytes. In the same study, PL-administered to
high-fat diet (HFD)-fed mice, showed an anti-obese effect,
connected to anti-inflammatory responses with the regulation of
inflammatory cytokines, and the downregulation of NF-κB and
MAPKs and inhibited obesity and obesity-induced inflammatory
responses via activation of Nrf2/Keap1 signalling pathway (Kim
et al., 2019). To understand anti-inflammatory and anti-cancer
effects of PAR, researchers used LPS-induced human leukemia
monocytic THP-1 cells and human primary monocytes. IL-
12p40, IL-6, IL-1β, IL-8, TNF-α, IL-18, and NO were all reduced
by PAR in THP-1 cells, with IC50 values ranging from
1.091–2.620 µM TLR4-mediated MAPK and NF-κB signaling
contributed to PAR’s anti-inflammatory effects (Li et al., 2015c).
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Studies focuses that chronic inflammation causes joint destruction
and excruciating pain in rheumatoid arthritis. PAR (4 mg/kg)
reduced paw inflammation, bone degradation, and pain-like
behavior in moderate collagen antibody-induced arthritis (CAIA)
BALB/c mice (Williams et al., 2020).

5.8.2 Zerumbone (ZER)
This phytochemical is mainly found in Zingiber zerumbet (L.)

Roscoe ex Sm. Oral treatment (100, 250, and 500 ppm) in mice
repressed NF-κB and HO-1, causing apoptosis and inhibiting
colon cancer growth (Kim et al., 2009). A ZER-rich diet (250 and
500 ppm) reduced lung cancer multiplication by reducing
growth, inflammation, and NF-κB and HO-1 expression,
killing cancer cells in animals (Kim et al., 2009). ZER reduced
iNOS and COX-2 in LPS-stimulated RAW 264.7 cells by inducing
the HO-1 pathway, which impacted OA dose-dependently. Chien
et al. (2016) showed that ZER (1–5 mg/kg) reduced paw edema
and pain in a male SD rat OA model (Chien et al., 2016). It also
reduces neuroinflammation, β-amyloid deposition, and
behavioral deficits in APP/PS1 mice. MAPK signaling pathway
inhibition promoted a phenotypic switch from pro-inflammatory
to anti-inflammatory in microglia (Li et al., 2020). Using human
U937 macrophages generated by LPS, another study found that
ZER decreased the up-regulation of pro-inflammatory mediators
such as TNF-α, IL-1β, PGE2, the COX-2 protein, and NF-κB
(p65), IκBα, and IKKα/β. ZER suppression of inflammatory
markers in macrophages required MyD88, demonstrating its
potential as a powerful treatment for inflammatory-mediated
immunological diseases (Haque et al., 2018).

5.9 Diterpenoids

5.9.1 Ginkgolides (GB)
Maidenhair tree extract is a common and old herbal remedy

(Ginkgo biloba L., Ginkgoaceae) where ginkgo flavonol glycosides
(GFGs) and ginkgolides are active ingredients (GGs). GGs
include ginkgolide A (GA), ginkgolide B (GB), ginkgolide C
(GC), ginkgolide J (GJ), ginkgolide M (GM), ginkgolide K
(GK), ginkgolide L (GL), ginkgolide P (GP), ginkgolide Q
(GQ), and bilobalide. Hypoxic-ischemic injury to the brain is
a significant cause of mortality and severe neurologic disability.
One report showed that GB reduced NLRP3 expression in
microglia in a rat pup model of hypoxic-ischemic brain injury
and stopped Caspase-1 and NF-κB P65 from entering the
nucleus. NLRP3 inflammasome activation was less likely
(Chen et al., 2018b). Clinical therapy can alleviate myocardial
ischemia/reperfusion (MI/R) illnesses by reducing inflammation.
Male SD rats with left anterior descending coronary (LAD) artery
blockage mimicked MI/R damage. GC may provide an alternative
therapy for MI/R disorders by suppressing the CD40-NF-κB
signal pathway and downstream inflammatory cytokine
production (Zhang et al., 2018a). GB inhibited inflammation
and protected LPS-induced chondrocytes by upregulating
synthesis-related genes and downregulating matrix-degrading
genes to increase chondrocyte collagen II and aggrecan
expression and reduced LPS-induced MAPK activation (Hejia
et al., 2018).

5.10 Triterpenoids

5.10.1 Ursolic acid (UA)
Basil, rosemary, sage, apples and pears may contain this

phytochemical in Glechoma hederacea L. (Lamiaceae). It was
reported that UA decreased TNF-α production in RAW
267.4 macrophages, A549 alveolar epithelial infected with
Mycobacterium tuberculosis H37Rv, and mouse splenocytes
stimulated with Con A. UA activity reduces the levels of COX-2
and NO synthase in stimulated cells. Finally, UA may be future
tuberculosis and antibiotic therapy due to its anti-inflammatory
properties (Zerin et al., 2016). Inflammation in the brain may play a
role in Parkinson’s. The UA therapy reversed neuroinflammation
and neurodegeneration and improved biochemical and behavioral
indicators. In Parkinson’s mice models, researchers used UA
(25 mg/kg) to reduce MPTP-induced neuroinflammation and
inflammatory markers (Iba1 and TNF-α) and transcription factor
NF-κB (Rai et al., 2019). DSS caused ulcerative colitis in male BALB/
c mice, causing colon damage. DSS increased IL-1β and TNF-α,
MDA, and SOD in colon homogenate. UA restored DSS’s effects and
reduced NF-κB levels in colon tissue (Liu et al., 2016a).

5.10.2 Escin
Horse chestnut extract (Aesculus hippocastanum L.,

Sapindaceae). The glucocorticoid receptor in escin gel may be
anti-inflammatory. Both paw edema and capillary permeability
rat models treated with escin gel had elevated glucocorticoid
receptor levels and reduced NF-κB mRNA (Zhao et al., 2018).
Intragastric escin (0.45, 0.9, or 1.8 mg/kg) reduced Indomethacin-
induced gastric ulceration in Swiss albino mice, reducing MDA,
TNF-α, and VCAM-1. In the same assay, intragastric escin inhibited
myeloperoxidase, superoxide dismutase, catalase, and glutathione
peroxidase (Wang et al., 2014). In cecal ligation and puncture (CLP)
induced intestinal mucosal injury in a mouse model, a low dose of
escin ameliorated endotoxin-induced liver injury and intestinal
mucosal injury and increased the expression of tight junction
protein claudin-5. They add to evidence that escin is a potent
anti-inflammatory agent that reduces intestinal mucosa damage
in animal models (Li et al., 2015b).

5.11 Steroidal compounds

5.11.1 Withaferin A (WA)
WA is a steroidal lactone in Ashwagandha [Withania somnifera

(L.) Dunal, Solanaceae] with many biological effects. Obesity gives
rise to insulin resistance and endothelial dysfunction by the
activation of inflammatory pathways. Endothelial cells treated
with WA reduced TNF-α and IL-6 production in palmitic acid
(PA)-induced insulin-resistant human umbilical vein endothelial
cells. When used to treat PA, WA decreased endothelin-1 and
plasminogen activator inhibitor type-1 levels and restored
endothelium-mediated vasodilation. In the presence of
acetylcholine-stress relief (Batumalaie et al., 2016). CNS affects
the immune response to infections, traumas, or diseases. WA
may treat neuroinflammatory and stress-related diseases. WA
reduces astrocyte NF-κB activity and TNF-α, COX-2, and iNOS
production in response to LPS/TLR4 pathway activation (Martorana
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et al., 2015). BALB/c mice given WA (10 mg/kg) improved
neurobehavioral function and reduced spinal cord histological
changes. WA increased TGF-1β and IL-10 while decreasing IL-1β
and TNF-.α (Yan et al., 2017).WA reduced ovalbumin-induced lung
damage and fibrosis in mice. WA reduced inflammation-inducing
cell infiltration into bronchoalveolar lavage fluid, pro-inflammatory
cytokine production, and inflammasome activation via the
NLRP3 pathway in human lungs (Zhao et al., 2019). Pulmonary
fibrosis is an interstitial lung disease evidenced by chronic
inflammation. WA (2 and 4 mg/kg) decreased connective tissue
growth factor, collagen 1A2, collagen 3A1, and fibronectin in a
bleomycin-induced lung fibrosis mouse model where it reduced NF-
κB p65, IL-1β, and TNF-α expression (Bale et al., 2018). People often
take toomuch acetaminophen, which causes liver damage. Our team
looked at the hepatoprotective effects of a withanolide-rich fraction
(WRF) fromWithania somnifera (L.) Dunal contains WA (12.9 mg/
gm). Male Wistar rats given acetaminophen were given 50, 100, or
200 mg/kg of WRF, which stopped the TNF-α, IL-1β, COX-2, and
iNOS proteins from causing inflammation and oxidative stress
(Devkar et al., 2016).

5.11.2 β -sitosterol (BSS)
It’s found in wheat germ, rice bran, flax seeds, peanuts, and

soybeans (Glycine max (L.) Merr., Fabaceae). In murine
J774A.1 macrophage, BSS reduced pro-inflammatory cytokines
and chemokines and increased anti-inflammatory IL-10. NF-κB
translocation to the nucleus was inhibited by protein tyrosine
phosphatase (SHP-1) (Valerio and Awad, 2011). BSS
nanoparticles (7.5–30 µM) prevented keratinocytes and
macrophages from releasing TNF-α, IL-1β, IL-6, IL-8, and ROS
when triggered by peptidoglycan, TNF-α, or LPS. Also, BSS
decreased NLRP3, a key part of NLRP3 inflammasomes, and
stopped caspase-1 (Liao et al., 2018). In CIA mice,
intraperitoneal BSS (20 or 50 mg/kg) or adoptive transfer of BSS-
BMDMs reduced ankle swelling, collagen-specific antibodies (IgG
and IgG1), and pro-inflammatory cytokines (Liu et al., 2019a).

5.12 Curcuminoids

5.12.1 Curcumin
Turmeric’s roots contain curcumin (Curcuma longa L.,

Zingiberaceae) which adds flavor to food and has medical uses.
Curcumin protects neurons and slows microglia and macrophage
activation and death. In male C57BL/6 mice with traumatic brain
injury, TLR4/MyD88/NF-κB signaling was involved (Zhu et al.,
2014). Curcumin’s effects on myocarditis were studied in rodents
where it inhibited phosphoinositide 3-kinase (PI3K)/Akt/NF-κB
signaling in coxsackievirus B3-induced myocarditis mice. It also
inhibited inflammatory cytokines like TNF-α, IL-6, and IL-1β,
reducing inflammation (Song et al., 2013). Neuroinflammation
contributes to AD. Curcumin’s anti-inflammatory effects may aid
AD patients. Liu et al. (2016b) found curcumin improved mice’s
spatial memory and cholinergic neurons. This improvement was
related to NF-κB signaling pathways and PPARγ mediated
transcription (Liu et al., 2016b). Curcumin and curcumol were
also tested on macrophage cells exposed to cigarette smoke
extract. It was found that curcumol and curcumin inhibited the

NF-κB signaling pathway and downregulated proinflammatory
factors (Li et al., 2019). BALB/c mice given ovalbumin developed
asthma. Curcumin (20 mg/kg and 100 mg/kg) reduced
inflammatory cell infiltration, goblet cell hyperplasia, alveolar
thickening, edema, and vascular congestion in BALB/c with
ovalbumin-induced allergic asthma; and decreased mRNA
expression levels of cytokines IL-4, IL-5, TNF-α, TGF-β (Shahid
et al., 2019). Lipoteichoic acid (LTA) stimulates neuroinflammatory
molecules, contributing to neurodegeneration. In LTA-stimulated
BV-2 microglial cells, curcumin’s anti-inflammatory effects
decreased TNF-α, PGE2, NO, iNOS, and COX-2. Another study
found that curcumin reduced LTA-induced phosphorylation of
MAPK, ERK, p38, Akt and NF-κB translocation. Curcumin
stimulated HO-1 and Nrf-2 expression in microglial cells (Yu
et al., 2018).

5.13 Stilbenes

5.13.1 Resveratrol (RSV)
Red grapes (Vitis vinifera L., Vitaceae) and wine have one of the

anti-inflammatory polyphenols known as resveratrol (RSV). A
review concluded the multifaceted approach of RSV such as
activation of protein-1 (AP-1), NF-κB, Cox-2 and regulation of
proinflammatory cytokines like IL-6, IL-8, IL-10 and TNF-α as well
as ICAM-1 and MCP expression (Latruffe et al., 2015). RSV
inhibited ICAM-1, iNOS, and IL-1β mRNA expression in TNF-
α-treated human coronary endothelial cells, demonstrating anti-
inflammatory properties (Huang et al., 2017). RSV also improved
lung histological damage and decreased pro-inflammatory cytokines
(IL-6, IL-17, TNF-α, and TGF-β) in cigarette smoke chronic
obstructive pulmonary disease (COPD) animals (Chen et al.,
2016). RSV improves circulation in streptozotocin-treated rats, a
pancreatic cell toxin. The improvement was associated with lower
blood levels of TNF-α, IL-1β, and IL-6 and suppression of vascular
endothelial growth factor (VEGF) via the p38-MAPK and NF-κB
pathways (Yan et al., 2018). Yanez et al. (2019) examined the effects
of RSV and nicotinamide on the downregulation of high levels of
TNF-α, IL-6, and VEGF in LPS-induced macrophages.
Nicotinamide increased RSV-induced PARP1 activation and its
related anti-inflammatory effects, which were mediated through
B-cell lymphoma 6 upregulation and COX-2 downregulation
(Yanez et al., 2019).

5.14 Phenolic acids

5.14.1 Rosmarinic acid (RosA)
RosA is an ester of caffeic acid and 3, 4-dihydroxyphenyl lactic

acid found in rosemary herb (Rosmarinus officinalis L., Lamiaceae).
Rahbardar et al. (2017) found that RosA (40 mg/kg) decreased spinal
inflammatory markers, including matrix MMP-2, PGE-2, IL-1β, and
COX-2, in rats with sciatic nerve CCI-induced neuropathic pain
(Rahbardar et al., 2017). Cao et al. (2016) reported that RosA (75,
150, and 300 mg/kg) reduced TNF-α, IL-6, IL-1β, TGF-β, and VEGF
in HCC while NF-κB and p65 was also decreased in the xenograft
microenvironment (Cao et al., 2016). RosA from pomegranate peel
reduced TNF-α in Freund’s complete adjuvant-induced arthritis by
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increasing GSH and SODwhile reducingMDA levels (Gautam et al.,
2019). Jin et al. (2017) found that RosA reduced DSS-induced colon
shortening and splenomegaly in mice. RosA prevented COX-2 and
iNOS expression and IL-1β, IL-6, and IL-22 production in inflamed
mucosa by inhibiting NF-κB, p65, and pSTAT3 expression and
nuclear transport (Jin et al., 2017). One of the research also described
RosA anti-inflammatory effect on LPS-induced mouse mastitis and
mouse mammary epithelial cells. It reduced myeloperoxidase
activity, TNF-α, IL-1β, and IL-6 levels (Jiang et al., 2018).

5.14.2 Ellagic acid (EA)
Ellagic acid (EA) is present in fruits, such as pomegranates

(Punica granatum, Lythraceae), seeds, and vegetables. Innate
immunity plays an important role in managing oral cavity
homeostasis, infections, and cancers. Promsong et al. (2015)
measured the effects of EA (12.5–100 μM) on innate immune
mediators in primary human gingival epithelial cells (HGEs). EA
increased the expression of RANTES (regulated on activation of
normal T-cell expressed and secreted), IL-1β, and IL-2, while
decreased TNF-α, C-C Motif Chemokine Ligand 20 (CCL20), IL-
6, IL-8, and C-X-CMotif Chemokine Ligand 5 (CXCL5) (Promsong
et al., 2015). In a different study, EA (50, 100, and 150 mg/kg)
decreased the levels of blood glucose, TNF-α in serum, and the
expression levels of TLR-4, IL-1 receptor-associated kinase 4
(IRAK4), TNF-receptor associated factor 6 (TRAF-6), IKK-β-,
and NF-κB p65 in the kidney tissue of mice with streptozotocin-
induced diabetic nephropathy (Zhou et al., 2019a). Guan et al.
(2017) studied EA’s effects on LPS-induced lung damage in mice.
He found that EA (5 mg/kg) reduced LPS-induced protein
dispersion in bronchoalveolar lavage fluid and inflammatory cell
infiltration into lung tissue while reduced TNF-α, IL-6, and IL-1β
and increased IL-10 (Guan et al., 2017). One more research
evidenced that treatment with EA (50 mg/kg) reduced paw
swelling, inflammation, NF-κB, IL-1β, MMP-9, VEGF, caspase-3
expression, blood oxidative stress, and NO levels in a rat model of
adjuvant-induced arthritis (Fikry et al., 2019). In addition,
pomegranate peel extract high in EA inhibited the generation of
IL-17 by activated T cells isolated from mice with experimental
autoimmune encephalomyelitis (Stojanović et al., 2017).
Furthermore, wistar rat hippocampi were exposed to arsenic,
which caused neuroinflammation and mitochondrial dysfunction.
EA reduced arsenic-induced neurotoxicity in rats by reducing ROS,
Bax, Bcl2, and inflammatory biomarkers (IL-1β, TNF-α, IFN-γ)
(Firdaus et al., 2018).

5.14.3 Gallic acid (GA)
Gallic acid (GA) is abundant in tea leaves (Camellia sinensis (L.)

Kuntze, Theaceae), along with gall nuts, apple peels, sumac, green
tea, and grapes. Recent research examined the effects of GA on IL-1-
induced human intestinal epithelial cell line and 2,4,6-
trinitrobenzene sulfonic acid (TNBS)-induced ulcerative colitis
(UC) in mice. GA raised the expressions of IL-4 and IL-10,
whereas blocking the NF-κB pathway decreased the expressions
of IL-1, IL-6, IL-12, IL-17, IL-23, TGF-β, and TNF-α. These
modifications alleviated inflammation, reversed the loss in body
weight and the rise in colon weight, and mitigated the histological
alterations caused by UC (Zhu et al., 2019). Generally, hypertrophic
scars are the result of prolonged intense inflammation. Fan et al.

(2018) studied GA’s effect on LPS-induced inflammation in
hypertrophic scar fibroblasts and reported reduced TNF-α, IL-6,
IL-1β, and IL-8 levels. This indicated an inflammatory response via
TLR-4/NF-κB/PPARγ pathway (Fan et al., 2018). Endometriosis is a
gynecologic disease in women that can cause infertility and chronic
pelvic pain with a relatively high recurrence rate. GA (102.4 μg/ml)
and its derivatives showed ameliorating effects on endometriosis
primary cultures by regulating NF-κB mRNA expression and IL-6
secretions (Bustami et al., 2018).

5.14.4 Protocatechuic acid (PCA)
Protocatechuic acid (PCA) is a phenolic chemical extracted from

onion (Allium cepa L., Amaryllidaceae) and found in many plants
and fruits. Recent research shows PCA’s anti-inflammatory
mechanism via sirtuin1(SIRT1)/NF-κB in LPS-activated
BV2 microglia (Kaewmool et al., 2020). Inflamed visceral adipose
tissue (VAT) causes insulin resistance and T2DM in obese patients.
By increasing insulin receptor substrate-1 and Akt phosphorylation,
PCA can modulate insulin sensitivity and inflammation in obese-
VAT and normal-weight T2DM patients. This may be due to
reduced protein tyrosine phosphatase 1B activity in obese-VAT
treated with PCA. Thus, PCA is a powerful phytochemical against
obesity-related inflammation and IR (Ormazabal et al., 2018). The
polarization of macrophages affects atherosclerosis. PCA blocked
PI3K-Akt-mediated NF-κB activation and M1 polarization. In
J774 cells and mouse bone marrow macrophages, it
phosphorylated STAT-6 and activated PPAR-γ, increasing
M2 activation. These findings showed PCA relieved
atherosclerosis by modulating M1-M2 conversion (Liu et al.,
2019b). Benign prostatic hyperplasia (BPH) causes an enlarged
prostate. Akanni et al. (2020) reported that BPH castrated rats
treated with PA showed reduction in inflammation and oxidative
stress and caused histological changes (Akanni et al., 2020).

5.14.5 Vanillic acid (VA)
Vanillic acid (VA) is the major component of the extracts of the

vanilla (Vanilla planifolia Jacks. ex Andrews, Orchidaceae) bean and
pod, commonly utilized in food flavoring agents, cosmetics and drugs.
In a mouse model of inflammation produced by carrageenan, VA
reduced hyperalgesia, leukocyte recruitment, oxidative stress, IL-33,
TNF-α, and IL-1β production, as well as NF-κB activation. This study
proves analgesic and anti-inflammatory actions of VA, associated
with Nrf2 activation (Calixto-Campos et al., 2015). In another study,
VA reduced Aβ1-42-induced oxidative stress, neuroinflammation,
and cognitive impairment in mice by activating Nrf2 and increasing
HO-1 expression (Amin et al., 2017). The anti-inflammatory potential
of VA was evaluated in LPS-induced macrophages and in in vivo
animal models. VA reduced LPS-induced gene expression and pro-
inflammatory mediators, including iNOS/COX-2 and cytokines. The
mechanism involved was suppression of NF-κB activation in
macrophages and improve acetic acid-induced vascular
permeability and zymosan-induced leukocyte migration in mice
(Lee et al., 2018).

5.14.6 6-Gingerol (6-G)
This phytochemical is found in ginger (Zingiber officinale, Rosc.,

Zingiberaceae), spice and herbal medicine. 6-G (6 mg/kg) pre-
treatment alleviated MI/R in SD rats by improving the cardiac
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functions. The later involved reducedmyocardial infarction area and
cardiac pathological injury, lowered myocardial enzyme level and
inhibited inflammatory response by upregulating PI3K and p-Akt
expression (Xu et al., 2018b). Additionally, 6-G rich fraction
inhibited the inflammatory markers such as myeloperoxidase,
NO, and TNF-α in brains, ovaries, and uterus of chlorpyrifos-
treated rats (Abolaji et al., 2017). A report assessed 6-G
inhibition on IL-1 induced osteoclast differentiation in co-
cultures of osteoblasts and osteoclast precursor cells and found
that 6-G suppressed NF-κB ligand and reduced PGE2, indicating
its potential use in the treatment of inflammatory bone destruction
associated with excessive PGE2 production (Hwang et al., 2018).
The AD model of whiskers rats produced by streptozotocin was
investigated to examine whether 6-G therapy might reduce
inflammation and ameliorate cognitive impairment. The
researchers observed that pre-treatment with 10 and 20 mg/kg 6-
G decreased levels of neuroinflammatory and α, β-secretases,
APH1a (Aph-1 Homolog A, Gamma-Secretase Subunit), and
COX-2, resulting in an improvement in cognitive behaviors
(Halawany et al., 2017). 6-G (25 mg/kg) antioxidant and anti-
inflammatory properties protected rat kidneys from septic acute
damage by reducing ROS, RNS, MDA and increasing GSH activity
(Rodrigues et al., 2018). Additionally, orally administered 6-G rich
extract reduced the levels of the proinflammatory marker TNF-α
and expression of NF-κB and vascular endothelial growth factor in
the retinal tissue of the streptozotocin-induced diabetic Wistar
albino rats (Dongare et al., 2016).

5.14.7 Caffeic acid phenethyl ester (CAPE)
It’s a polyphenolic chemical mostly found in black poplar (Populus

nigra L., Salicaceae) and beehive propolis. Glaucoma is characterized by
the death of retinal ganglion cells (RGCs) and is a leading cause of
blindness worldwide. Jia et al. (2019) reported that CAPE inhibits NF-κB
activation, reduces the production of inflammatory cytokines like IL-8,
IL-6, iNOS, COX-2, TNF-α, and C-C ligand-2 in a glaucoma rat model
of optic nerve crush (Jia et al., 2019). One more study found that CAPE
inhibits NF-κB activation via thiol group modification and
p65 phosphorylation in RAW 264.7 cells (Takakura et al., 2018). In
the host’s defense against dental caries, odontoblasts produce growth
factors and develop reparative dentin. CAPE increased VEGF mRNA
expression and production in rat odontoblast-like KN-3 cells and
enhanced NF-κB transcription factor. Thus, CAPE is predicted as a
unique biological material for dental pulp treatment (Kuramoto et al.,
2019). Salles et al. (2019) showed that treatment with CAPE (10 µM)
improved wound inflammatory and oxidative profile with decreased
TNF-α, phosphorylated NF-kB p65 protein, NOS2 and COX-2
expression in male Swiss diabetic rats (Salles et al., 2019). Periodontal
disease is linked to chronic oxidative stress and inflammation. It was
reported that in primary murine macrophages, CAPE showed
antioxidative effects via the Nrf2-mediated HO-1 pathway and anti-
inflammatory effects via NF-κB suppression (Stähli et al., 2019).

6 Phytochemicals evaluated in clinical
trials

The effectiveness of phytoconstituents for different health
complications is known since ancient days. Recent advances in

research has provided a larger platform to find out the efficacy
and mechanism of these plant-derived components. Animal models
are, of course, invaluable to study the pharmacological capacity of a
drug. However, these models do not satisfactorily represent the
human conditions and have limitations. In this context, we have
summarized some major phytochemicals that are being studied for
their role in inflammation in different complications and are
undergoing clinical trials as well (Figure 4; Table 4).

6.1 Resveratrol

Resveratrol clinical research focuses on T2DM/metabolic
syndrome, polycystic ovary syndrome, and non-alcoholic fatty
liver disease. This phytochemical activates SIRT1 and may help
with metabolic, inflammatory, and cell cycle disorders. A low grade
of systemic inflammation and oxidative damage can be seen in
smokers. Bo et al. (2013) reported that resveratrol (500 mg/day)
reduced CRP and TGs and improved antioxidant status in
50 healthy adult smokers during a 90-day cross-over, randomized
and double-blind study. These effects were depending on anti-
inflammatory and anti-oxidant properties of resveratrol that
ultimately subsided cardiovascular risk in participants (Bo et al.,
2013). In another study, healthy Japanese participants were given
resveratrol (1 g/day for 28 days) to examine its effects on immune
cells. Here, increased γδ-T cells and regulatory T cells reduced
plasma TNF-α and MCP-1 levels (Espinoza et al., 2017). In a 24-
week randomized controlled trial, 93 veterans participated to

FIGURE 4
Chemical structure of some phytochemicals used in clinical
trials.
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evaluate cognitive functioning, functional status, mood,
hippocampal neurogenesis, and functional connectivity, as well as
the anti-inflammatory and antioxidant effects of resveratrol
(500 mg, 1,000 mg, 1,500 mg, and 2,000 mg) (NCT03665740).
Study results have not been posted yet.

6.2 Curcumin

Curcumin, also known as diferuloylmethane is turmeric’s main
component (Curcuma longa L., Zingiberaceae) and used to treat
inflammatory illnesses in Ayurvedic medicine. A randomized
controlled trial evaluated curcumin’s anti-inflammatory effects in
people with metabolic syndrome. Here, 117 participants received
curcumin (1 g/day) or a placebo for 8 weeks and showed reduction in
TNF-α, IL-6, TGF-β, and MCP-1 in blood (Panahi et al., 2016). A report
found that peptic ulcers treated with 600mg of curcumin per day for
12 weeks improved the condition from 48% to 76%, depending on
treatment length (Prucksunand et al., 2001). The function of
inflammation in the development of pancreatitis and subsequent tissue
damage is crucial (Vaquero et al., 2001). A 6-week pilot study of tropical
pancreatitis with 15 patients was performed where administration of
curcumin (5 mg/day) with piperine (5mg) reducedMDA levels, but there
was no significant differences in GSH or pain scores as compared to
placebo group (Durgaprasad et al., 2005). In another study, forty cancer
patients are being examined in a phase I pilot study to examine the adverse
effects and optimal dose of curcumin when combined with piperine
extract to reduce ureteral stent-induced symptoms (NCT02598726).

6.3 Epigallocatechin gallate (EGCG)

EGCG, also known as epigallocatechin-3-gallate, is a
component of green tea, Camellia sinensis (L.) Kuntze

(Theaceae). The inflammatory nature of MS increases IL-6
levels in the blood that elevates and often exacerbates pain
associated with a physical disability. In a pilot trial, the effects
of coconut oil and EGCG on IL-6, anxiety, and functional
impairment in MS patients were evaluated. 51 patients with MS
were given EGCG (800 mg) and coconut oil (60 ml) for 4 weeks
following the Mediterranean diet. The results showed
improvement in anxiety and functional capacity along with a
decrease in IL-6 (Platero et al., 2020). One more study uses
catechin-rich green tea and is being tested on 40 humans to
improve gut barrier function and prevent endotoxin
translocation and inflammation (NCT03413735).

6.4 Quercetin

Quercetin, a flavonol and plant secondary metabolite found in
apples, grapevines, berries, broccoli, onions, and capers. Quercetin
targets prominent pro-inflammatory signaling pathways such as
STAT1, NF-κB, MAPK and scavenges reactive oxygen and
nitrogen species (Hämäläinen et al., 2007). It has been
postulated that oxidative stress and low antioxidant levels cause
inflammatory sarcoidosis. It was reported that quercetin (15 mg
per day) treatment reduced inflammation and boosts antioxidant
defense by increasing total plasma antioxidant capacity in
sarcoidosis patients participated in double-blind study (Boots
et al., 2011). In a randomized, double-blind 8 weeks study,
subjects with systematic and regular exercise showed reduction
in oxidative stress and inflammatory markers CRP and IL-6 upon
treatment with quercetin alone (500 mg) and/or with vitamin C
(250 mg) (Askari et al., 2012). COPD is a chronic pulmonary
condition that affects millions of people worldwide and reduction
of oxidative stress and inflammation are essential part of COPD
management (King, 2015). Quercetin (2000 mg/day) efficacy is

TABLE 4 List of anti-inflammatory phytochemicals used in clinical trials.

Phytochemicals Class of
compound

Disease/
disorder

Assessment References

Resveratrol Vitis vinifera (Vitaceae) Gulf War Illness Improvements in cognitive functioning, functional status, mood,
hippocampal neurogenesis, and functional connectivity as well as anti-

inflammatory and antioxidant effects

NCT03665740a

Curcumin Curcuma longa,
(Zingiberaceae)

Bladder Spasm Reducing inflammation for ureteral stent-induced symptoms NCT02598726a

Malignant Neoplasm

Pain

Urinary Urgency

Epigallocatechin gallate Camellia sinensis
(Theaceae)

Obesity To assess endotoxin and inflammatory biomarkers NCT03413735a

Endotoxemia

Inflammation

Quercetin Malus domestica,
(Rosaceae)

COVID-19 Prophylaxis and treatment of COVID-19 NCT04377789a

Luteolin Rosmarinus officinalis
(Lamiaceae)

Frontotemporal
Dementia

To assess the brain correlates related to the clinical improvement
associated with PEA-LUT treatment

NCT04489017a

aIndicates reference found at www.clinicaltrials.gov with corresponding identifier code (NCT).
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being evaluated using IL-β, IL-8, bronchoalveolar lavage, CRP, and
surfactant protein-D involving 15 COPD patients in a double-
blind, placebo-controlled study (NCT03989271). The coronavirus
emerged in late 2019, caused multiple deaths via a disease called
COVID-19 with challenging health burden around the globe
(Zhou et al., 2020). Based on quercetin’s strong scavenger and
anti-inflammatory activity, some researchers hypothesized it could
prevent and treat COVID-19. The randomized clinical trial
included 50 participants with COVID-19 infection and a
1,000 mg/day quercetin dose (NCT04377789).

6.5 Luteolin

Luteolin is a flavone found in carrots, cabbage, artichoke, tea,
and celery while it is used majorly for cancer and inflammation
due to its antitumor and anti-inflammatory properties. A
correlation has been found between autism spectrum
disorders (ASD) and cognitive function-related brain
inflammation (Pardo et al., 2005; El-Ansary and Al-Ayadhi,
2012). Taliou et al. (2013) reported that treatment with
luteolin (100 mg/10 kg) effectively reduced ASD symptoms in
children in a 6 week pilot research using an open-label design
(Taliou et al., 2013). Frontotemporal dementia (FTD) is a disease
where neuroinflammation may play a role and that
neuroinflammation-targeting medications may be effective in
treating this condition (Cordaro et al., 2020). A clinical trial is
being conducted with 50 FTD patients to evaluate
palmitoylethanolamide mixed with luteolin (PEA-LUT) at
700 mg × 2/day for 24 weeks (NCT04489017).

7 Phytochemicals used currently in
inflammatory diseases/disorders

Natural products are a vital resource for global pharmaceutical
firms developing new medicines. About 25% of this natural
resource comes from pharmaceuticals i) A direct supply of
therapeutic substances (both pure medications and
phytomedicines); ii) raw materials for manufacturing complex,
semi-synthetic therapeutics; iii) models for developing lead
compounds; and iv) taxonomic markers for discovering novel
drugs (Calixto, 2019). In in vitro and in vivo studies, many
phytochemicals have shown anti-inflammatory activity, and
most have been tested in clinical trials. Not all are approved as
medicines/drugs; but are used as supplements. Using
phytochemicals as drugs or medicines depends on country
norms. In this review, we list some effective anti-inflammatory
drugs used around the world (Figure 5; Table 5).

7.1 Colchicine

Colchicine is an alkaloid of Colchicum autumnale L.
(Colchicaceae), also called autumn crocus or meadow saffron.
This phytochemical is an alternative medication for those who
are unable to tolerate NSAIDs in gout. Colchicine prevents
microtubule polymerization by binding to tubulin and

suppressing leukocyte and other inflammatory cell proliferation
and reduces urate crystal inflammation (Leung et al., 2015).

7.2 Escin

Escin is a horse chestnut triterpenoid saponin (Aesculus
hippocastanum L.), which is known for its vasoprotective, anti-
inflammatory, anti-edematous, and anti-nociceptive properties.
Traditional Chinese medicine uses escin to treat cerebral edema
and chronic venous insufficiency. Recent research shows that escin
can reduce vascular permeability in inflamed tissues, preventing
swelling (Gallelli, 2019).

7.3 Capsaicin

Various non-steroidal drugs and phytochemicals are analgesics
and anti-inflammatory agents (Kim et al., 2003). Capsaicin is a
topical analgesic approved by the FDA for alleviating the
neuropathic pain associated with postherpetic neuralgia. It’s
available in cream, powder, and patch forms, but also present in

FIGURE 5
Chemical structure of phytochemicals used as current drugs/
medicine.
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some nutritional supplements. The exact mechanism of action is not
known, however it is attributed to the defunctionalisation of
nociceptor fibres by inducing a topical hypersensitivity reaction
on the skin (Fattori et al., 2016).

7.4 Bicyclol

A synthetic compound derived from Schisandra C, a lignan
extracted from the Chinese medicinal herb Schisandra chinensis
Fructus (Turcz.) Baill. Chinese Medical Association approved this
anti-inflammatory drug for liver complications. Mechanisms of
action include cytochrome P-450 stimulants, free radical-
scavenging HSP70 stimulants, and protein kinase C inhibitors
(Liu et al., 2005; Bao and Liu, 2008).

7.5 Borneol

Borneol is present in many essential oils and it’s a bicyclic
monoterpene with a strong, bitter aroma and flavor. Research shows
borneol’s effectiveness in inflammation and related complications (Ji
et al., 2020). For instance, in Chinese medicine, borneol treats
anxiety, fatigue, and insomnia. Borneol not only causes
anesthesia, pain relief for abdominal pain, wounds, and burns
but also treats rheumatism, hemorrhoids, skin diseases, and
ulcers. More precisely, it is well known to relieves pain,
inflammation, digestive issues, stress, and anxiety (Xiong et al.,
2013).

7.6 Bromelain

Bromelain is a group of protein-digesting enzymes found in
pineapple juice and the pineapple stem. In the US, it’s a dietary
supplement, but elsewhere it is a medicine. Bromelain stimulates
inflammatory pathways to produce pain and inflammation-fighting
substances. Hence it is generally prescribed for osteoarthritis, hay

fever, ulcerative colitis, and debridement (Rathnavelu et al., 2016). It
stops the release of IL-1β, IL-6, and TNF-α by activated immune
cells when inflammation causes them to make too many cytokines
(Hale et al., 2005).

8 Discussion and conclusion

This review briefly describes recent investigations on the anti-
inflammatory properties of medicinal phytochemicals using
preclinical and clinical studies. The preclinical studies of these
phytochemicals have led to a better understanding of their mode of
action for the therapeutic management of a variety of chronic
inflammatory diseases and disorders and steered the way to the
development of many anti-inflammatory drugs which are being
used clinically. It is evidenced that phytochemicals may suppress
the expression of proinflammatory genes and stimulate the
expression of anti-inflammatory genes; this differential gene
expression is governed by epigenetic changes. In this study, we
demonstrate that phytochemicals exert their anti-inflammatory
impact by modulating the expression of proinflammatory
miRNAs, particularly those that are increased after NF-κB
activation. These phytochemicals also modulate key
inflammatory signaling pathways, such as MAPKs, STAT, and
Nrf-2.

Additionally, the present review gave insights towards the
relation of inflammation and obesity, with one causing the other.
Some of the studies suggested in preclinical studies gives evidence of
the linkage between inflammation and obesity. For example, obesity
mice model treated with apigenin showed reduction in body weight
along with improvement in inflammatory parameters (Gentile et al.,
2018). One more study proved that PL administration showed anti-
obese effect and inhibited obesity-induced inflammatory responses
(Kim et al., 2019). We have also discussed how inflammatory
conditions are linked with birth complications that decide future
disease/disorders in neonatal stage. In fact, during pregnancy,
mother provides a variety of food and conventional nutrients
that contain a variety of phytochemicals in various

TABLE 5 List of anti-inflammatory phytochemicals used as current drugs/medicines.

Drug/medicine (class/
group of compounds)

Pharmacological action Disease/disorder Molecular
targets

References

Colchicine (alkaloid) Microtubule polymerization by binding to tubulin Gout attacks Joint Pain Tubulin Leung et al. (2015)

Escin (triterpenoid saponin) Anti-inflammatory, reduces vascular permeability by
inducing endothelial nitric oxide synthesis

Cerebral edema and chronic
venous insufficiency

NO synthesis Gallelli (2019)

Capsaicin (methoxy phenol) Defunctionalisation of nociceptor fibers by inducing a
topical hypersensitivity reaction on the skin

Neuropathic pain associated
with postherpetic neuralgia

Nociceptor fibers Fattori et al. (2016)

Bicyclol (lignan) cytochrome P-450 enzyme system stimulants Liver complications cytochrome P-450
enzyme

Liu et al. (2005); Bao
and Liu (2008)

Borneol (monoterpene) Induces anesthesia and analgesia Anxiety, fatigue, and insomnia — Xiong et al. (2013); Ji
et al. (2020)

Bromelain Reduces inflammation by interfering with the enzymatic
synthesis involved in the arachidonic acid metabolic

pathway

Osteoarthritis, hay fever,
ulcerative colitis, and

debridement

Arachidonic acid Hale et al. (2005);
Rathnavelu et al. (2016)
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concentrations to the foetus. It also indicates that concentration-
dependent effects of phytochemicals must be present to control the
repercussions of mother’s health and food habits.

It is of utmost interest to understand the specific role of
phytochemicals in different inflammatory diseases rather than
depending upon the crude extracts or partially purified mixture of
phytochemicals. It is also important to understand the right time for the
intervention by phytochemicals in different diseases. It’s very likely that
the same phytochemicals may not be effective at different ages for a
similar inflammatory disorder. The clinical studies are not addressing in
detail the above facts regarding phytochemicals intervention, specifying
the needs for controlled treatment with conventional allopathic drugs.
This kind of study may trigger the competitive use of phytochemicals
against allopathic drugs also. Finally, it is important to discuss and study
the above fundamentals to better understand the mechanism of action
of phytochemicals in inflammation associated diseases and disorders.
Another treatment modality is combination therapy that combines two
or more therapeutic agents such as certain specific phytochemicals with
known therapeutic effects. Combination therapy is the cornerstone of
cancer treatment where a combination of anticancer drugs is used to
enhance treatment efficacy compared to the monotherapy because a
combination has the potential to target key signaling pathways that
control tumor growth where synthetic drugs are used with one or
mixture of the phytochemicals. The application of complementary and
alternative medicine, which includes phytochemicals and herbal
extracts that leads to chances of herb-drug interactions
(HemaIswarya and Doble, 2007). In another study, anticancer
activities of each of the three phytochemicals baicalein, curcumin,
and resveratrol in combination with a chemotherapy drug paclitaxel
indicated that combination of paclitaxel with curcumin showed
synergistic growth inhibition and significant apoptosis in human
breast cancer MCF-7 cell lines (Zhan et al., 2014).

The use of phytochemicals as therapeutic agents has certain
limitations that deserve some attention, such as the larger dose
requirement for some compounds, poor solubility, isolation, and
procurement, etc. In fact, most of the clinical trials do not take into
consideration the inflammatory parameters in the assessment. A
small number of phytochemicals which have been approved for
clinical trials, are essentially those that have already been tested in
preclinical studies as anti-inflammatory molecules. On the contrary,
a large number of phytochemicals are being used as supplements
and are available over the counter, are also found to be effective but
these are not approved as medicines/drug due to their lack of proper
clinical evaluation. Finally, it seems that there is a broad difference in
basic preclinical studies of these anti-inflammatory phytochemicals
and their availability as drugs/medicines. For future perspectives, it
looks like that the design of the study should be more specific at the
molecular level and more clinical trials should be introduced

through targeted treatments with therapeutic phytochemicals.
Furthermore, in silico studies can be initiated to increase the
spectrum of the study as well as to find more pronounced details
regarding the feasibility and therapeutic usefulness of these
phytochemicals. Finally, this review has focused on those
phytochemicals which are at the preclinical and clinical level and
summarized the mechanism of action of these phytochemicals at the
molecular level. It is expected that present study will provide the
necessary understanding to define specific phytochemicals with
anti-inflammatory properties that can be used as therapeutics in
complex diseases such as obesity, diabetes, and cancer.
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