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A brain tumor is an uncontrolled cell proliferation, a mass of tissue composed of
cells that grow and divide abnormally and appear to be uncontrollable by the
processes that normally control normal cells. Approximately 25,690 primary
malignant brain tumors are discovered each year, 70% of which originate in
glial cells. It has been observed that the blood-brain barrier (BBB) limits the
distribution of drugs into the tumour environment, which complicates the
oncological therapy of malignant brain tumours. Numerous studies have found
that nanocarriers have demonstrated significant therapeutic efficacy in brain
diseases. This review, based on a non-systematic search of the existing
literature, provides an update on the existing knowledge of the types of
dendrimers, synthesis methods, and mechanisms of action in relation to brain
tumours. It also discusses the use of dendrimers in the diagnosis and treatment of
brain tumours and the future possibilities of dendrimers. Dendrimers are of
particular interest in the diagnosis and treatment of brain tumours because
they can transport biochemical agents across the BBB to the tumour and into
the brain after systemic administration. Dendrimers are being used to develop
novel therapeutics such as prolonged release of drugs, immunotherapy, and
antineoplastic effects. The use of PAMAM, PPI, PLL and surface engineered
dendrimers has proven revolutionary in the effective diagnosis and treatment
of brain tumours.
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1 Introduction

Cancer is currently associated with extremely high mortality and
morbidity rates worldwide. TheWorld Health Organization (WHO)
predicts that early deaths will increase by 70% in the next 20 years
(Cancer, 2022). In 2015, cancer was the cause of death for 8.8 million
inhabitants around the world, and this number is expected to
increase to 12 million by 2030. Although cancer incidence is
lower in low- and middle-income countries (LIMICs), overall
cancer mortality is much higher in LMICs, especially among
those under 65 years of age. For this reason, human development
and wellbeing are affected by cancer (Kesharwani et al., 2015;
Thakur et al., 2015; Dwivedi et al., 2016).

A high mortality rate is associated with this type of disease when
the metastatic growth is uncontrolled in the central nervous systems
(CNS) (brain, spinal cord) (Sacks and Rahman, 2020).
Approximately 25,690 cases of primary malignant brain tumors
are diagnosed annually, 70% of which originate primarily in glial
cells (Ostrom et al., 2021). World health organization (WHO) has
classified brain tumors into four grades, ranging from I to IV
depending on severity. Glioblastoma (GB), referred as type IV
glioma, which is severe and invasive carcinoma with a survival
rate of 5.1% (Tadros and Ray-Chaudhury, 2020; Katano and
Yamashita, 2022). The radiation therapy, surgery and
systemically administered chemotherapy are the three main
techniques used in the conventional treatment of cancer.
According to them, a median survival of 9 months is possible,
with a survival rate of about 10% of 2 years. However, systemic
chemotherapy has limited efficacy in brain tumors due to minimal
drug uptake into the tumor cells, drug metabolism within tumor
cells and intrinsic sensitivity of tumor cells (Zaal and Berkers, 2018;
Tan et al., 2020; Stine et al., 2022).

Patients with multiple drug-resistant gliomas are more likely to
have poor prognosis as they cannot be completely removed
surgically and there is a possibility for a new primary tumor to
form after surgery. Major challenges include the complexity and
heterogeneity of glioblastoma (GB) molecular biology. As a result,
the prognosis could differ significantly for every patient receiving the
same treatment. Adjuvant chemotherapy and radiotherapy (RT) are
primarily utilized to treat GB whereby both therapies can cause
genotoxicity (Thakur et al., 2015).

Blood Brain Barrier (BBB) poses a challenge to the efficient
treatment of brain tumours by preventing the transfer of drugs to the
affected area. The BBB is a very important part of how drug
molecules move from the bloodstream to the brain. It also
prevents toxins and large and higher concentrations of
therapeutic drugs from entering the brain microenvironment
(Thakur et al., 2015). The main physiological barriers at the
brain surface include the choroid plexus, arachnoid plexus and
blood vessels. Other challenges include non-specific binding,
bioavailability of drugs and imaging agents (Kesharwani et al., 2015).

Numerous studies have found that nanocarriers are effective in
treating brain diseases. Drug distribution in the brain can be divided
into two categories: First, bypassing and evading the BBB due to the
different architectures, and second, targeting the drug across BBB
vai utilization of characteristics of polymeric nanocarriers.
Nanocarriers offer special benefits for drug delivery. The optimal
physicochemical characteristics, such as solubility, particle size,

potential, and shape, help to increase pharmacokinetics and
biodistribution. Moreover, surface modification may boost
medication accumulation in the target tissue to enhance the
therapeutic effect. Additionally, the nanocarriers have a particular
drug release characteristic that enhances drug concentration in the
target site and decreases drug concentration in the non-target site,
minimising the likelihood of unfavourable reactions. Moreover, it is
simple to mix treatments with nanocarriers to generate synergistic
effects. Hence, nanocarriers offer a good platform for the
investigation of medications that target brain tumours. Few most
commonly utilized nanocarriers are nanoparticles, liposomes,
quantom dots, magnetic nanoparticles, dendrimers, micelles,
carbon nanotubes, nanoemulsions, solid lipid nanoparticles, etc.,
(Sahu, et al., 2021; Yeini et al., 2021; Bhatt et al., 2022; Grover et al.,
2022; Setia et al., 2022).

Dendrimers consist of either chemical conjugation of terminal
functional groups on the drug surface or physical encapsulation of
drugmolecules in the internal cavities of the dendrimer (Kesharwani
et al., 2015). The efficient passage of therapeutic molecules through
the BBB can be attributed to their lipophilicity. Based on past
studies, dendrimers are excellent solubilizers, particularly for
macromolecules. Positively charged dendrimers, which consist of
enmeshed Nanoparticles (NPs) with mucus are known to have
increased cellular uptake when they are associated with mucus.
In a recent study, the drug bortezomib was found to be less toxic
when loaded into dendrimers that are acid and pH resistant and
have the ability to altered the drug release. Therefore, this treatment
shows great promise for the treatment of malignancies (Singh et al.,
2019). Modifying the external features of dendrimers can be
considered as a cost-effective way to acquire new capabilities.
Modifying the surface of dendrimers would alter their
biopharmaceutical properties, such as improved biocompatibility,
release kinetics, targeting to the BBB or brain tumor, and delivery of
bioactive and imaging agents through the BBB (Zhu et al., 2019).

This review summarizes the current status of brain tumors,
available treatments, major challenges in the application of
diagnostic and therapeutic nanocarrier systems and aspirations
for future research. The architecture, species, physicochemical
and biological properties of dendrimers, and synthesis methods
are described in great detail. In addition, the pharmaceutical delivery
and brain tumor imaging using dendrimer-based nanovesicles are
highlighted as well. The article aims to provide information on the
potential and problems associated with effective brain tumor
targeting for therapy and diagnosis in a clear manner that can be
understood by all. Finally, the limitations that dendrimers face in
clinical applications and ways to overcome them will be addressed.
The focus of this review is on recent therapeutic developments using
dendrimers for brain tumor targeting and imaging.

2 Dendrimers and their characteristics

The current circumstances and obstacles related to brain tumors
make it difficult for researchers to develop an efficient technique to
detect and treat brain tumors. For this reason, it is highly
recommended to develop a safe and effective delivery system that
protects the payload and increases the effectiveness of the drug.
Furthermore, this developed system must have improved drug
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release and offers reduced toxicity in the non-targeted organs due to
aggregation of the charged cytotoxic materials. Although various
nano-delivery systems have been utilized in recent decades,
dendrimers have emerged as the leading system in brain tumor
treatment and imaging due to their immense potential alongside
existing nanocarriers (Akhter et al., 2013). Dendrimers are
polymeric structures range of 1 nm–10 nm size that are firmly
established, spherical, macromolecular, hyperbranched, three-
dimensional, and multivalent., which give them better flexibility
and monodispersibility (Chenthamara et al., 2019). With a large
number of hydrophobic pockets, dendrimers are able to encapsulate
a variety of bioactive substances, allowing for regulated and
sustained release of drugs (Noriega-Luna et al., 2014; Choudhary
et al., 2017; Rahman et al., 2020).

3 Structure of dendrimers

Dendrimers are composed of a central core, branches
(dendrons), and terminal functional groups (Figure 1). The
attachment of the branches is made possible by the central
nucleus, which consists of a single atom accompanied by at least
one functional group. The branches (dendrons) arise from the
atomic units of the core and bridge among themselves repeatedly
at least one branching junction, resulting in an organized, radially
concentric, layer-based geometric structure known as generations.
Thus, the radially concentric layer is created by bridging between the
branching units, which are referred as “generation (G)” (Birdhariya
et al., 2015). As the generations are repeated, dendrimers of higher
generations with spherical shape are formed, namely, the first
generation (G1), the second generation (G2), the third generation
(G3) and so on. The defined area formed between the dendrons is
protected by a surface decorated with a multivalent end group. This
empty area is used to encapsulate various bioactive materials and
bio-imaging agents (Klimova et al., 2018; Tomalia et al., 2020). The
loading efficiency of dendrimers would increase with every
generation level. For example, cationic amino groups on the
surface of higher generation cationic dendrimers would
contribute to better DNA binding and cellular uptake by
transforming the complex into nanoscale polyplexes (Noriega-

Luna et al., 2014; Kesharwani et al., 2015; Tomalia et al., 2020).
Therefore, the three main domains of the dendrimer architecture
can be used for drug delivery, molecular sensors, genetic materials,
enzymes, and bioimaging applications (Figure 2).

4 Methods of dendrimer synthesis

Dendrimers are compact spherical structures formed by high
degree branching of polymers (Shi et al., 2006). In most cases,
their synthesis involves the repetitive attachment of monomers to
a central core that has multiple functional groups. Several
different functional groups form the core of the structure. The
addition of monomers to each functional group produces the
next dendrimer and forms end groups for the next reactions
(Walter and Malkoch, 2012; Mittal et al., 2021). The size of the
dendrimers increases with packing after each generation and
finally reaches its densely packed spherical structure with
maximum size.

Depending on the goals of the study, either convergent or
divergent strategies can be used to synthesis dendrimers (Šebestík
et al., 2012; Kalhapure et al., 2015; Malkoch and García-Gallego,
2020). In the divergent method, the activation of the functional
groups of the multivalent surface occurs in the first step and the
addition of monomer units for continuous branch elongation begins
(Jain et al., 2012; Kesharwani et al., 2015; Chauhan, 2018; Sherje
et al., 2018; Janaszewska et al., 2019; Kumbhar et al., 2021; Sheikh
and Kesharwani, 2021). The advantages of divergent methods are
the possibility of surface modification and the ability to construct
dendrimers with different physiochemical properties. Meanwhile,
the convergent technique for the synthesis of dendrimers begins
with the attachment of functionalized monomers to the interface
where the dendrons are to be joined together to produce the finalized
dendrimer architecture. In this process, the dendrons are linked
together to form the dendrimer. Compared to the divergent method,
which often results in incomplete branching, the main advantage of

FIGURE 1
Dendrimer architecture at its most fundamental level.

FIGURE 2
Schematic diagram that indicates the application of dendrimers
in various biomedical fields.
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TABLE 1 Basic characteristics of different types of dendrimers.

Type of
dendrimer

Characteristics Advantages Limitations Drug/gene used References

PAMAM
Dendrimers

Hyperbranched, unparalleled
molecular uniformity, narrow
molecular weight
distribution, defined size and
shape characteristics,
multifunctional terminal
surfaces

Biocompatible, water soluble,
non-immunogenic, high
loading efficiency, Improved
biological stability, cell
uptake and intracellular
trafficking and
pharmacokinetics, immune
modulator, glucose
scavenger, alter cell signalling
pathways

Prolonged administration
cause organ and tissue
toxicities

Luciferase siRNA,
angiopep-2 peptides,
Epirubicin Let-7g miRNA,
Fibrin-binding CREKA,
(glioma homing peptides),
Biotin Pyridoxal, p42-
MAPK siRNA, KLAK, Bcl-2
and VEGF siRNA, anti-GFP
siRNA, Apoptin, etc.

Xu et al. (2016),
Zarebkohan et al. (2016),
Xu et al. (2016), Shi et al.
(2020), Igartua et al.
(2018), Sharma et al., 2018,
Bae et al., 2019, Ban et al.
(2021), Fana et al. (2020),
Bae et al. (2021), Sharma
et al. (2021), Li et al. (2022)

PPI Dendrimers Highly branched, well defined
size, narrow dispersity, ease of
terminal end group
modifications

controlled release, improved
tumor penetration and
bioavailability, greater gene
transfection efficiency,
reduced adverse effects, Non-
immunogenic, amorphous,
no notable toxicity, due to
adjustable pore size able to
encapsulate and release
kinetics

Low hydro solubility,
toxicity, haemolytic effect

Paclitaxel, Docetaxel,
methotrexate, pORE-
TRAIL, SiRNA, etc

Gajbhiye and jain (2011),
patel et al. (2012), Somani
et al. (2014), Patel et al.
(2016), Noske et al. (2020)

PLL Dendrimers Well organized three
dimensional globular
chemical architecture, high
monodispersity, precise size,
polycationic dendrimer
having number of surface
amines thus able to bind with
polyanions (nucleic acids) via
electrostatic interaction

Gene carrier due to excellent
condensation potential with
oligonucleotides, good
biocompatibility, water
solubility, biodegradability,
and flexibility, safer as
compared to other
dendrimers, inherent
antibacterial, antimicrobial,
antiviral, etc., properties

Low stability Doxorubin, methotrexate,
Gemcitabine, aptamers,
Camptothecin, Docetaxel,
Fluorouracil, DNA,SiRNA,
Imaging agents, diabetic and
cardiovascular drugs, etc

Janiszewska et al. (2016),
Hegde et al. (2019), Zhu
et al. (2019), Gorzkiewicz
et al., 2020

Carbosilane
Dendrimers

Defined structure with
terminal cationic and anionic
groups, non-functional
siloxane external shells

Non-toxic, good
biocompatibility, good
thermal stability, increased
half life, bioavailability

toxicity anti-cancer therapy,
immunotherapy, drug
delivery, and gene therapy

Gomez et al., 2013, Rabiee
et al. (2020),
Rodríguez-Prieto et al.
(2016), Strasak et al.
(2017), Perise-Barrios et al.
(2015)

Phosphorus
Dendrimers

Contains phosphorous atom
at each branching point along
with hydrophobic surface and
hydrophobic backbone

Diverse synthesis methods
available, high ability to
stabilize and to complex with
preapoptic SiRNA and
increase uptake upt 100%,
high yield, water solubility,
improved PK and PD of
drugs and conjugates, less
systemic toxicity

Toxicity issues small molecules, peptides,
siRNAs, mRNAs, anticancer
and antitubercular drugs

Shcharbin et al. (2013),
Chis et al. (2020), Migrani
et al. (2021a), Migrani et al.
(2021b), Migrani et al.
(2022), Posadas et al.
(2022)

Peptide
Dendrimers

wedge-like branched
macromolecules having
peptidyl branching core and/
or covalently attached surface
functional units

biocompatibility, diversity
and multifunctionality, self-
assemble nanosized structure

low hydrosolubility and
high non-specific toxicity

biomedical diagnostic
reagents, protein mimetics,
anticancer and antiviral
agents, vaccines, drug and
gene delivery vehicles

Stalmans et al. (2014),
Lalatsa et al. (2014), Xie
et al. (2022), Sowińska et al.
(2022), Cieślak et al., 2020

Glycodendrimers structurally and functionally
mimic natural
polysaccharides,
glycoproteins and mucins
based dendrimers, targets
carbohydrate specific
receptors

Biocompatibility, non-
toxicity, effective and strong
biniding to lectin, cell specific
targeting

Stability problems Inhibit adhesion of HIV
(human immune-deficiency
virus), inhibit chlora toxin,
inhibit bindling of influenza
virus and E. Coli bacteria
such as Streptococcus suis,
Pseudomonas aeruginosa,
vaccines and drug delivery
vehicles

Zhang et al. (2022), Arabi
et al., 2020, Roy et al.
(2013), Gillies (2011)

Triazine
Dendrimers

Structure with Orthogonal
functional end groups for
surface modification
possibility, scalable

synthetic versatility, well-
defined structure, orthogonal
functional group provides
space for drugs and ligands
attachment

solubility limitations,
intrinsic toxicity

Cancer drugs (paclitaxel,
camptothecin) brefeldin A
(antiviral) and
desferrioxamine), non-viral
DNA and RNA delivery

Haiba et al. (2022),
Apartsin et al. (2022), Lim
et al., 2019

(Continued on following page)
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this method is the low error rate in the final structure (Cammidge,
2003; Svenson and Tomalia, 2005).

5 Dendrimer physical and biological
properties

Dendrimers are spherical macromolecular structures at the
nanoscale connected to various branched structures. They are best
used for drug delivery and imaging. Conventional polymeric carriers
are disperse, while dendrimers are mmonodisperse and have well-
defined chemical structures. Furthermore, dendrimers’ unique
framework enables them to be loaded with therapeutic agents via
covalent conjugation or electrostatic adsorption (Du et al., 2013).
Dendrimers normally resemble a set of biological structures in terms
of size. For example, the fifth-generation polyamidoamine dendrimers
(PAMAM) resemble hemoglobin in size and shape (5.5 nm) (Esfand and
Tomalia, 2001).

The surface group of dendrimers can be either positive,
negative, or neutral, which affects which group is best suited
for drug transport. Compared to neutral or anionic-charged
dendrimers, negatively charged dendrimers do not cause as
much cell loss or hemolysis as positively charged dendrimers
do (Malkoch and García-Gallego, 2020). In lieu of this,
PEGylation would alter zeta-potential, plasma attainment and
even distribution in vivo to overcome this issue. It is extremely
difficult for free gene molecules to reach the targeted cells in vivo
which is a major obstacle in gene therapy (Vannucci et al., 2013).
Electrostatically, the positively charged dendrimers would be
attracted to the negatively charged polynucleotides, leading to
the formation of stable dendriplexes. After being taken up by the
cell, these dendriplexes are unloaded into endosomes due to the

sponge effect, which stimulates gene transcription in the cell
(Sonawane et al., 2003; Perumal et al., 2008). Dendrimers can
protect nucleotide substances from degradation, allowing the
penetration of nucleic acids into the cells and maintaining the
biological activity of gene molecules when they are utilized as
gene delivery carriers.

6 Types of dendrimers

Developing an optimal delivery method for the treatment of
brain tumours is challenging for researchers and clinical
investigators, as there are currently many obstacles in this area
(Dande et al., 2006). These limitations further necessitate the use of a
safer and more effective carrier that protects the payload from
degradation, penetrates the targeted area and increases the
efficacy of the drug molecules. In addition, the carrier must also
be able to regulate or optimize the release of the drug. Dendrimers,
which have emerged in recent decades with numerous nanocarriers,
are being touted as the stars on the current horizon because they are
multitasking and flexible (Chis et al., 2020). Dendrimers, which
possess unique properties such as nanosize, defined composition,
and programmable surface functions, have been extensively
explored for brain tumor therapy. Table 1 explains the basic
properties of the different types of dendrimers and their
advantages and disadvantages.

6.1 PAMAM dendrimers

Polyamidoamine dendrimers essentially have a central
ethylenediamine core with ascending divisions with amide

TABLE 1 (Continued) Basic characteristics of different types of dendrimers.

Type of
dendrimer

Characteristics Advantages Limitations Drug/gene used References

systems, in sensing
applications, and as
bioactive materials

Polyglycerol
Dendrimers

Hyperbranched polymeric
structures with multiple
peripheral hydroxyl groups
provides attachment point to
other groups for surface
modification

excellent water-solubility,
non-toxicity, and minimal
non-specific interactions in
biological environments,
good biocompatibility, low
polydispersity

Tedious multiple step
synthesis process and
purification problems

drug delivery, gene
transfection, biomedical
imaging, and diagnostics

Maysinger et al. (2020),
Sharma et al. (2020), Jiang
et al. (2016), Ooya and Lee
2022

Citric acid
dendrimers

Highly branched,
monodisperse, stable
molecular level, low
polydispersity, micellar
structure

Water soluble,
biocompatible, less toxic

Interaction with
biological membranes
cause membrane
disruption via nanohole
formation, membrane
thinning and erosion

Drug/gene delivery systems Namazi et al. (2017),
Nangare et al. (2021)

Polyether
dendrimers

spherical, highly branched,
functional dendrimers with
surfaced positively charged
ether groups

Low polydispersity, high
surface area to volume ratio,
low viscosity, high solubility
and miscibility and
adhesiveness

Small yield, toxicity Biomedical and tissue
engineering applications

Knauer et al. (2022),
Dhanikula et al. (2008),
Michael et al., 2001

Fibrin-binding CREKA, small pentapeptide of Cys-Arg-Glu-Lys-Ala specifically binds to fibrin; p42-MAPK siRNA, p42-Mitogen-activated protein kinases siRNA KLAK, Lysine-Leucine-

Alanine-Lysine; Bcl- B-cell lymphoma 2; VEGF siRNA, Vascular endothelial growth factor anti-GFP siRNA- anti-green fluroscent protein siRNA; TRAIL, tumor-necrosis factor related

apoptosis-inducing ligand.
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groups which form a wall of the spherical structure and at the
surface of each terminal with amine functional groups
(Figure 3A). PAMAM dendrimers are good candidates for
carrying drugs and peptides because they are biocompatible
and have well-defined spherical nanoparticles with
bifunctional modifying parts. Dendrimers PAM are used in
the nanomedicine platform to maximize the bioavailability of
drugs and minimize the number of doses required (Pedziwiatr-
Werbicka et al., 2019). However, there are some limitations
associated with the use of PAMAM, particularly those with
positively charged groups. It leads to the accumulation
produces cytotoxicity. PAMAM dendrimers of G5 are mostly
considered as a non-toxic (Beezer et al., 2003). To address the
aforementioned limitation, the surface is reconfigured with
polyethylene glycol (PEG). Compared to “other dendrimers,”
PAMAM has the broadest range of applications in therapeutics
such as antibacterial, antiviral, antioxidant, and diagnostic
agents.

6.2 Polypropylenimine dendrimers

The dendrimer polypropylenimine (PPI) is the first known
dendrimer used industrially as a therapeutic agent. There are also
other names used for PPI dendrimers which are astramol or
butylenediamine (BDA) or “polypropyleneamine” (POPAM) (Noske
et al., 2020). These dendrimers mainly consist of butylenediamine as the
core and repeat propylenimine branching units via sequential Figure 3B
is the reaction of Michael’s addition of acrylonitrile to a primary amino
group, followed by hydrogenation of the nitrile groups to form primary
amino groups (Sherje et al., 2018). The amino-terminal groups
contribute to its solubility in water. PPI Dendrimers are characterized
by their ability to improve the water solubility of hydrophobic drugs
entrapped in the hydrophobic inner crevices of PPI due to this property.
Cell membranes can be destabilized by positively charged PPIs, leading
to cell lysis. As a result, PPIs have a lower ability to load drugs than
PAMAMs. Furthermore, the PPI/drug complex has lower stability than
PPI alone. PEGylation and acetylation of the surface groups are selected.

FIGURE 3
Types of dendrimers: (A) PAMAMDendrimers; (B) PPI Dendrimers; (C) PLL Dendrimers; (D)Carbosilane Dendrimers; (E) Phosphorus Dendrimers; (F)
Peptide dendrimers. Types of dendrimers: (G) Triazine dendrimers; (H) Polyglycerol dendrimers; (I) Citric acid dendrimer; (J) Polyether dendrimers; (K)
Surface engineered dendrimers.
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Acetylation is preferred as it is extremely efficient and able to penetrate
deeply. Moreover, the steric hindrance of the PEG chain can affect the
interaction of the entrapped drug molecules with the surface functional
groups (Fant et al., 2010). Diaminoethane or diamino-propane would
form the central functional groups in Poly (ethyleneimine) (PEI)
dendrimers, a subclass of PPI dendrimers.

6.3 Poly-l-lysine dendrimers

Dendrimers containing poly-l-lysine residues such as poly-l-lysine
dendrimers (PLL) or dendrigraft poly-l-lysine dendrimers (DGL) also
possess lysine residues (Figure 3C). These dendrimers have higher
cytocompatibility, lower cytotoxicity, convenient enzymatic
degradation and resultant efflux of low molecular products (Ryan
et al., 2013). Furthermore, DGL dendrimers have been researched
for the use of delivery vectors for siRNAs. “The ability to respond to
stimuli on demand by incorporating specific protein sequences into PLL
dendrimers is quite tantalizing”. Higher-generation PLL dendrimers
have exhibited improved gene transfection efficiency whereas
conventional linear poly (lysine) dendrimers have exhibited lower
genome transfection efficiency and higher cytotoxicity compared to
PLL dendrimers (Byrne et al., 2013).

6.4 Carbosilane dendrimers

Carbosilane dendrimers consist of carbon and silicon molecules as
building blocks. With the widespread use “of silicon chemistry, a new
class of carbosilane dendrimers with hydrophobic scaffolds and
superior thermal stability have emerged (Figure 3D) (Uchida et al.,
1990). The chemical properties of silicon are utilized in dendrimers
preparation because they allow the “nucleophilic molecules to reach the
electrophilic silicon (Si+) easily” (Zhou and Roovers, 1993). However,
the presence of the C-Si bond in carbosilane dendrimers provides low
polarity and high energy which makes them more hydrophobic
compared to other dendrimers (Sepúlveda-Crespo et al., 2015).
Although they have a hydrophobic endoskeleton, carbosilane
dendrimers can be modified to polar molecules by surface chemistry
with polar moieties such as Si-H, Si-Cl, Si- CH = CH2, and Si-
CH2CH = CH2, allowing the introduction of various other
intriguing inorganic, organic, and organometallic substituents. This
would lead to increased applications in the pharmaceutical fields. The
ability of the generation 2 ammonium-terminating carbosilane
dendrimer “has been tested on a variety of cell types including the
glial cells, progenitor cells, leukocytes, granulocytes and human
peripheral blood mononuclear cells, general pluripotent stem cells,
primary cells as well as suspension cells” (Liu et al., 2012).

6.5 Phosphorus dendrimers

Cationic dendrimers are dendrimers with cationic phosphorus as
the core and decorated surface groups that have been studied in a
variety of biological and theragnostic applications due to their special
properties (Figure 3E). In phosphorus dendrimers, the “presence of
phosphorus at each branch point” and reactive end groups provide a
hydrophilic shell and hydrophobic backbone that can affect their

internalization into cells. Moreover, they have effects on the growth
of cells as well such as neurons, immune and cancer cells (Caminade
and Majoral, 2013). Rolland et al. (2008) investigated on phosphorus-
terminated dendrimers that could be explored for immunotherapy to
target and activate monocytes. Based on the study conducted, such
dendritic materials have been shown to be able to affect the aggregation
of amyloid oligomers and tau protein in neurodegenerative diseases
(Wasiak et al., 2012). Polyphosphorhydrazone (PPH) dendrimers have
also shown the ability to deliver antisense siRNAs to target cells
(Dzmitruk et al., 2015) and treat HIV infection with gene therapy
(Briz et al., 2012).

6.6 Peptide dendrimers

Peptide “dendrimers are macromolecules which comprise either
branched polypeptide core” or radically arranged peripheral
polypeptide chain or both (Figure 3F) (Sadler and Tam, 2002).
These dendrimers are divided into three categories. The first
category is grafted dendrimers with amino acids chain only at
their surface. The second category is grafted dendrimers
composed entirely of amino acids, while the third category
consists of amino acids that branch both in the core and on the
surface and have non-peptide branching units. Divergent and
convergent techniques are often used to synthesize peptide
dendrimers, and with the advent of solid-phase peptide synthesis
methods, extensive “libraries of peptide dendrimers can be prepared
and tested for desired properties.” Peptide dendrimers are used as
surfactants as well as multiple antigen peptides (MAP) (Bruckdorfer
et al., 2004), protein analogs (Thompson and Scholz, 2021), drugs,
and gene transporters in the biomedical field. They are also used “as
contrast agents for magnetic resonance imaging and angiography,
fluorescence imaging” and in serum analysis (Choi et al., 2000).

6.7 Glycodendrimers

Dendrimers that comprise carbohydrates “moieties such as
monosaccharides (glucose, mannose, galactose) (Woller and
Cloninger, 2001) and disaccharides (chondroitin sulfate) (Roy
and Baek, 2002) ”into their structure are referred as
glycodendrimers. Although most of “the researched
glycodendrimers have sugar residues on their exterior surfaces,
glycodendrimers” with a sugar unit as the central core in which
all branches would emerge have been discovered as well. In general,
glycodendrimers are classified into three types: “Carbohydrate-
centered, carbohydrate-based and carbohydrate-coated
dendrimers (Oliveira et al., 2010). There is a potential application
for these dendrimers which is site-specific delivery to lectin-rich”
tissues. These dendrimers are predicted to have a stronger affinity
for lectin-anchored systems than monosaccharide-anchored
systems (Mousavifar and Roy, 2021).

6.8 Triazine dendrimers

Triazine dendrimers are aptly named as they “consist of 1,3,5-
triazine rings as branches with amine groups at both ends”
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(Figure 3G). A study was conducted recently on the siRNA transport
ability of a series of “triazine dendrimers with different core
structures, generation numbers and surface functions”.
Dendrimers with inflexible structures and “arginine-like or
hydrophobic terminals had the most efficient siRNA gene
repression effects” on Hela cells in an experimental luciferase
model (Simanek, 2021). Triazine dendrimers are deemed suitable
for various biomedical applications due to their liquid crystalline
structure and non-linear optical properties. In one study, triazine
dendrimers were evaluated for their potential for drug delivery. The
results showed that they are suitable for hydrophobic drugs as
solvents and carrier systems and are not toxic to organs at a dose
of up to 10 mg/kg via the intraperitoneal route in an animal model.
However, these dendrimers should be explored further for various
applications with or without surface functionalization by
appropriate moieties (Merkel et al., 2010).

6.9 Polyglycerol dendrimers

Dendritic polyglycerols are hyperbranched structures that are
made of glycerol with a wide range of sizes (at the nanoscale) and
functional groups at their ends which allow them to interact with
different biological receptors (Maršić et al., 2021). Sheikhi
Mehrabadi et al. (2015) have developed polyglycerol dendrimers
(PG) with a variety of cationic amine end groups, including a star-
shaped oligoamine shell (Figure 3H). These dendrimers have a
neutral biocompatible aliphatic polyether core, numerous siRNA-
binding and complexing amine end groups. PG-PEHA
(Polyglycerol-pentaethylene hexamine) was the most efficient at
silencing genes, whereas polyglycerol-amine (PG-NH2) was the least
effective. “The favorable primary amines at the 1,2-position of PG-
NH2” might be the reason for the reported high efficiency in the
transfer of siRNA (Sheikhi Mehrabadi et al., 2015). Moreover, PG-
NH2 could be used to deliver siRNA in animal models by
intravenous injection, resulting in efficient gene silencing with
low toxicity. This further indicates the potential utility of the
dendrimer for siRNA therapy delivery (Sheikhi Mehrabadi et al.,
2015).

6.10 Citric acid dendrimers

Citric acid dendrimers can be good candidates for an efficient
drug delivery system as they are relatively stable in water with good
drug deposition and release properties (Figure 3I). Namazi et al.
prepared β-cyclodextrin (β-CD)-modified citric acid dendrimers
with -cyclodextrin (CD) to increase the loading capacity and
encapsulation properties of the dendrimers. The results showed
that by increasing the number of branches, it had further increased
the internal cavity, hence responsible for the resulting loading
potential (Namazi and Hamrahloo, 2011). Similarly, Namazi and
his colleagues prepared dendrimers with PEG as the central core and
repeating citric acid units as surface functionalized groups (Namazi
et al., 2011). In the viability assay, the viability of HT1080 cells which
were exposed to the PEG-citric acid dendrimer was found to be
more than 80% up to 2 days at a high concentration of 1 mgmL-1. In
other toxicity tests, the dendrimers were shown to be extremely safe.

The tests done included hemolysis assay, lactate dehydrogenase
assay and prothrombin time assay (Naeini et al., 2010). The
biocompatible dendrimer exhibited high drug loading and
prolonged drug release, indicating its potential application as a
vehicle for cancer treatment (Adeli et al., 2013).

6.11 Polyether dendrimers

Polyether dendrimers are functional dendrimers that are
spherical and highly branched with cationic ether groups on the
outer surface. Polyether dendrimers were synthesized for the first
time by Hawker and Frechet in 1990 via the convergent approach
(Figure 3J) (Hawker and Frechet, 1990). This polyether group is
composed of the core material “1,1,1-tris(4′-hydroxyphenyl) ethane
and the branching material benzyl bromide and 3,5-
dihydroxybenzyl alcohol”. Jayaraman et al. described the
synthesis of dendrimers with a backbone that consists of
aliphatic polyethers. Due to the presence of “2-hydroxymethyl-
1,3-propanediol moieties”, the prepared dendrimers emerged as
good prospects for drug delivery with improved solubility
(Kumbhar et al., 2021).

In another study, Malik et al. performed in vitro tests on the
biocompatibility of these convergently synthesized polyether
dendrimers. The findings indicated that such dendrimers with
carboxylate and malonate interfacial conjugates were more
biocompatible and hemolytic than cationic dendrimers.
However, they were not hemolytic up to 1 h but were as
hemolytic as anionic dendrimers after 24 h. It seems that these
biodegradable polymers may less hazardous than standard
dendrimers and their usage for drug delivery could be
extended (Duncan, 2014).

6.12 Surface tailored dendrimers

It seems that making changes to the surface is one of the most
effective ways to make dendrimers less harmful (Figure 3K). In this
approach, the exposure of cationic groups such as amino groups to
the surface of the dendrimer is minimized by modification or
decoration with natural or anionic molecules to prevent their
electrostatic interaction with cell membrane molecules, thus
avoiding cytotoxicity mediated by cationic groups. Apart from
reduced toxicity, surface-engineered dendrimers also can improve
drug loading, biodistribution, pharmacokinetic profile, solubility,
site-specific targeting stability, antimicrobial activity and gene
delivery efficiency (Satija et al., 2007). There are several surface
engineering approaches to modify surface groups on dendrimers
such as PEGylation through the addition of PEG, which increases
drug loading and decreases hemolytic toxicity, as seen in PAMAM
dendrimers (Santos et al., 2019), saccharide addition via maltose,
which decreases hemolytic toxicity, as seen in PPI dendrimers
(Bhadra et al., 2003), acetylation by adding an acetyl group
lessening toxicity effects and increase absorptivity of PAMAM
dendrimers (Klajnert et al., 2008), bisection by adding carboxylic
acid to minimize cytotoxicity (Kolhatkar et al., 2007) and peptide
conjugation by tripeptide (arginine-glycerol aspartate) to minimize
toxicity of cationic dendrimers (Jevprasesphant et al., 2003).
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7 Brain tumor drug targeting
approaches

The main obstacles in the detection and treatment of cancer are
the development of drug/gene delivery systems that selectively target
cancer cells while leaving normal healthy cells/tissues unaffected.
This could be achieved by effective delivery of anticancer drugs into
tumor cells (Khizar et al., 2021). Nanotechnology-based delivery
systems, namely, phytosomes, liposomes, nanoparticles, carbon
nanotubes, neosomes, and dendrimers, are believed to be the
most practical choices. The nanocarriers produced must
overcome a number of physiological and biological obstacles.
Their use as delivery systems requires that their size,
biocompatibility, and surface functionality are suitable to
promote the binding of specific drugs and diagnostics to their
target sites and avoid unwanted interactions (Truskewycz et al.,
2022).

Nanocarrier systems can be employed to transport therapeutic
agents or genetic material into cancer cells or tissues. This can be
done either actively or passively (Attia et al., 2019). Passive targeting
enhances the amount of drug or the delivery of a drug to a specific
region due to its physicochemical characteristics (particle size,
circulation time), pathophysiological conditions (hypoxia,
inflammation) and tumor biology (leakiness, vascularity) (Iyer
et al., 2014). Active targeting, on the other hand, requires specific
adjustments to the delivery system that would result in the coupling
of active agonists with significant selectivity for a specific cell or
organ in the body (Figure 4).

7.1 Passive targeting approach

The use of polymeric delivery systems takes advantage of a
drug’s pharmacokinetic properties, such as its solubility, half-
life, and prolongation of plasma circulation time, to achieve
optimal passive targeting. This ensures that the drug matrix is

passively transported to the solid tumour (Ekladious et al.,
2019). Furthermore, passive targeting certainly depends
strongly on two parameters: The tumour endothelial
permeability to macromolecules and the presence of reduced
lymphatic outflow. These two factors determine how well passive
targeting works. When these factors are improved, the likelihood
of passive targeting would increase. The enhanced effect of
permeation and retention, often called as the EPR effect, is a
phenomenon unique to tumours. It was first discovered and
stated by Matsumura and Maeda in 1986. Because tumours have
defective blood vessels, they form vascular permeability factors.
These factors ensure that the tumour tissue receives adequate
nutrients and oxygen, allowing the tumour to develop rapidly.
Aliphatic polyester dendrimers containing dimethylolpropionic
acid have been identified as a promising possibility for the
preparation of therapeutic anticancer conjugates. The results
of in vitro and in vivo evaluation showed that the water-soluble
polyester dendrimers were biocompatible. The delayed
aggregation of dendrimers in important organs results in a
prolonged period of dendrimer-mediated drug administration,
which appears to be beneficial for the EPR effect of passively
targeting tumours (Kheraldine et al., 2021). In addition, tumour
cells would stimulate dilatation of blood channels through
excessive release of permeability mediators (Greish et al.,
2003; Gillies and Fréchet, 2005).

Polymeric drug conjugates and drug loaded polymeric micelles,
dendrimers, polymeric nanoparticles and carbon nanotubes would
selectively accumulate inside solid tumor owing to the EPR effect
(Puri et al., 2009; Shcharbina et al., 2013). Constructions with
hydrophilic surfaces and molecular weighing over 25 kDa–30 kDa
would provide enhanced chances of targeting tumors by virtue of
EPR, which is accompanied by a longer retention time during
circulation (Kesharwani et al., 2015). Etrych et al. (2008)
developed a biodegradable PAMAM dendrimer with a semi-
telechelic Hydroxypropyl Methyl Cellulose (HPMA) polymer
embedded with doxorubicin as the core for passive tumor

FIGURE 4
Drug targeting approaches (active and passive) mediated by dendrimers in brain tumor.
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targeting. The findings revealed that the dendronized nanoparticles
with diameters ranging from 10 to several hundred nanometers were
able to achieve passive targeting through the EPR effect (Etrych
et al., 2011). The size range of nanocarriers will determine whether
or not they can be retained and localised in target areas. There is
general agreement that dendrimers up to 10 nm–20 nm in diameter
are most appropriate for passive tumour targeting (She et al., 2013).

Massive membrane proteins and other macromolecules which
are coupled with dendrimers would decrease their plasma clearance,
resulting in increased half-life in the bloodstream. As a result, these
conjugation systems provide a prolonged and precise delivery to
tumor targets. Furthermore, a cisplatin-loaded 3.5 G PAMAM
dendrimer demonstrated a 50-times rise in cisplatin
accumulation at the tumor position when compared to free drugs
(Kaminskas et al., 2011).

7.2 Active targeting approaches

Chemotherapy is an essential procedure for cancer treatment
in modern times but there is a lack of antineoplastic drugs that
can act against the tumor mass. To find solutions to these
problems, researchers and scientists have focused their efforts
on developing novel anticancer drugs and drug delivery systems.
Some examples of these innovations include tailored drug
delivery methods that have high therapeutic efficacy and low
toxicity. Active targeting is a strategy that can decrease the
absorption of a drug in normal tissue and increase its
concentration in malignant tissue (Janaszewska et al., 2019). It
was found that the most efficient method for drug accumulation
in solid tumours is known as EPR, which is achieved by passive
tumour targeting. Although the majority of the pharmaceuticals
are notoriously non-diffusible, intracellular targeting of cancer
cells via passive diffusion of these substances is notoriously hard.
In addition, administration of a low dose of drugs to certain
cancer cells can lead to ineffectiveness of chemotherapy or other
negative outcomes, such as the growth of cancers resistant to
multiple drugs (also known as MDR malignancies) (Basile et al.,
2012). Passive targeting and the EPR are therefore only able to
deliver drugs to solid tumours that are porous and permeable. On
the other hand, the EPR effect does not occur in a number of
malignant tumours that are resistant to radiation because these
cancers are impermeable (Gottesman et al., 2002). Active
targeting overcomes some of these limitations by attaching
precisely targeted ligands to the outside of nanostructures that
exert an attractive force on specific receptors on cancer cells
(Gottesman et al., 2002).

Dendrimers have several polar functional groups which might
attached to a diversity of ligands on their surface to target tumors in
active targeting. In one study, polymethacrylate (PMA)-crosslinked
PAMAM dendrimers were prepared so that medications could more
easily targeted the acidic microenvironment of the tumour. Folate-
PEGylated PMA-PAMAM had a significant effect on drug
accumulation and tumor regression at the tumor site (Shen et al.,
2012).

The adhesion molecule integrin αvβ3 is commonly expressed in
prostate, breast, ovarian, glioblastoma and melanoma cells. Peptides
that include the amino acid sequence Arg-Gly-Asp (RGD) show a

better affinity for the integrin αvβ3 protein (Li and Xu, 2005).
PEGylated PAMAM dendrimers coated with RGD embedded
with Doxorubicin (DOX) prolonged plasma circulation time,
drug accumulation and bioavailability in brain tumors compared
to DOX solution alone (Zhang et al., 2011).

According to the findings of Gupta and colleagues, a dendrimer
loaded with DOX and folate-conjugated PPI was the improved
option for targeting cancer. The novel dosage showed improved
drug stability, release profile and toxicity, as well as better drug
uptake in the cancer cell MCF -7 (Gupta et al., 2010). There are
several ligands for targeting purposes in the brain and other body
tissues such as thiamine, glucose, choline, serum albumin, folate,
lactoferrin, L-glutamate, L-aspartate, folic acid, nucleoside, biotin,
oligopeptide and aptamers. Nanoparticles that can be formed on the
surface of dendrimers efficiently controlled the tumor progression
(Lockman et al., 2003; Huang et al., 2008; Ulbrich et al., 2011).

Across the brainmany transporters such as glucose transporter 1
(GLUT1), vitamin C transporter 2 (SVCT2), Na + -dependent
vitamin transporter (SMVT), L-amino acid transporter 1 (LAT1),
mono-carboxylic acid transporter 1 (MCT1) etc., works as carrier
mediated transporters to transport nutrient through the BBB.
Modification of surface characteristics of Dendrimers with the
substrates or their analoues can promotes drug into brain via
mentioned transporters ((Zhao et al., 2015; Jiang et al., 2021;
Zhao et al., 2021).

Another most widely used way to internalized large drug
moieties and growth factors in brain through brain tumor
targeted delivery systems is receptor mediated transport. Most
commonly expressed receptor on brain are low density
lipoprotein receptor (LDL-R), apolipoprotein E (ApoE) receptor,
EGFR, transferrin receptor (TfR), insulin receptor (IR) and integrin
receptor (αvβ3) and can be employed efficiently to promote drugs
and diagnostic agents into the brain for brain tumor treatment and
imaging respectively (Yeini et al., 2021).

8 Application of dendrimers as drug
delivery systems for the brain

With the help of dendrimers, nucleic acids and drugs can be sent
to the brain and cancer cells without using a virus. This is due to the
high-branched structure and the available internal cavities of these
polymers which make them excellent delivery systems for genes and
drugs.

8.1 PAMAM dendrimers as brain drug
delivery

The BBB functions as a filter to control molecules that have
entered the brain from the blood (Li et al., 2020). A series of
specialized cells and transporters have been developed to manage
the chemical environment of the CNS. It consists of endothelial cells
that form specialized capillaries and extravascular components such
as astrocytes, pericytes, and interneurons that make up the BBB (Xu
et al., 2014). CNS nutrients and waste are regulated by these
components which constitute as a physical barrier. The
extracellular nucleases and peptidases, intracellular monoamine
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TABLE 2 Different polymer-based dendrimer generation and results of the study.

Dendrimer type Drug used Result of study References

Poly (amidoamine) Paclitaxel Developed FA-PMA-PAMAM dendrimers that are pH sensitive and
release the drug acidic tumor microenvironment via active and passive

targeting

Shen et al. (2012)

DOX Dendrimer complexes would be able to deliver a significantly higher
amount of drugs to brain tumors, resulting in more successful

therapeutic outcomes

Li and Xu (2005)

Docetaxel Hybrid dendrimer that can cause toxicity in U87MGMG glioblastoma
cell line but non-toxic on control cells

Zhang et al.
(2011)

paclitaxel Improve the penetration of paclitaxel 12 times greater through brain
endothelial cells

Gupta et al. (2010)

Apoptin Phenylalanine, histidine and arginine decorated PAMAM dendrimer
loaded with apoptin that induce apoptosis in primary glioma cell lines

Lockman et al.
(2003)

Emcyt and Podofilox In order to increase the efficacy of D-PODO andD-EM, the sequence of
the release which would lead to sustained action

Ulbrich et al.
(2011)

Pentapeptide PAMAM modified with CREKA penetrate deeply into GBM tissues
and enhance retention

Huang et al.
(2008)

Peripheral-type benzodiazepine receptor (PBR) TSPO-targeted G (4)-PAMAM-FITC dendrimer targets the
mitochondria of gliomas 6 cells and quickly taken up by the endocytosis

pathway

Xu et al. (2014)

RNA (siRNA) and Adriamycin Dendrimers can be used to administer drugs and siRNA to cancer cells
that are resistant to anticancer drugs

(Abbott et al.,
2010)

Doxorubicin Poly (2-methacryloyloxyethyl phosphorylcholine) modified G3-
PAMAM dendrimer enhanced tumor targeting in U-87 tumor mouse

model with reduced toxicity

Ban et al. (2021)

Doxorubicin iRGD-modified G4 PAMAM dendrimer via enhanced permeability
increases DOX accumulation in tumor and decreases tumor diameter

Wang et al. (2014)

Doxorubicin Folic acid conjugated borneol modified G-5 PAMAM dendrimers
increase accumulation of DOX in C6 glioma xenograft rat model with

prolonged survival time

Xu et al. (2016)

Cy5-NHS ester Galactose, mannose and glucose decrorated PAMAM dendrimers
significantly enhance tumor-associated macrophages and microglia
targeting via increasing brain penetration and cellular internalization

Sharma et al.
(2021)

Carbosilane siRNA Crossing the BBB without cytotoxicity (Kim et al., 2018)

SiRNA (HIV-1 Nef silencing) Gene silencing in human astrocytes without causing toxicity Serramía et al.
(2015)

Poly (L-lysine) HSV-TK and angiopep-2 High transfection efficiency, good biodegradability, anti-glioma effect
and increase survival chances in human GBM animal model

Igartúa et al.
(2018)

TRAIL and HSV-TK PPL-PEI combination therapy provides cost-effective treatment in
GBM treatment

Swami et al.
(2015)

Curcumin A Poly (L-lysine) dendrimer complex that can be used to enhance
RNAi therapeutics and nanomedicine for brain tumors

(Braun et al.,
2005)

Minocycline Neuroinflammation is reduced at lower doses (Dufes et al.,
2005)

Poly (propyleneimine) Doxylamine and Sodium deoxycholic acid Reduced cytotoxicity and sustained drug release with formulations that
increase drug loading capacity

Shen et al. (2012)

β-Galactosidase and Hepcidin A gene delivery system that utilizes a polypropylenimine dendrimer
bearing transferrin which is highly promising

Demeule et al.
(2008)

Peptide dendrimers N1-butyl and N1-aminopentane tryptophan Peptide
dendrimers

Terminal functionalized (N1-butyl and N1-aminopentane tryptophan)
amphiphilic peptide dendrimers have high ROS scavenging activity
with GBM cells killing potential and 85–95% retaining of viable

astrocytes in brain

Sowińska et al.
(2022)

(Continued on following page)
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oxidase and cytochrome P450 enzymes are some of the proteins and
enzymes that prevent toxicity of the central nervous system
(Pisoschi et al., 2021).

The potent anticancer drug methotrexate is an antimetabolite of
folate that has been shown to be effective in the treatment of various
cancers. PAMAM dendrimers do possess capability of good drug
carriers owing to precise description of their structures and a variety
of different types of groups (De et al., 2022). Wu and colleagues
utilized methotrexate to develop a drug carrier that targeted the
epidermal growth factor receptor (EGFR) as well as their mutant
isoform EG-FRvIII. This was done by binding an average of
12.6 methotrexate molecules to every fifth PAMAM dendrimer
molecule, which was then conjugated to cetuximab. According to
the researchers, particular molecular targeting is just one of several
properties that an antibody-drug bioconjugate must meet to be
therapeutically useful. However, no therapeutic benefit was observed
when tumor mice were administered the bio-conjugate via CED
instead of free methotrexate or cetuximab (Wu et al., 2006).

Table 2 presents an overview of the numerous PAMAM
dendrimer types that have been utilized.

8.2 PAMAM dendrimers in small molecules
brain delivery

PAMAM dendrimers could be used to carry peptides and
drugs to specific sites in a way that is effective and efficient
(Abedi-Gaballu, et al., 2018). This is because they can enhance
the biocompatibility of active compounds and decrease the
number of times they need to be taken. The fact that PAMAM
dendrimers produced natural podophyllotoxine and
estramustine more bioavailable showed that they could be
used as carriers. Along with stopping and killing more cells,
PAMAM dendrimers also modified the manner in which these
antimitotic agents were released. It also made these antimitotic
agents work better at stopping tubulin polymerization, which is
important for glioma cell survival (Tarach P & Janaszewska,
2021; Dixit & Sen, 2013).

In one work, PEGylated dendrimers, wheat germ agglutinin, and
transferring ligands were used to encapsulate doxorubicin in
G4 PAMAM dendrimers. The ability of the dendrimers to cross
the BBB was enhanced by targeting wheat germ agglutinin (WGA)
and transferrin (Tf). In addition, microscopic study showed that the
nanoparticles had a size of about 20 nm. Compared with free drugs
and dendrimers without Tf andWGA, the dendrimers containing Tf
and WGA delivered a higher payload of doxorubicin to brain
tumour sites. In another study, Swami and colleagues utilized
PAMAM dendrimers to combine docetaxel (DTX) with
p-hydroxylbenzoic acid (pHBA). The findings suggested that
pHBA has a strong affinity for beta receptors which are found
primarily in the CNS. Compared to free Docetaxel (DTX),
dendrimers containing G4-pHBA-DTX delivered more drugs to
the brain (Swami et al., 2015; Florendo et al., 2018; Igartúa et al.,
2018; Vasconcelos-Ferreira et al., 2022).

8.3 PAMAM dendrimers in brain delivery of
genes

When it comes to how they interact with nucleic acids, small
molecule drugs are the complete opposite of dendrimers. Nucleic
acids (DNA or RNA) can be delivered using dendrimers with surface
amines. During physiological conditions, dendrimers are formed
when amines interact with nucleic acids to produce dendrimer
complexes. In terms of their physicochemical properties,
hydroxyl and carboxyl groups are considered neutral under
physiological conditions, whereas nucleic acids are considered to
be anionic. Therefore, dendrimers containing these surface
functional molecules cannot bind nucleic acids. The dendrimers
and nucleic acids that form on amine-terminated dendrimers can
exhibit considerable variation in size and structure due to the
multiple charges in both (Dey et al., 2022). In addition to
individual characterizing dendrimers (generations), the sizes are
affected by the nucleic acid, the N/P ratio (also known as the charge
ratio) between dendrimers and nucleic acids and the solvent
properties (Sahu et al., 2023). As the dendrimers are being

TABLE 2 (Continued) Different polymer-based dendrimer generation and results of the study.

Dendrimer type Drug used Result of study References

Histidine, nitro-arginine or proline functionalized
ornithine dendrimers

Dendrimers have targeted cytotoxicity on glioblastoma cell lines
U87 and T98G

Cieślak et al.
(2020)

Triazine-Phosphorus
dendrimers

copper (II) or gold (III) complexes and branched
hydrophobic fragment bearing dendrimers

Showed higher cytotoxicity on glioblastoma stem cells (BTSC233,
JHH520, NCH644, and SF188 as compared with temozolomide

Apartsin et al.
(2022)

phosphorus dendron-micelles Showed moderate anti-proliferative activity in glioblastoma cell
lines U87

Qiu et al. (2021)

Polyether-copolyester
dendrimers

MTX-loaded glucosylated and non-glucosylated
dendrimers

Glycosylated MTX polyether-polyester dendrimers showed good
permeability in BBB and endocytosed effectively in U87 MG and U

343 MGa cells

Dhanikula et al.
(2008)

Amphiphilic
glycodendrimers

Terminally functionalized with mannose and
glucose

Showed effective cellular uptake in microglia and astrocytes and cancer
cells

Zhang et a.,2022

FA-PMA-PAMAM, Folic acid conjugated polymethacrylate polyamidoamineD-PODO and D-EM- PAMAM dendrimer loaded with natural podophyllotoxin and estramustine respectively;

TSPO-targeted G (4)-PAMAM-FITC; translocator protein targeted PAMAM- Fluorescein isothiocyanate; HSV-TK, herpes simplex virus thymidine kinase; PPL-PEI, poly(propylene imine-

polyethyleneimine.
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generated, their DNA binding affinity would increase. At charge
ratios close to 1, the complexes would typically aggregate and fail.
Therefore, dendrimer complexes with a higher density tend to have a
smaller size distribution and better transfection efficiency. Apart
from that, complexes with an increased dendrimer generation ratio
have an increased charge ratio as well (two times more amines than
phosphates in a dendrimer complex). Generally, nanometer-sized
dendriplexes are formed when the generations and the N/P ratio are
higher (Demeule et al., 2008; Huang et al., 2008). The efficiency of
transfection varies greatly between dendrimer-nucleic acid
complexes. In addition to depending on the structure of the
complex, it also varies based on the type of cell and the density
of the cell population. Dendriplexes have shown promising results in
the field of biology. Therefore, it is an excellent opportunity for
researchers to apply a range of analytical techniques to accurately
describe the complexes formed by dendriplex formation.

According to a study done by Huang and his team, transferrin
that is attached to dendrimer DNA dendriplexes of PAMAM
increased the number of genes that were expressed in the brain
twice. The same study also revealed “that conjugating lactoferrin to
PAMAM dendrimers” using PEG spacers boosted dendrimer brain
absorption by “4.6-fold compared to non-conjugated PAMAM
dendrimers and by 2.2-fold compared to dendrimers conjugated
to transferrin” in BALB/c mice (Huang et al., 2008). Low density
lipoprotein (LRP) receptors are extensively produced in mammalian
neural cells. Angiopep has demonstrated selectivity in targeting LRP
receptors. “Angiopep-PEG-PAMAM loaded with DNA” caused
higher gene expression “in the cortex, caudate putamen,
hippocampus and substantia nigra of BALB/c mice than
unconjugated PAMAM loaded with DNA (Ke et al., 2009).

8.4 Carbosilane dendrimers as a brain drug
delivery

Researchers have addressed the possibility that dendrimers may
treat or ward off neurological and degenerative diseases of the brain.
Because of the BBB, treating and/or preventing diseases that affect
the central nervous system can be extremely difficult. One of the
factors contributing to the ineffectiveness of this barrier is
inadequate drug penetration. This particular limitation, however,
can be overcome through the usage of dendrimers as nanocarriers
(Rabiee et al., 2020).

A previous study by Serrama et al. (2015) used carbosilane
dendrimers with targeted siRNA to prevent gene expression of a
specific protein production in primary astrocytes and cytotoxicity.
This study sheds light on the potential of carbosilane dendrimers for
drug targeting in the brain.

8.5 PLL dendrimers as a potential
therapeutic strategy for brain tumors

Poly-l-lysine (PLL) dendrimers are an alternative option to
PAMAM dendrimers. Their natural antiangiogenic properties
and lower vascularization make them less likely to cause side
effects. PLL inhibits tumor development by destroying necrosis
and stimulating apoptosis. This contributes to the non-toxic

effect PLL dendrimers have on healthy cells, bringing their
therapeutic potential to the level of marketed anti-angiogenic
drugs (Ryan et al., 2013; Singh et al., 2022). A DOX-loaded PLL
dendrimer coupled mainly with folate was synthesised by Jain and
colleagues. This dendrimer responded to pH and exhibited
antiangiogenic and anticancer activities developed by the
researchers (Gauro et al., 2021). There is also the possibility that
PLL dendrimers could serve as vehicles for the delivery of anticancer
drugs (Gao et al., 2016). Scientists have developed PLL dendrimers
that can deliver anticancer drugs to specific tumor sites by binding
DOX to the acid-labile bond HSBA (4-hydrazinosulfonylbenzoic
acid). Due to the acid-labile binding, only 10% of the drug could be
released at a pH of 7.4, while the entire amount of drug could be
released at a pH of 5. The results also showed that a decrease in
metabolic lability led to an increase in cellular absorption in vivo,
suggesting that mechanistic targeting of PLL dendrimers may be
possible (Kaminskas et al., 2011). Niidome and colleagues developed
a G6 PLL dendrimer with PEG-linked penta-alanine or
pentaphenylalanine, which made it possible to administer DOX
in a targeted manner. The DOX was encased in either a penta-
alanine or penta-phenylalanine core, both of which are
hydrophobic. Penta-phenylalanine was found to have higher
encapsulation efficiency than penta-alanine. DOX was released
from the hydrophobic cavity over time as a function of pH. The
created dendrimer accumulated more in cancer cells and
significantly suppressed tumor development without causing
weight loss, suggesting that PLL dendrimers can be targeted in
the brain (Malik et al., 2018). Table 2 (Gao et al., 2016; Sharma et al.,
2017; Malik et al., 2018; Nh et al., 2016) lists several types of PLL
dendrimers.

8.6 Poly (propylene imine) (PPI) dendrimers
as a brain drug delivery

A new synthesis approach is utilized to develop PPI dendrimers
which are hyperbranched macromolecules (Kwan and Leung, 2020).
The presence of amino terminal functional groups allows them to be
conjugated with ligands such as folate and antibodies to deliver
anticancer drugs to specific sites. Dendrimers are deemed as
dangerous due to their cationic nature. Wang et al. (2012)
utilized a method to circumvent this problem by preparing
acetylated PPI dendrimers with 14.2% acylation and 95.3%
Doxorubicin/methotrexate (DOX/MTX) loading. Dendrimers
with more than 80% acylation were found to be protective
against A549 and MCF -7 cells when injected and released over
an extended period of time. Another study found that preparation of
a folate-free diaminobutane G4 PPI dendrimer ligand would result
in lower cytotoxicity. The results underscored that an ETP-loaded
dendrimer had long-lasting activity and enhanced site-specific drug
delivery (Sideratou et al., 2001). Gajbhiye and Jain conducted
research to determine the effectiveness of a polysorbate 80 (P80)-
anchored PPI dendrimer (P80-PPI) in transporting DTX
(Docetaxel) to the cells in the brain. The study found that DTX-
P80-PPI wasmore cytotoxic than the combination DTX-PPI and the
free drug in a human glioma cell line U87MG. Within one week,
DTX-P80-PPI demonstrated a possibility of declination in the size of
brain tumors (by 50%) in which the significant permeation of

Frontiers in Pharmacology frontiersin.org13

Kaurav et al. 10.3389/fphar.2023.1159131

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1159131


P80 through the BBB was linked to this particular finding (Gajbhiye
and Jain, 2011). Patel et al. developed a thiamine PPI dendrimer
combination that was loaded with Paclitaxel (PTX) so that it could
be transported to the brain. In this way, paclitaxel (PTX) could be
transported into the brain (PTX-TM-PPI). According to the results
of the study, the molecule could prolong the duration of action of
drugs while reducing their harmful effects on the body. The PTX-
loaded dendrimers and free drug were compared with PTX-TM-
PPI, which significantly suppressed tumor formation in a human
IMR-32 neuroblastoma cell line. In a separate research study, Patel
et al. (2012) examined how effectively PPI dendrimers combined
with other ligands, such as concanavalin A (Con A), sialic acid and
glucosamine, transported PTX in the brain. According to the
cytotoxicity data, the IC50 value of the ligand-anchored PPI
dendrimer was three to six times lower than that of the free
drug. As the biodistribution was studied, it was found that the
ligand-anchored PPI dendrimers showed a higher concentration of
the medication in the brain when compared to the free PTX. Not
only that, the sialic acid also had better target efficacy than Con A

and glucosamine. Table 2 has listed a few examples of PPI
dendrimers.

9 Dendrimers in brain tumor imaging

Limited accessibility to the BBB is a hurdle that prevents
successful identification and treatment of brain tumors.
Metastases often occur in advanced stages of cancer and require
difficult surgical intervention; therefore, early detection is critical for
optimal treatment. The efficacy of nanodiagnostics depends on a
well-established imaging technique that can accurately assess the
pharmacokinetic profile, bioavailability, tumor neovascularization,
uptake by tumor cells and drug and imaging agent release kinetics
(Saluja et al., 2021).

A wide range of non-invasive imaging modalities known as
molecular imaging have been utilized to visualize, interpret and
assess the physiological changes at the molecular/cellular/tissue level
to gain insight into the mechanisms of oncogenesis (Zukotynski

TABLE 3 Dendrimers used as contrast agents for cancer.

Dendrimer
type

Contrast
agent

Conjugate Targeting ligand Imaging
method

Animal
mode/Cell

line

Ref

Phenylalanine
dendrimers

99mTc 99 mTc-labeled dendrimer-
phenylalanine conjugate

- SPECT C6 Glioma cell
lines

Han et al.
(2011)

G5 PAMAM 131I radionuclide G5-NH2 terminated
PAMAM-PEG-CTX-

HPAO-I131

MMP-2 overexpressing tumor cells SPECT Mice glioma cell
model

Rasouli et al.
(2021)

G3 Dendrigraft poly-
L lysine’s

DTPA-Gd Gd-DTPA-D3-PEG-CTX Chlorotoxin for MMP-2 receptors MRI Mice Zhao et al.
(2015)

Soluble dendrimers 99 mTc soluble dendrimer-
porphyrins (T4CPP)-

99 mTc

-- MRI/PET/
SPECT

C6 Glioma cells Subbarayan
et al. (2001)

G2 PAMAM Macrocyclic
Mn (II)

RGD-Au–Mn DENP Arginine-glycine aspartic acid (RGD)
peptide in tumor cells producing

αvβ3Integrin

CT and MRI Mice Xu et al. (2019)

G3 Poly-l-lysine
dendrigraft

DTPA-Gd SP-PEG-DGL-DTPA-
DACHPt

An endogenous neuropeptide known
as substance P that binds to the
neurokinin-1 (NK-1) receptor

MRI Mice Sun et al.
(2017)

G5 PAMAM SPIONs 5NHAc-RGDFe3O4 NPs RGD peptide for tumour cells that
express αvβ3Integrin

MRI Mice Yang et al.
(2015)

G5 PAMAM DTPA-Gd GdDTPA-PAMAM-
PEG-T7

Peptide T7 designed to use with cancer
cells that express transferrin (Tfr)

receptors

MRI Mice Huang et al.
(2011)

G5PAMAM 131I 131I-labeled dendrimers
modified with LyP-1 peptide

dendrimeric nanodevice, radionuclide
therapy, antimetastasis therapy of

cancer

SPECT Mice Song et al.
(2020)

Polyglycerol
dendrimers

boron-
dipyrromethene

boron-dipyrromethene
conjugated polyglycerol

dendrimers

Fluorescent probe single-molecule
optical imaging

- Yang et al.
(2013)

PAMAM Sodium dye Sodium dye conjugated
PAMAM dendrimers

sodium-sensitive nanoprobe imaging Ion imaging Neural cells Lamy et al.
(2012)

DTPA-Gd, Gadopentetic acid; Gd-DTPA-D3-PEG-CTX, gadopentetic acid-chlorotoxin (CTX) to poly(ethylene glycol) (PEG) coated dendrimers; RGD-Au-Mn DENP, (Arg-Gly-Asp-D-Phe-

Lys) peptide modified PEGylated dendrimer-entrapped gold nanoparticles; SP-PEG-DGL-DTPADACHPt, Substance P-PEG- dendrigraft poly-L-lysines Cpmlexed with

diethylenetriaminpentaacetic acid and (1,2-diaminocyclohexane platinum(II); 5NHAc-RGDFe3O4 NPs-iron oxide nanoparticles conjugated with Arg-Gly-Asp modified dendrimers.
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et al., 2020). Therefore, molecular imaging techniques would be
useful for forecasting therapy response, prudently segmenting
patients, measuring biodistribution, and determining the drug
release profile (Bernsen et al., 2013; Li et al., 2021).

Magnetic resonance imaging (MRI) technique was the first one
utilised to detect and diagnose brain tumour lesions (Khan et al.,
2020; Almalki et al., 2022; Wu et al., 2022; Yazdan et al., 2022).
Meanwhile, gadolinium (Gd)-chelated diagnostic agents are
extensively utilized as contrast agents for tumor imaging
(Rodríguez-Galván et al., 2020). Currently, there are seven Gd
contrast agents approved for clinical use by US-FDA
(Heshmatzadeh Behzadi & McDonald, 2022). In the twenty
years, ferromagnetic Gd contrast agents coupled with dendrimers
have been utilised for the purposes of image intensification, better
elimination qualities, and possible targeting while MRI monitoring
is being performed (Wu et al., 2022). Dendrimers have been
described as nanomedicines in the past. These nanomedicines
have the ability to tolerate bigger Gd charges and improve the
signal contrast of an MRI contrast agent with nearby tissue in vivo
(Longmire et al., 2014; McMahon and Bulte, 2018).

In 2011, Han and his co-workers developed a contrast agent for
MRI that could be used in the diagnosis of glioma. They came up
with the idea of developing PEG-linked PAMAM dendrimers that
were loaded with the tumor-selective peptide HAIYPRH (T7). These
dendrimers were then connected with
diethylenetriaminepentaacetic acid (DTPA) and Gd chelates,
which resulted in GdDTPA-PAMAM-PEG-T7. To evaluate the
use of dendrimers in the diagnosis of brain tumours, an early
brain glioma model was chosen. According to the results, these
dendrimers were not able to detect early gliomas. This is because it is
difficult to accurately determine the location of a brain tumour as
well as its growth due to the challenges posed by the BBB and various
pathophysiological conditions (Han et al., 2011).

Recently, Rasouli et al. (2021) investigated the potential of
99 mTc-labelled dendrimer-phenylalanine conjugates in
C6 glioma cell lines for brain tumour diagnosis using single
photon emission computed tomography (SPECT). The results
showed that these dendrimers did not exhibit toxicity in the
brain, whereas phenylalanine increased the accumulation and
deposition of 99 mTc-labelled dendrimer in brain tumours.

According to the results of a study conducted by Zhao, the
resulting G5-NH2 terminal PAMAM dendrimer nanoplatform was
further conjugated with PEG, chlorotoxin (CTX) and 3-(4’-
hydroxyphenyl)propionic acid-Osu (HPAO). After this step, the
remaining terminal amine groups were acetylated and finally
labelled with radioactive 131I. In vivo studies using the mouse
glioma model showed an increase in signal intensity and an anti-
cancer effect in SPECT imaging by radionuclides (Zhao et al., 2015).

Subbarayan et al. (2001) prepared two types of soluble
dendrimer-based porphyrins (P1 and P2) with a central core of
5,10,15,20-tetrakis [4-(carboxymethyleneoxy)-phenyl]porphyrin
(T4CPP) radiolabeled with 99mTc for glioma imaging and
diagnosis. The results showed that these dendrimers had an
efficient imaging potential with a satisfactory diagnostic level in
the C6 glioma tumor model. Table 3 consists of a list of dendrimers
that can be employed in cancer as contrast agents for MRI, PET and
SPECT scans (Han et al., 2011; Huang et al., 2011; Yang et al., 2015;
Zhao et al., 2015; Sun et al., 2017; Xu et al., 2019; Rasouli et al., 2021).

10 Conclusion

According to the results of various animal studies,
dendrimers are an interesting candidate for systemic drug
delivery for the treatment of brain tumours. Dendrimers and
nanotechnology have proven to be the best solution for the
treatment of brain tumours. This is because they are an
excellent alternative to the conventional chemotherapy
available today. Due to their spherical architecture and
multivalent periphery, dendrimers can also be used for
simultaneous treatment and diagnosis. By using dendrimers,
it is possible to reliably target the brain tumour with sustained
drug release. In recent years, researchers have become more
interested in treating and monitoring brain tumours by taking
advantage of the multifunctional properties of BBB, which
could improve patient survival. Nanomedicines based on
dendrimers, which are highly targeted, effective,
biocompatible, and cost-effective, are becoming more
popular in the clinic with advances in oncology research.
However, dendrimers need further accurate evidence on
efficacy, targeting, safety, and mortality concerns to validate
them as suitable and viable nanoarchitectures for brain tumour
imaging and treatment.

The global outlook for dendrimers in the coming years appears
favourable, raising hopes for more successful clinical translation in
brain tumours and other malignancies. The ability to provide
treatment at the appropriate time depends on rapid diagnosis.
This goal may one day be achieved through the use of
personalised treatment planning for brain tumours, which aims
to improve tumour diagnosis, and drugs that have predictable side
effects. Medical advances are shown to have increased patient
satisfaction with their life expectancy. Dendrimers are expected
to be produced and moved into clinical trials in the next few years.
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