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Hypoxia is a negative prognostic indicator of solid tumors, which not only changes
the survival state of tumors and increases their invasiveness but also remarkably
reduces the sensitivity of tumors to treatments such as radiotherapy,
chemotherapy and photodynamic therapy. Thus, developing therapeutic
strategies to alleviate tumor hypoxia has recently been considered an
extremely valuable target in oncology. In this review, nanotechnological
strategies to elevate oxygen levels in tumor therapy in recent years are
summarized, including (I) improving the hypoxic tumor microenvironment, (II)
oxygen delivery to hypoxic tumors, and (III) oxygen generation in hypoxic tumors.
Finally, the challenges and prospects of these nanotechnological strategies for
alleviating tumor hypoxia are presented.
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1 Introduction

Studies have shown that the distribution of oxygen concentration in tumors is highly
heterogeneous, and the partial pressure of oxygen in many areas is less than 5 mmHg
(equivalent to approximately 0.7% O2), which is far lower than the partial pressure of oxygen
in normal tissues (Vaupel et al., 1991; Denny, 2000). There are three main causes of hypoxia
in the tumor microenvironment (TME). First, the rate of tumor apoptosis is much lower
than the rate of cell growth, and the demand for oxygen and glucose is much greater than that
of normal cells (Petrova et al., 2018; Matuszewska et al., 2021). Second, the tumor volume is
constantly increasing. When the tumor volume increases to the oxygen diffusion limit
(100–200 μm), the blood vessels cannot provide sufficient oxygen for the tissue cells
(Bennewith and Dedhar, 2011; Fu et al., 2022).

Hypoxia can alter the expression of some cytokines, such as erythropoietin and
metabolism-related proteins (e.g., phosphofructokinase), in the TME. These changes play
an important role in the adaptation of tumor cells to hypoxia, energy storage, metastasis,
proliferation, and tumor angiogenesis and eventually lead to metabolic abnormalities in
tumor cells, which also exacerbates the malignant growth of tumors and drug resistance
(Zhao et al., 2015). Hypoxia-inducible factor 1 (HIF-1) is involved in the regulation of
cytokines and metabolism-related proteins. HIF-1 is a nuclear protein with transcriptional
activity that consists of HIF-1α subunits and HIF-1β subunits. HIF-1α was degraded by
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ubiquitination under atmospheric oxygen. HIF-1α remained stable
under hypoxic conditions. HIF-1β is stably expressed in cells and
plays a structural role. To exert the role of a transcription factor, the
HIF-1α subunit must polymerize with the HIF-1β subunit to form a
heterodimer. The gene that responds to hypoxia stress is called the
hypoxia response gene (HRG), and the gene regulated by HIF-1α in
HRG is the target gene of HIF-1α. The promoters or enhancers of
these target genes contain different numbers of hypoxia response
elements (HREs), which are the binding sites of HIF-1α. HIF-1α
combines with HRE to form a transcription initiation complex,
which initiates the transcription of target genes and produces
various products, causing a series of reactions. For example,
under hypoxic conditions, HIF-1 can bind to the HRE of the
vascular endothelial growth factor (VEGF) promoter region,
causing the upregulation of VEGF expression, increasing the
generation of new blood vessels, and promoting the growth and
metastasis of tumors (Zhang et al., 2022a; Zhang et al., 2022b).

Hypoxia also promotes proteomic and genetic changes in tumor
cells, reinforces the adaptation of cancer cells to hypoxia, and
enhances tumor invasion and metastasis (Rankin and Giaccia,
2016a; Al Tameemi et al., 2019; Li et al., 2020a). Moreover,
hypoxia has been proven to make tumor cells resistant to
conventional cancer therapies, including chemotherapy,
radiotherapy, and photodynamic therapy, which is due to the
need for oxygen molecules to participate in these treatments
(Yuan et al., 2021a; Devarajan et al., 2021; Kopecka et al., 2021;
Telarovic et al., 2021). Therefore, relieving tumor hypoxia is the key
to achieving effective cancer therapy. To improve the hypoxic
microenvironment, many trials have been performed. For
example, hyperbaric oxygen therapy increases oxygen in the
blood and tumor by delivering high concentrations of oxygen to
the body (Wu et al., 2018). However, non-specific oxygen delivery
and severe malformations of the tumor microvasculature have
prevented further development of hypoxia palliative therapies. In
addition, high concentrations of oxygen may cause serious side
effects (Schwarte et al., 2019). Fortunately, the rapid development of

nanotechnology and materials science has led to tremendous
progress in the biological applications of nanomaterials for
molecular imaging, targeted drug delivery and combination
therapy. There is growing evidence that nanomedicines offer
many advantages in the treatment of hypoxic tumors. For
example, by virtue of the tumor-specific enhanced permeability
and retention properties, nanocarriers can be enriched in tumors
(Gao et al., 2019; Yan et al., 2021; Yan et al., 2022). Then,
nanomaterials with oxygen release ability can alleviate tumor
hypoxia (Dai Phung et al., 2020; Zou et al., 2021; Xu et al.,
2022a). In this review, we discuss the recent nanotechnologies to
increase oxygen levels in tumors, including (I) improvement of the
hypoxic TME, (II) oxygen-carrying nanomaterials, and (III) oxygen-
production nanomaterials (Figure 1; Table 1). Finally, we present in
detail the challenges and prospects of these tactics for alleviating
tumor hypoxia.

2 Nanomaterial-mediated tumor
hypoxia relief

2.1 Improving the hypoxic tumor
microenvironment

Most solid tumors remain in a hypoxic state throughout disease
progression (Chen et al., 2022b). For their own development, tumors
will plunder nutrients and oxygen through angiogenesis (Chen et al.,
2020). Tumor blood vessels differ from normal blood vessels in
various important phenotypes. The expression of hypoxia-inducible
angiogenic factors, such as VEGF, which induces angiogenesis in
vivo, is upregulated in hypoxic tumor sites. However, the newly
formed vessels tend to be poorly organized and dysfunctional, with
either variable flow directions or leakage. In addition, there are gaps
between tumor-related vessel endothelial cells, which cannot
complete the normal metabolic exchange of plasma and tissue
fluid, resulting in leakage of blood vessels and no laminar flow,
which is prone to coagulation and local tissue edema. The hypoxic
tumor environment is the main cause of tumor angiogenesis, and
angiogenesis is the root cause of tumor progression and metastasis.
Therefore, improving the hypoxic tumor environment is a
conservative tumor treatment method that can inhibit tumor
progression and metastasis (Wang et al., 2020a).

2.1.1 Nanomaterials combined antiangiogenic
agents

Some antiangiogenic agents normalize the vasculature by
improving tumor blood flow and correspondingly delivering
more oxygen to the tumor (Huang and Chen, 2010; Carmeliet
and Jain, 2011). Normalizing the abnormal blood vessels in
breast tumors by blocking vascular endothelial growth factor
receptor 2 can facilitate the delivery of small nanoparticles
(12 nm) while hindering the delivery of large nanoparticles
(125 nm) (Chauhan et al., 2012). Antiangiogenic agents can
increase tumor oxygen content by normalizing tumor blood
supply, while normalization of vascular structure also enhances
the delivery of nanodrugs, so antiangiogenic agents can synergize
with nanodrugs in tumors. Li et al. (2016) used gold nanocarriers
(Au NPs) to encapsulate recombinant human endostatin (rhES) to

FIGURE 1
Schematic diagram of increasing oxygen content of tumor.

Frontiers in Pharmacology frontiersin.org02

Zhang et al. 10.3389/fphar.2023.1140362

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1140362


target tumors to enhance the antitumour effect. Polyethylene glycol
(PEG)-modified rhES-Au-NPs (rhES-Au-NPs-PEG) can transiently
normalize blood vessels and improve blood supply capacity in
mouse-loaded hepatoma-22 xenografts. Then, tumor hypoxia
relief, decreased vascular permeability, enhanced integrity,
improved pericyte coverage, and increased blood perfusion were
observed in the TME. The results of animal experiments proved that
the combined treatment of rhES-Au-NPs-PEG and 5-fluorouracil
was significantly more effective than the drug alone. In addition,
endostatin and other antiangiogenic drugs, such as bevacizumab
(anti-VEGF inhibitor), can also normalize tumor blood vessels
(Isaakidou et al., 2016; Poluzzi et al., 2016).

2.1.2 Modulation of relevant signal pathways for
tumor hypoxia based on nanomaterials

Hypoxia causes a reduction in the enzyme activity of prolyl
hydroxylase and prevents HIF-1α hydroxylation, which is the master
transcriptional regulator in cells under hypoxic conditions (Gilkes et al.,
2014; Rankin andGiaccia, 2016b; Jing et al., 2019; Singleton et al., 2021).
The stability and activity of HIF-lα depends on oxygen content and
affects tumor angiogenesis, glucose metabolism, tumor stem cell
proliferation, tumor cell proliferation, and multidrug resistance
(Fong and Takeda, 2008; Belisario et al., 2020). In the presence of
21% oxygen, the half-life of the HIF-1α subunit was less than 5min, but
when the O2 concentration was reduced to 1%, the half-life increased to
60 min. In the hypoxic TME, HIF-1α was no longer degraded and
became stable. It binds to HIF-1β to form transcriptionally active
dimers, which interact with transcriptional activation factors and
finally induce the transcription and post-transcriptional regulation of
downstream target genes, including erythropoiesis, glucosemetabolism,
angiogenesis, and drug resistance (Vaupel and Multhoff, 2018;
McAleese et al., 2021). Therefore, inhibiting the HIF-1 signaling
pathway is a suitable treatment strategy for hypoxic tumors.
Researchers have developed several strategies to downregulate HIF-

1α expression by using small interfering RNA (siRNA) (Cui et al., 2022;
Huang et al., 2022; Zhou et al., 2022). However, there are some obstacles
to siRNA therapeutics in systemic administration, such as aggregation
with serum proteins, enzymatic degradation with endogenous
nucleases, and uptake by phagocytes. In addition, the distance from
the hypoxic area of the solid tumor to the blood vessel and the increase
in efflux transporters also increase the difficulty of siRNA delivery. Zhu
et al. (2015) designed a delivery system to deliver siHIF-1α. Hybrid
quantum dots with hypoxic tumor targeting properties and
pH responsiveness can enhance antitumour activity and reduce
toxicity to normal tissues. In addition, this siRNA delivery system
based on hybrid quantum dots can realize real-time dynamic
monitoring of the siRNA delivery process in vitro and in vivo.
Furthermore, the delivery of drugs that downregulate HIF-1α can
also reverse tumor hypoxia tolerance (Liu et al., 2019). For example,
zoledronic acid (ZA) can reduce the expression of P-glycoprotein
(P-gp) in multidrug-resistant (MDR) cells and inhibit P-gp
transcription mediated by HIF-1α (O’Donnell et al., 2006; Riganti
et al., 2013). However, when ZA is administered directly, most ZA
is absorbed by bone, resulting in insufficient concentrations in the
tumor. To enhance the delivery effect, Kopecka et al. (2015) coupled ZA
and liposomes to form nanoparticle formulations (abbreviated as NZ).
The results have shown that NZ at low concentrations increases the
chemical susceptibility of otherwise multidrug-resistant cells to
commonly used broad-spectrum drugs. NZ can inhibit HIF-la
activity by interfering with the Ras/ERK1 pathway. In addition, NZ
can also reduce the transcription of glycolytic enzymes and glucose flux.
Therefore, NZ reduced the activity of adenosine triphosphate-
dependent adenosine triphosphate-binding transporters, thereby
increasing the efficacy of chemotherapy in vitro and in vivo. To
increase drug delivery efficiency, Liu et al. (2016a) utilized
polyethylene glycol-poly L-lysine-poly lactic-co-glycollic acid to form
nanoparticles through self-assembly, and then transferrin (Tf) was used
for surface modification and loaded with daunorubicin (abbreviated as

TABLE 1 Nanotechnological strategies to increase the oxygen content of tumors.

Strategies Nanomaterials to increase oxygen
content

References

Improving the
hypoxic TME

Nanomaterials combined antiangiogenic agents Li et al. (2016)

Inhibition of the HIF-1 signaling pathway based on
nanomaterials

Kopecka et al. (2015), Zhu et al. (2015), Liu et al. (2016a), Liu et al. (2019)

Photothermal therapy-mediated hypoxia relief Lu et al. (2018), Li et al. (2020b), Li et al. (2022a), Zhang et al. (2022c)

Oxygen-carrying
nanomaterials

Hemoglobin-based oxygen nanocarriers Tian et al. (2017), Wang et al. (2021a), Yuan et al. (2021b)

Perfluorocarbon-based oxygen nanocarriers Song et al. (2016), Yang et al. (2021), Zhang et al. (2022d)

Monocytes-based oxygen nanocarriers Huang et al. (2015)

Oxygen-production
nanomaterials

Catalase-loaded nanoagents Qin et al. (2021), Zai et al. (2021), Wu et al. (2022), Zhou and Li (2022)

Catalase-like nanozymes He et al. (2013), Liu et al. (2017a), Yang et al. (2017), Jiang et al. (2019), Xu et al. (2019), Liu
et al. (2020a), You et al. (2020a), Zhou et al. (2020a), Zhou et al. (2020b), Gao et al. (2020),
Lu et al. (2020), Wei et al. (2020), Wei et al. (2021), Wang et al. (2022a), Xu et al. (2022b),
Chang et al. (2022), Zhang et al. (2022e), Hou et al. (2022), Tian et al. (2022), Yu et al.

(2022)

Microalgae-based oxygen generators Zheng et al. (2018), Qiao et al. (2020), Zhong et al. (2020), Wang et al. (2022b), Wang et al.
(2022c)

Metal peroxides-based oxygen generators Chen et al. (2022a), Wang et al. (2022d), Koo et al. (2022)
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DNR-Tf-NPs) to study the antitumor effect on K562 leukemia cells
under hypoxia. DNR-Tf-NPs could increase the intracellular
concentration of daunorubicin (DNR) and the drug sensitivity of
K562 cells. At the same time, DNR-Tf-NPs could reduce the
expression of HIF-la, overcome multidrug resistance induced by
hypoxia and induce apoptosis. In the xenograft model, DNR-Tf-NPs
remarkably inhibited the growth of tumors and significantly reduced
the expression of the Ki67 proliferation marker compared with other
experimental groups.

2.1.3 Photothermal therapy-mediated hypoxia
relief

When the local temperature of the tumor tissue increases, the
flow velocity increases. In recent years, a variety of nanomaterials
with photothermal conversion ability have been used for tumor
photothermal therapy, which could be enriched in the tumor site by
passive targeting (based on the high permeability and retention
effect of the tumor, i.e., the EPR effect) or active targeting (based on
the binding of nanoparticle surface-coupled antibodies and tumor
site-specific receptors) after being injected into mice. Under light
irradiation, the local temperature of the tumor site increases locally,
thereby achieving the purpose of treating and even killing tumors
(Cheng et al., 2014). Based on the photothermal effect of MnS@
Bi2Se3 nanomaterials, Song et al. (2015) found that a mild
temperature rise (approximately 43°C) of the tumor site could be
achieved under low power illumination. Interestingly, after mild
photothermal treatment, the tumors were not killed, but the blood
supply to the tumors could be significantly increased after a period
of light exposure; thus, tumors would change from a hypoxic state to
a relatively oxygen-rich state. Thus, the treated tumor could be
effectively killed after oxygen-dependent X-ray radiotherapy, which
was closely related to the significant increase in oxygen content
inside the tumor before radiotherapy. In addition, Lu et al. (2018)
synthesized CuS-modified hollow mesoporous organic silicon oxide
nanoparticles (HMON@CuS) by loading oxygen-combined
perfluoropentane (PFP). The heat generated by CuS after near
infrared laser irradiation could convert the liquid PFP into a
gaseous state and release it from the cavity of the HMON to
further promote the release of oxygen and promote the diffusion
of oxygen in the tumor, thereby overcoming the radiotherapy
tolerance of the tumor. In addition, photothermal therapy
combined with other treatment methods also proves that mild
phototherapy can indeed lead to the improvement of blood
supply and hypoxia in tumors, thus making tumors more
sensitive to treatments (Li et al., 2020b; Li et al., 2022a; Zhang
et al., 2022c).

2.2 Oxygen-carrying nanocarriers

The development of efficient oxygen delivery strategies is
valuable and significant for enhancing the effect of tumor
therapy. At present, hyperbaric oxygen is inhaled and used
clinically during tumor treatment to force more oxygen into the
blood and tumors (Chu et al., 2018; Liu et al., 2021; Li et al., 2022b).
However, this strategy cannot overcome the defect of insufficient
oxygen supply caused by vessel structural abnormity, and it is
difficult to effectively transport oxygen to the interior of the

tumor. Moreover, excessive oxygen concentration in the body is
prone to oxygen toxicity to the lungs and central nervous system. In
recent years, artificial oxygen carriers have become increasingly
widely used. Artificial oxygen carriers usually use
perfluorocarbons, hemoglobin or nanomaterials to store oxygen
molecules inside the carrier by dissolving or non-covalent
binding. When they reach the tumor, they can release the stored
oxygen into the tumor tissue, thereby increasing the oxygen content
of the tumor. Next, we discuss hemoglobin/perfluorocarbon-based
nanocarriers to directly deliver oxygen to hypoxic tumors.

2.2.1 Hemoglobin-based oxygen nanocarriers
Hemoglobin (Hb) is the core of red blood cell (RBC) binding

and transporting oxygen, and oxygen forms a strong chemical
covalent bond with the iron element in hemoglobin, which can
reversibly bind oxygen molecules to form oxyhemoglobin (HbO2).
Then, oxygen is provided to various tissues and organs via the
circulatory system (Gell, 2018; Olson, 2022). However, the
circulation time of free Hb is short, and its stability is poor,
which limits its usage and application areas. To solve this
problem, researchers have used various nanocarriers to load
HbO2 by physical encapsulation to achieve the same oxygen-
carrying function as RBCs (Jansman and Hosta-Rigau, 2018; Kim
et al., 2023). A nanobionic oxygen carrier (DHCNPs) with the
functions of targeting homologous cancer cells and increasing
oxygen content was prepared by using polymer-loaded
doxorubicin (DOX) and Hb as the core and coating of breast
cancer cell membrane on the surface (Tian et al., 2017). The
DHCNPs utilize adhesion molecules of cancer cells to target and
identify homologous cancer cell tumors and combine with breast
cancer cells, thereby realizing targeted administration to the same
tumor while delivering chemotherapy drugs and oxygen to the
interior of the tumor. The results showed that the hypoxic TME
was altered by targeted oxygen replenishment. Therefore, the
expression of HIF-1α and p-gp was reduced. The amount of
DOX pumped out of the cancer cells was reduced, thereby
improving chemotherapy resistance and realizing safe and
efficient chemotherapy. However, the method of encapsulating
Hb in nanocarriers requires the participation of organic solvents
and severe stirring or ultrasonic operation, which might affect the
activity of Hb. In addition, in the process of physical loading, to
minimize the mutual repulsion between protein and protein, they
are fixed in the form of random orientation, which is a non-uniform
state that causes partial inactivation of the protein. Moreover, this
high-density loading through intermolecular forces such as ionic
hydrophobic and polar interactions will cause the blocking of
protein active sites in space. To avoid this problem, Hb may be
coupled to the carrier by covalent binding. Wang et al. (2021a)
utilized Hb and polycaprolactone self-assembled nano erythrocyte
systems to deliver DOX and oxygen [V(Hb)@DOX] to reprogram
the tumor immunosuppressive microenvironment to enhance
chemoimmunotherapy (Figure 2A). After administration, V(Hb)
@DOX specifically targeted M2 macrophages with high
CD163 expression in the tumor region. The oxygen released
from V(Hb)@DOX alleviated tumor hypoxia, downregulated
HIF-1α expression, and reduced the recruitment of M2-type
macrophages. Since Hb is stable at neutral pH, it is partially
dissociated in the acidic environment, resulting in the release of
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DOX to kill tumor cells. Ultimately, V(Hb)@DOX-mediated
immune reprogramming could prevent tumor metastasis and
recurrence. In addition, Hb can also be used as a sonosensitizer
for cancer therapy (Yuan et al., 2021b) (Figure 2B). To improve the
cellular uptake of Hb and protect it from hydrolysis by lysosomal
enzymes, zeolite imidazolium 8 (ZIF-8) (composed of Zn2+ ions and
2-methylimidazole ligands) was used for drug encapsulation and
controlled release. ZIF-8 was used as a drug carrier and could be
taken up by cancer cells to achieve high Hb loading efficiency and
pH-responsive O2 release from tumor sites. Oxygen release from Hb
can enhance photodynamic behavior, which then induces severe
mitochondrial dysfunction and activates the mitochondrial
apoptotic pathway, further effectively inhibiting tumor cell
growth. Compared with RBCs, the enhanced penetration and
retention effects of Hb-based nanocarriers enabled them to
accumulate more in hypoxic regions of tumors and improve
oxygen delivery efficiency. Therefore, nano-oxygen carriers
showed better oxygen supply capacity than natural erythrocytes
in the TME.

2.2.2 Perfluorocarbon-based oxygen nanocarriers
The solubility of O2 in perfluorocarbon is approximately

40–50 mL O2 per 100 mL; thus, it can be used as an oxygen
carrier (Cheng et al., 2015; Wang et al., 2019; Jagers et al., 2021).
In perfluorocarbons, oxygen undergoes physical dissolution, and

there is a weak non-directional van der Waals force between
oxygen and perfluorocarbons, which also ensures that oxygen can
be dissolved or released quickly. Various perfluorocarbon (PFC)-
based oxygen delivery nanoplatforms, such as liposomes, hollow
nanomaterials or polymers, have been successfully fabricated and
utilized to alleviate tumor hypoxia and enhance oxygen-related
therapeutic efficacy (Cheng et al., 2015; Gao et al., 2017; Li et al.,
2018; Liang et al., 2020; Dong et al., 2022). However, the premature
release of oxygen before reaching the anoxic region and the oxygen
transport mainly driven by the concentration gradient are not
controllable. Therefore, the development of controllable oxygen
carriers is significant for the delivery of oxygen (You et al., 2020b).
In view of the weak van der Waals interactions between PFC and
oxygen, ultrasound and near-infrared light (NIR) are currently the
main stimuli to trigger oxygen release (Yang et al., 2019). For example,
Song et al. (2016) used human serum albumin as a stabilizer for PFC
nanoemulsions and selected ultrasound to induce oxygen release to
improve the hypoxic environment of tumors. The nanoemulsion was
injected into tumor-bearing mice. The PFC nanoemulsion absorbed
oxygen from the lungs and circulated to the hypoxic tumor site.
Another common source of excitation is the NIR laser. For example, a
“nano bomb” (PFH@Ag@Ch-I) was designed using indocyanine
green (ICG), chitosan, and perfluorohexane (PFH) (Yang et al.,
2021). When PFH@Ag@Ch-I was endocytosed by lysosomes, the
photothermal activity of the silver nanocages made PFH reach the

FIGURE 2
(A) V(Hb)@DOX enhanced cancer chemoimmunotherapy and reprogrammed the TME. Reproduced from ref. (Tian et al., 2017) with permission from
Wiley, copyright 2021. (B) Nanomaterials combined with oxygen-carrying hemoglobin for sonodynamic therapy. Reproduced from ref. (Wang et al.,
2021a) with permission from ACS Publications, copyright 2021.
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boiling point and rapidly vaporize under NIR irradiation, which led to
the release of oxygen. The increased internal pressure of the “nano
bomb” resulted in silver nanocage explosion and enabled lysosome
escape. Then, the silver nanocages were broken into small
nanoparticles for a Fenton-like reaction, and the oxygen released
from PFH improved the hypoxic TME and enhanced ICG-mediated
photodynamic therapy (PDT), thereby achieving efficient tumor
penetration and antitumour therapy. To increase the tissue
penetration depth, Zhang et al. (2022d) encapsulated PFCs in
functionalized polymers to prepare a photothermo-triggered
“oxygen bomb.” By using an NIR-II laser, the combination of
photothermal therapy (PTT), PDT, and chemotherapy could be
released.

2.2.3 Monocyte-based oxygen nanocarriers
Studies have found that several chemokines secreted by

tumor cells are closely related to the recruitment of monocytes
(Murdoch et al., 2004). Once monocytes reach the tumor site and
further develop into tumor-associated macrophages (TAMs),
they tend to be retained in hypoxic tumor tissue (Brown and
Wilson, 2004). For example, bone marrow-derived monocytes
were used to carry oxygen-loaded polymer bubbles,
superparamagnetic iron oxide (SPOIN) and the
photosensitizer chlorin e6 (Ce6) (Huang et al., 2015). The
multifunctional oxygen bubble carrier (SCOPB-engulfed
monocytes) was not toxic to cells without external stimulation.
When irradiated with a laser (660 nm) and high-frequency
magnetic field, the growth of prostate xenografts in nude mice
was significantly inhibited by combined magnetothermal therapy
and PDT. The histological results of the tumor sections showed
that the effective therapeutic agent could relieve tumor hypoxia
and then enhance the therapeutic effect of PDT.

Oxygen-carrying nanocarriers with advantages, disadvantages,
and major highlights are summarized in Table 2. PFC carries more
oxygen than Hb at the same concentration. As the release of oxygen
in PFC is achieved by concentration gradient, while that in Hb is
related to Hb oxy-deoxy conformational change, the oxygen release
efficiency of PFC is higher than that of Hb, and controlled release
can be realized under external stimulation.

2.3 Oxygen-production nanomaterials

The content of hydrogen peroxide (H2O2) in tumor tissue is
generally higher than that in normal tissues, which is one of the

reasons for tumor invasion and metastasis. This characteristic also
offers an opportunity for alleviating tumor hypoxia; for instance,
catalase (CAT) can catalyze the decomposition of H2O2 to generate
O2 in situ. With the development of nanotechnology, a variety of
nanomaterials with catalytic properties have been discovered (Wei
andWang, 2013; Liang et al., 2019;Wang et al., 2022e). Among these
nanozymes, some nanozymes with CAT-like activity have been
developed. In this section, we will summarize nanomaterials
combined with natural CAT enzymes and CAT-like nanozymes
to enhance tumor therapy.

2.3.1 CAT-loaded nanoagents
CAT is a common natural enzyme in living organisms that can

catalyze H2O2 to produce oxygen (Goyal and Basak, 2010; Ma et al.,
2019; Mu et al., 2023). To exert an excellent cascading catalysis
reaction, Zhou and Li (2022) designed a three-enzyme cascade
nanosystem (plasEnMOF) by embedding CAT, glucose oxidase
(GOx) and horseradish peroxidase (HRP) in ZIF-8-encapsulated
gold nanorods (AuNRs) (Figure 3A). After intravenous injection of
plasEnMOF in 4T1 tumor-bearing mice, the overexpressed H2O2 in
tumors could be converted into oxygen by CAT, thereby relieving
tumor hypoxia and providing the oxygen required for GOx to react
with glucose. GOx utilized oxygen to catalyze glucose to produce
H2O2, which could convert into hydroxyl radicals (•OH) for CDT in
the presence of HRP. In another work, to significantly increase
reactive oxygen species (ROS) levels in the TME, Qin et al. (2021)
prepared nanogels (FIGs-LC) by integrating lactate oxidase (LOx)
and CAT into hybrid nanogels that encapsulated with Fe3O4 NPs
and ICG. LOx can catalyze endogenous lactic acid to produce H2O2,

which reacts with Fe3O4 NPs to produce •OH. Meanwhile, the
oxygen generated from the CAT catalytic reaction could enhance
singlet oxygen production. The in vivo results showed that the tumor
inhibition rate of FIG-LC reached 89.05%, and the side effects were
negligible. However, the catalytic efficiency of CAT may be affected
by numerous proteases in vivo, especially in tumor sites where
proteases are overexpressed (Vandooren et al., 2016; Zai et al., 2021).
Recently, Zai et al. (2021) developed CAT-containing Escherichia
coli membrane vesicles (EMs), which showed good protease
resistance for alleviating tumor hypoxia and radiotherapy
enhancement (Figure 3B). The CAT in EMs was more than
100 times more resistant to protease than free CAT and was able
to maintain catalytic activity even 12 h after intratumoral injection.
In a separate study, Wu et al. (2022) prepared a biodegradable
nanoplatform (CSI@Ex-A) by loading CAT and ICG into silica
nanoparticles and then coated it with AS1411 aptamer-modified

TABLE 2 Oxygen-carrying nanocarriers with advantages, disadvantages, and major highlights.

Classification Advantage Disadvantage Major highlights Ref

Hemoglobin-based oxygen
nanocarriers

Excellent biocompatibility and
safety

Poor stability; unpredictable side effects;
limited oxygen loading efficiency and

release

Reversibly combine with
oxygen

Yang et al. (2018), Ciaccio et al.
(2022)

Perfluorocarbon-based
oxygen nanocarriers

Excellent biocompatibility; high
stability; high oxygen solubility

Premature oxygen leak; complicated
synthesis process

Controlled release of
oxygen under external

stimulation

Cheng et al. (2015), Gao et al.
(2017), Li et al. (2018), Liang et al.

(2020), Dong et al. (2022)

Monocyte-based oxygen
nanocarriers

Excellent biocompatibility Limited oxygen loading efficiency;
Complex extraction process

Easily remain in hypoxic
tumors

Huang et al. (2015)
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macrophage exosomes (Figure 3C). After endocytosis of tumor cells,
the highly expressed glutathione (GSH) triggered the degradation of
CSI@Ex-A to release CAT, which could catalyze H2O2 to generate
O2 to alleviate tumor hypoxia. Furthermore, the therapeutic effect of
sonodynamic therapy (SDT) was enhanced by GSH depletion and
O2 self-supply in vitro and in vivo.

2.3.2 CAT-like nanozymes
2.3.2.1 Au-based nanozymes

Due to their excellent photothermal properties in the near-
infrared region, Au-based nanomaterials are often used as
photothermal agents for PTT (Cheng et al., 2017; Ye et al.,
2022). In recent years, it was found that Au-based nanomaterials
have exhibited a variety of enzymatic activities, such as peroxidase,
CAT, superoxide dismutase (SOD), and oxidase, among which
CAT-like and SOD-like activities can be used to alleviate tumor
hypoxia (Lin et al., 2014; Lou-Franco et al., 2021). pH has an
important effect on the catalytic activity of AuNPs (He et al.,
2013). In a neutral pH environment, AuNPs exhibit SOD-like
activity that can convert superoxide into H2O2. In alkaline
environments, AuNPs exhibit CAT-like activity that converts
H2O2 into oxygen. However, in an acidic pH environment, the

SOD-like and CAT-like activities of AuNPs are significantly
reduced. To improve the catalytic activity of AuNPs in acidic
pH to some extent, Yang and coworkers first reported amine-
terminated polyamidoamine (PAMAM) dendritic molecule-
encapsulated Au nanoclusters (AuNCs-NH2) (Liu et al., 2017a).
The 3-amines on dendritic macromolecules were easily protonated
in an acidic TME, which facilitated the preadsorption of OH− on the
gold nanoclusters. Furthermore, the CAT-like activity of the
nanoclusters was extended to an acidic TME (pH 4.8–7.4),
catalyzing the production of oxygen from overexpressed H2O2 to
alleviate tumor hypoxia and enhance PDT. In a similar study, Xu
et al. (2019) designed a multifunctional nanocomposite (PGPAI
NPs), which was polypyrrole (PPy) coated by graphene oxide (GO)
flakes and then modified with PEG, Au NPs and IR820 molecules.
The PGPAI NPs had good photoacoustic imaging and computed
tomography imaging capabilities. Under NIR irradiation, PPy and
IR820 could effectively produce heat and ROS, respectively. Au NPs
not only generate oxygen by catalyzing overexpressed H2O2 in the
tumor, enhancing the effect of oxygen-dependent PDT but also
exhibit GOx like activity and can efficiently catalyze the conversion
of glucose into H2O2 and gluconic acid (Li et al., 2020c; Chen et al.,
2021a). Another classic example was presented by Liu et al. (2020a).

FIGURE 3
(A) PlasEnMOF for enzymatic cancer therapy. Reproduced from ref. 40with permission fromWiley, copyright 2022. (B) EMs for tumor hypoxia relief.
Reproduced from ref. (Huang et al., 2015) with permission from ACS Publications, copyright 2021. (C) CSI@Ex-A for O2-self-supply SDT. Reproduced
from ref. (Qin et al., 2021) with permission from Wiley, copyright 2022.
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An iron-based metal organic framework (GIM) doped with AuNPs
was used for ROS production in hypoxic tumors via cascade catalytic
reactions (Liu et al., 2020a). Due to the GOx like activity of AuNPs,
GIM could catalyze glucose to H2O2 and then generate •OH for
CDT through the Fenton reaction. In addition, GIM could also
rapidly decompose H2O2 into O2, which not only alleviated hypoxia
in the TME but also promoted the catalysis of glucose by AuNPs.

2.3.2.2 Manganese-based nanozymes
Manganese dioxide (MnO2) can catalyze excessive H2O2 in the

TME to produce oxygen, demonstrating unprecedented advantages
in the treatment of TME hypoxia due to its good degradation ability
as well as high catalytic activity (Ding et al., 2020; Gao et al., 2020). A
responsive cascade theranostic nanosystem (Lipo-OGzyme-AIE)
was designed by encapsulating aggregation-induced emission
(AIE) and OGzymes in the phospholipid bilayer (Figure 4A)
(Gao et al., 2020). The O2 generated through the catalytic
reaction of MnO2 could diffuse throughout the tumor, providing
O2 for AIE to produce singlet oxygen under irradiation. In addition,
bovine serum albumin (BSA) was designed to encapsulate gold
nanorods (Au NRs), and MnO2 nanoparticles were deposited at the
reduction site to form Au NRs@BSA/MnO2 (Zhou et al., 2020a).
Based on the strong localized surface plasmon resonance effect of
Au NRs, this nanosystem had good photothermal conversion

efficiency and could be used for photothermal ablation of
tumors. The MnO2 particles from the nanosystem could
decompose H2O2 to produce O2, which in turn could be used for
hypoxia improvement in the TME. However, the previously
reported structures of MnO2 are mostly nanoparticles,
nanocomposites in combination with other types of nanoparticles
or nanosheets, which may not be ideal for the effective loading and
accurate release of drugs. Hollow nanostructures have been shown
to be able to construct loading/delivery nanoplatforms for the
precisely controlled release of therapeutic agents (Zhang et al.,
2022f; Zhu et al., 2022). The research group of Liu developed a
biodegradable hollow MnO2 nanotherapeutic (Figure 4B) (Yang
et al., 2017). Nanotherapeutics can achieve TME-responsive
imaging and specific release of drugs, improve the hypoxic
environment of tumors and enhance the effect of cancer
treatment. Finally, the nanotherapeutic could be rapidly
decomposed in the mouse body and excreted out of the body.
Based on this nanotherapeutics, the synergistic therapeutic effects of
chemotherapy and PDT in vivo could be effectively improved. After
nanotherapeutics are combined with checkpoint blockade, anti-
programmed death ligand 1 (anti-PD-L1) therapy can not only
kill the primary tumor but also effectively inhibit the growth of
distant tumors. In addition to being a nanozyme, MnO2 can also
react with H+ or GSH existing in the TME and decompose to Mn2+,

FIGURE 4
(A) A response cascade theranostic nanosystem (Lipo-OGzyme-AIE) for photodynamic therapy. Reproduced from ref. (Liu et al., 2020a) with
permission from Elsevier, copyright 2019. (B) Hollow MnO2 nanotherapeutics for combination therapy. Reproduced from ref. (Zhou et al., 2020a) with
permission from Springer Nature, copyright 2017.
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which prominently enhances T1 magnetic resonance imaging
contrast and can be used for tumor-specific imaging (Xiao et al.,
2021; Li et al., 2022c; Pan et al., 2022).

2.3.2.3 Platinum-based nanozymes
Platinum (Pt)-based nanomaterials are widely used as

nanozymes for oxygen production due to their low production
cost and long-lasting catalytic properties (Chen et al., 2021b). At
present, the development of nanodrug responses to the TME is a
common strategy to treat tumors. A TME-activated nanodrug
(PtN4C-SAzyme) prepared by Xu et al. (2022b) was used for the
cascade catalytic reaction (Figure 5A). SAzyme has peroxidase
(POD)-like and CAT activities. The overexpressed GSH in cells
was continuously consumed by Pt (IV) to generate Pt2+, which
could reduce ROS scavenging. More importantly,
PtN4C-SAzyme had SOD-like activity, which converted O2

−

into H2O2 to supplement the consumption of H2O2, and
H2O2 could also further react with PtN4C-SAzyme to realize
the cycle of •OH and O2

−. To improve the stability of Pt-based
nanomaterials in aqueous solution, Lu et al. (2020) performed
PEGylation of platinum porous nanospheres (pPts) and loaded
GOx (Figure 5B). GOx could convert glucose to H2O2 in the

presence of oxygen; pPts subsequently decomposed the
overexpressed H2O2 in tumors into oxygen and water. Thus,
pPts promoted the consumption of glucose in hypoxic tumors
and increased cellular oxidative stress. In addition, Pt assisted by
a direct current electric field and chloride ions induced the
decomposition of water molecules on their surface, generating
cytotoxic •OH. pPts-mediated electrokinetic therapy in synergy
with starvation therapy could significantly alleviate the hypoxic
microenvironment and inhibit tumor growth. Interestingly, You
et al. (2020a) developed a nanomaterial (ICG-PtMGs@HGd) that
could continuously replenish O2 with low toxicity (Figure 5C). Pt
and Au successively wrapped metal-organic frameworks (MOFs)
to form octahedral metal nanoshells (PtMGs), and then the
surface was modified with gadolinium-chelated human serum
albumin (HSA-Gd) and ICG. Oxygen production was measured
with a dissolved oxygen meter. After H2O2 addition, the oxygen
concentration varied from 5.0 to 10.8 mgL−1 in the ICG-PtMGs@
HGd solution without significant oxygen production in the
absence of ICG-MGs@HGd, and this catalytic effect was
durable. In the synergistic phototherapy experiment in vivo,
the results showed that the tumor volume of the ICG-
PtMGs@HGd group under NIR irradiation decreased most

FIGURE 5
(A) PtN4C-SAzyme for oxygen self-supplied tumor therapy. Reproduced from ref. (Yang et al., 2017) with permission from Ivyspring International
Publisher, copyright 2022. (B) Porous platinumnanospheres for tumor combination therapy. Reproduced from ref. (Xu et al., 2022b) with permission from
Wiley, copyright 2020. (C) ICG-PtMGs@HGd for hypoxia relief and tumor therapy. Reproduced from ref. (Lu et al., 2020) with permission from Wiley,
copyright 2020.
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significantly, and the body weight of the tumor-bearing mice did
not change significantly after treatment. In general, there is a
wide range of biological applications of Pt-based nanomaterials,
but the toxic side effects caused by heavy metals are still current
challenges to be overcome (Duan et al., 2022; Velcheva et al.,
2022).

2.3.2.4 Other metal-based nanozymes
With the action of oxygen and GOx, glucose can be converted

into gluconic acid and H2O2, thereby cutting off the nutrition
source of tumor cells and inhibiting cancer cell proliferation
(Huo et al., 2017; Xu et al., 2022c; Wang et al., 2022f).
Considering that the catalytic activity of a single enzyme is
insufficient to achieve satisfactory therapeutic effects, the
development of nanozymes with multiple enzyme-mimetic
functions is necessary. A multienzyme nanoreactor (IrRu-
GOx@PEG NPs) for cascade catalytic reactions was prepared
after the rRu alloy nanoparticles were modified with GOx and
PEG (Figure 6A) (Wei et al., 2020). In the biological catalytic
stage, the glucose in the tumor was degraded to H2O2 by IrRu-
GOx@PEG NPs, which cut off the tumor’s nutrient source and
inhibited tumor growth. In the chemical catalytic stage, IrRu-
GOx@PEG NPs catalyzed H2O2 to generate O2 and highly toxic
singlet oxygen (1O2). The in vitro and in vivo results indicated

that the IrRu-GOx@PEG NPs could effectively induce 4T1 cell
apoptosis. In addition, a nanoplatform (DMSN@CoFe2O4/GOD-
PCM) was designed for NIR II-enhanced tumor therapy by
depositing ultrasmall cobalt ferrite (CoFe2O4) and GOx into
the pore size of dendritic mesoporous silica (Chang et al.,
2022) (Figure 6B). After laser irradiation, the high temperature
generated by CoFe2O4 melts the phase change material (PCM) to
release GOx, remodelling the TME through the glucose
metabolism pathway. The resulting intensified acidic
conditions and large amount of H2O2 effectively initiate the
cascade catalytic reaction. To achieve precise treatment, an
upconversion nanoparticle (UCNP)-based smart nanosystem
(UCNPs@Cu-Cys-GOx) was designed for cancer combination
therapy (Wang et al., 2022a). The nanosystem remained inert
(turned off) in normal tissues and was only specifically activated
(turned on) in the TME through a sequence of enzymatic
cascades. Moreover, the enhanced oxidative stress of the
nanosystem could reverse the immunosuppressive TME.
Meanwhile, the smart nanosystem combined with
immunotherapy/starvation/chemokinetic synergistic therapy
effectively inhibited primary tumor growth and cancer
metastasis. In addition, GOx-induced starvation therapy
synergized with copper death and significantly inhibited tumor
growth (Fu et al., 2018; Xu et al., 2022d).

FIGURE 6
(A) A multienzyme nanoreactor (IrRu-GOx@PEG NPs) for enhanced oxidation therapy. Reproduced from ref. (You et al., 2020a) with permission
from Elsevier, copyright 2020. (B) DMSN@CoFe2O4/GOD-PCM for reshaping the tumor microenvironment. Reproduced from ref. (Wei et al., 2020) with
permission from ACS Publications, copyright 2022.
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2.3.2.5 Prussian blue-based nanozymes
Prussian blue (PB) is a Food and Drug Administration-

approved antidote for heavy metal poisoning (Wang and Cheng,
2020). In recent years, researchers have gradually found that PB has
excellent physicochemical properties, such as photothermal
conversion and catalytic activity (Liu et al., 2016b; Wang and
Cheng, 2020). PB can catalyze the production of oxygen from
overexpressed H2O2, which can effectively improve the malignant
environment (Komkova and Karyakin, 2022). Motivated by this,
Zhou et al. (2020b) designed a PB nanoplatform (SP94-PB-SF-
Cy5.5 NPs) loaded with sorafenib (SF) and modified with the
hepatocellular carcinoma (HCC)-specific targeting peptide
SP94 and the near-infrared cyanamide dye (Cy 5.5) (Figure 7A).
In the treatment of HCC, the combination of PTT and SF could
effectively reduce local tumor recurrence and the side effects caused
by drugs. In addition, the POD-like activity and photothermal effect
of PB could effectively reshape the hypoxic and immunosuppressive
TME. When combined with anti-programmed death ligand 1 (PD-
L1), immunotherapy can promote dendritic cell (DC) maturation
and increase tumor infiltration of cytotoxic T lymphocytes (CTLs).
More importantly, combination therapy could establish long-term
immune memory and inhibit tumor metastasis and recurrence.

Excess H2O2 in tumors can not only be used as a raw material
for oxygen generation but also generate highly toxic ROS through
the Fenton reaction, which can effectively kill tumor cells in
combination with PTT. Tian et al. (2022) obtained an NIR-
responsive therapeutic nanoplatform (GA-PB@MON@LA) by
sequentially introducing PB and gambogic acid (GA) into the
pores of mesoporous organosilicon (MONs) and coating them
with the thermosensitive material lauric acid (LA) (Figure 7B).
Under NIR laser irradiation, the nanoplatform could not only
induce tumor cell apoptosis by PTT but also shed LA coatings,
thus facilitating the release of GA. GA inhibited the expression of
HSP90 and further suppressed tumor heat resistance. In addition,
the heat generated by PTT could enhance the CAT-like and Fenton-
like catalytic activities of PB, promoting the production of oxygen
and •OH. The in vitro and in vivo experimental results showed that
GA-PB@MON@LA has good antitumour effects and can be used as
a PA/MR dual-modality imaging contrast agent to provide precise
guidance for cancer treatment. To minimize the effect of
reticuloendothelial system clearance, nanomaterial
biomineralization is an effective strategy. Cytomembranes have
homology targeting and good biocompatibility, which can protect
nanomaterials from immune recognition of the body to prolong the

FIGURE 7
(A) SP94-PB-SF-Cy5.5 for tumor photothermal therapy and immunotherapy. Reproduced from ref. (Wang et al., 2022a) with permission from ACS
Publications, copyright 2020. (B) GA-PB@MON@LA for synergistic photothermal and nanocatalytic therapy. Reproduced from ref. (Zhou et al., 2020b)
with permission from Wiley, copyright 2022. (C) TK-M@Man-HMPB/HCQ for macrophage polarization and hypoxia relief. Reproduced from ref. (Tian
et al., 2022) with permission from Wiley, copyright 2022.
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blood circulation time and increase their enrichment at the focal site
(Malaviya et al., 2019; Briolay et al., 2021). Hou et al. (2022) obtained
hollow mesoporous PB nanoplatforms (TK-M@Man-HMPB/HCQ)
by loading hydroxychloroquine (HCQ), modifying mannose and
coating macrophage and thylakoid (TK) membranes (Figure 7C).
With the homing action of macrophage membranes, the
nanoplatform was able to achieve enrichment in tumor tissue.
The TK membrane then catalyzed the generation of oxygen from
high concentrations of H2O2 in the TME. During the process, the
generation of oxygen promoted the rupture of the hybridized
membrane, exposing Man-HMPB/HCQ. Man-HMPB/HCQ
significantly enhanced macrophage internalization and induced
polarization of M2 macrophages toward the M1 phenotype. In
vivo results showed that the nanoplatform significantly inhibited
tumor growth through a series of responses, including TAM
polarization, CTL infiltration, alleviation of hypoxia and
reduction in regulatory T cells.

2.3.3 Nanomaterials with self-oxygen production
performance
2.3.3.1 Photocatalytic oxygen-producing nanomaterials

Photocatalytic water splitting is a clean, simple and
sustainable pathway for producing O2 and hydrogen, which
has led to great achievements in the fields of the environment,
energy and biomedicine (Liao et al., 2020; An et al., 2021; Teng
et al., 2021). Carbon nitride (C3N4) has been applied as a non-
metallic photocatalyst for the photolysis of water in tumors to

produce oxygen due to its visible light response and non-toxicity
(Liu et al., 2020b; Ma et al., 2022). This endogenous oxygen
production can enhance aerobic-based therapy. A cascade
catalyst (PCMGH) was designed and obtained by assembling
dopamine with C3N4 nanosheets, coating the surface with an
iron-based metal-organic framework [MIL-100(Fe)], loading
GOx, and grafting hyaluronic acid (Figure 8A) (Yu et al.,
2022). A 630 nm laser could activate C3N4-mediated water
splitting to generate oxygen in the tumor. Sufficient O2

further promoted GOx to consume endogenous glucose and
generate the byproduct H2O2, and finally, MIL-100(Fe) with
Fenton-like activity catalyzed H2O2 to generate •OH. During
the cascade reaction, 808 nm NIR could elevate the reaction
temperature of the tumor and enhance the catalytic
performance to obtain more •OH. The efficient targeting
ability of hyaluronic acid and the tumor environment
response mechanism enable cascade catalysts to have both
excellent biosafety and tumor efficacy. However, the
disadvantages of C3N4 in complex physiological
environments, such as the rapid recombination of electron-
hole pairs and weak light absorption properties, limit its
further application in biomedicine (Chen et al., 2022c). In
this regard, researchers have designed ingenious modification
methods to enhance the photocatalytic ability of C3N4 and
effectively alleviate the endogenous hypoxia of tumors. Wei
et al. (2021) designed a composite nanocatalyst by incorporating
ruthenium (II) polypyridine complexes [Ru (bpy)2]

2+ into

FIGURE 8
(A) Cascade catalyst PCMGH for tumor hypoxia therapy. Reproduced from ref. (Hou et al., 2022) with permission from Elsevier, copyright 2021. (B)
UCNPs-C3N4-Ce6 for responsive tumor therapy. Reproduced from ref. (Wei et al., 2021) with permission from Elsevier, copyright 2021.
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graphitic C3N4 (gC3N4) via Ru-N bonds. The low-power visible
light-induced separation and reduction of Ru-gC3N4 enhanced
the therapeutic performance and biocompatibility of the
composite catalysts in physiological environments. Mice were
irradiated with 450 nm light (65 mW/cm2), which could
generate oxygen and various ROS (•OH, •O2

− and 1O2) in
situ in the tumor and greatly reduce the expression of HIF-
1α protein. In another study, Zhang et al. (2022e) synthesized a
heterojunction (UCNPs-C3N4-Ce6) by wrapping UCNPs with
C3N4 and modifying with Ce6 and COOH-FA-PEG, which
prevented the recombination of C3N4 electron-hole pairs,
thereby enhancing the photoelectric conversion efficiency of
nanomaterials (Figure 8B). UCNPs-C3N4-Ce6 with specific
recognition ability increased tumor enrichment, and
ultrasound (US) and NIR simultaneously stimulated the
heterojunction to generate oxygen and ROS at the C3N4

interface, realizing the combined treatment of PDT, SDT,
and PTT. The results of in vivo experiments showed that US
+ NIR-stimulated UCNPs-C3N4-Ce6 significantly upregulated
the level of LC-3 protein in tumors, activated the autophagy
pathway, and had good tumor elimination effects. Overall,
heterostructure construction and elemental doping can
improve the stability and photocatalytic activity of C3N4 in

vivo, which is expected to modulate and remodel the hypoxic
TME and reduce tumor metastasis and recurrence (Luo et al.,
2018; Chen et al., 2021c).

2.3.3.2 Microalgae-based oxygen generator
Microalgae produce oxygen by their specific photosynthesis,

which has been applied for efficient oxygen production in tumors
in situ to alleviate hypoxia and enhance oxygen-dependent
therapies such as radiation therapy (RT) and PDT (Li et al.,
2020d; Chen et al., 2021d; Zhong et al., 2021). Wang et al. (2022b)
designed photosynthetic microcapsules (PMCs) by encapsulating
UCNPs and cyanobacteria in an alginate microcapsule. The
system achieved long-term oxygen supply by photosynthesis of
cyanobacteria. PMCs could inhibit the NF-kβ pathway and
downregulate the expression of HIF-1α, which created a
hyperoxic microenvironment in vivo and significantly
inhibited tumor growth and metastasis in hepatocellular
carcinoma and mammary tumors. PMCs combined with
checkpoint inhibitors (anti-PD-1) showed a powerful
synergistic effect in mice with breast cancer. PMCs were
intratumorally injected and had high tumor penetration.
However, intravenously injected microalgae nanosystems are
easily captured by the mononuclear phagocytic system (MPS)

FIGURE 9
(A) RBCM-Algae for hypoxic cancer. Reproduced from ref. (Wang et al., 2022b) with permission from American Association for the Advancement of
Science, copyright 2020. (B)Multifunctionalmicrorobotic Volbot for tumor imaging and therapy. Reproduced from ref. (Qiao et al., 2020)with permission
from Wiley, copyright 2022.
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of the liver and spleen. To address the targeting problem, Qiao
et al. developed erythrocyte membrane-encapsulated chlorella
(RBCM-Algae) to reduce uptake and systemic clearance
(Figure 9A) (Qiao et al., 2020). RBCM-Algae was delivered to
tumors to produce oxygen in situ under red light-induced
photosynthesis and improve RT. The 650 nm laser could
release chlorophyll from microalgae, which further enhanced
the ability to kill cancer cells by generating ROS through PDT.
The rational combination of Fe3O4 NPs can further improve the
precise delivery of microalgae to tumor tissues. Wang et al.
(2022c) obtained an intelligent robot (Volbot) by combining
volvox algae with Ce6-polydopamine@Fe3O4 through
electrostatic interactions to achieve multimode imaging and
oxygen generation (Figure 9B). Under the control of a
magnetic field, the Volbot could move on a planned route.
Red light (650 nm) irradiation could enhance the motion
behavior of the Volbot and boost the mixing of biological
fluids, facilitate the production of oxygen and improve the
effect of PDT. In addition, Volbot could absorb NIR laser to
generate localized thermotherapy to treat tumors. Volbots with
magnetic resonance, photoacoustic, and fluorescence multimodal
imaging offer great potential for achieving precise tumor
treatment. In another work, Zhong et al. (2020) prepared
tumor-targeted biohybrid microswimmers (PBNs) by
combining Spirulina platensis with magnetic Fe3O4 NPs. The

PBNs could be enriched in tumors using the guidance of
magnetic fields, and oxygen production through
photosynthesis could effectively alleviate hypoxia and improve
the effectiveness of RT. In addition, chlorophyll can also generate
ROS to enable PDT under laser irradiation. However, the
application of microalgae in biomedicine is still in the
preliminary stage, and some key issues remain to be solved,
such as a laser selected for activating photosynthesis,
microalgae size and morphology, targeting ability, biosafety,
etc. (Hu et al., 2020; Wang et al., 2021b).

Thylakoids, distributed in the chloroplast stroma and cyanobacteria
cells, are small flat capsules surrounded by a single-layer membrane.
The thylakoid membrane contains photosynthetic pigments and
electron transport chain components, which can convert light energy
into chemical energy (Zheng et al., 2018; Cheng et al., 2021). For
example, Zheng et al. (2018) constructed a phototriggered non-
biological/biological thylakoid nanooxygen delivery system (PLANT)
by coating the thylakoid membrane on the surface of synthetic
nanoparticles, such as ZnONPs, Ag NPs, or SiO2 NPs. The delivery
system can efficiently generate oxygen in the tumor under 660 nm laser
irradiation, and in vivo and in vitro results showed that PLANT could
reverse tumor hypoxia, inhibit anaerobic respiration, recover the
metabolism of tumor cells to normal, regulate the abnormal
structure and function of tumor blood vessels, limit the migration of
tumor cells and remarkably improve the curative effect of PDT or

FIGURE 10
(A) DMOS@CuO2/ICG-HA for synergistic therapy. Reproduced from ref. (Zheng et al., 2018) with permission from Wiley, copyright 2022. (B)
Copper−iron peroxide nanoparticles for the Fenton reaction. Reproduced from ref. (Wang et al., 2022d) with permission fromACS Publications, copyright
2022. (C) ECMT NS for tumor matrix destruction and cocktail therapy. Reproduced from ref. (Koo et al., 2022) with permission from Elsevier, copyright
2022.
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antiangiogenesis treatment. In vivo results showed that, after treatment
with PLANT, the levels of glycolysis-related enzymes (e.g., GLUT-1) in
tumors were downregulated, and the CD31 protein and HIF-α were
also significantly reduced.

2.3.3.3 Metal peroxide-based oxygen generator
Metal peroxides can decompose to produce H2O2 and metal

ions under the acidic TME (Zhou et al., 2021). H2O2 has a wide
range of applications in tumor therapy, such as increasing
oxidative stress, providing oxygen, and providing catalytic
substrate (Fu et al., 2018; Fu et al., 2021). Motivated by this, a
combined nanotherapeutic (DCI) was synthesized by coloading
CuO2 and ICG with dendritic mesoporous organosilica (DMOS) as
a carrier and modifying with hyaluronic acid (Figure 10A) (Wang
et al., 2022d). DCI can produce oxygen and H2O2 under acidic
conditions to alleviate hypoxia. The 1O2 produced by NIR
photoexcitation of ICG and the •OH produced by Cu2+-
mediated Fenton-like reaction lead to the death of tumor cells.
However, the limited efficiency of the Fenton-like reaction greatly
affects metal peroxides for chemodynamic therapy (Wang et al.,
2020b). Therefore, developing multicomponent catalytic metal
composites through synergistic catalytic effects can achieve
more satisfying catalytic performance (Zhou et al., 2021). Koo
et al. (2022) reported a nanomaterial composite (CFp NPs) based
on Cu-Fe perovskite nanoparticles (Figure 10B). The results
showed that the CFp NPs synthesized with a Cu/Fe ratio of 7:
3 had the best catalytic performance and could successfully ablate
tumors at a low dose of 3.7 mg/kg. At the same time, CFp NPs
alleviated tumor hypoxia by TME-responsive oxygen generation
ability. The responsive release of ferric ions could also enhance T1-
weighted MRI, enabling in vivo monitoring of tumors.
Furthermore, metal ions dissociated by metal peroxides are also
able to enhance the efficacy of tumor therapy. For example, Ca2+

released from CaO2 could induce calcium overload and cause

mitochondrial damage (Liu et al., 2022); Ba2+ produced by
BaO2 could act as a potassium ion channel inhibitor and inhibit
tumor cell proliferation (Zhang et al., 2019). In addition, Chen
et al. (2022a) designed a multifunctional nanoscavenger (ECMT
NSs) by self-assembly of CAT, the digestive enzymes chymotrypsin
(CHY), calcium peroxide nanoparticles (CaP), and the
photosensitizer Ce6 and modified it with fibronectin-targeting
CLT1 peptide (Figure 10C). Upon reaching solid tumors, the
synergistic effect of CHY and ROS could effectively destroy the
tumor matrix and facilitate the penetration of ECMT NSs. CaP
could generate large amounts of Ca2+ and H2O2 in the acidic TME,
which facilitated calcium ion therapy. Meanwhile, the generated
H2O2 could be converted to oxygen in the presence of CAT, thus
favoring the remodelling of the tumor hypoxic environment. The
cooperation of calcium ion therapy and PDT could promote
apoptosis and immunogenic cell death of tumor cells, which
induce the activation of CTLs, thus reversing the
immunosuppressive environment.

3 Conclusion and future perspectives

Hypoxia is one of the characteristics of the TME, and there is no
linear relationship between tumor size and the degree of hypoxia,
which may be present even if the tumor diameter is less than 1 mm
(Li et al., 2007). Hypoxia leads to high invasion and metastasis of
cancer cells, further making matters worse. In this paper, we review
the advances in nanomaterial-based approaches to enhance the
efficacy of various oxygen-related antitumour therapies by
improving the TME by oxygen delivery and generation.
Nanomaterials have achieved desirable results in enhancing
tumor therapy. In clinical trials of hypoxic tumor treatment, a
variety of personalized drugs have been developed (Table 3).
NVX-108, the oxygen carrier of the second generation PFC,

TABLE 3 Clinical trials of agents for hypoxia modulation in tumors.

Target Agents Agent type Phase Indication Ref

Oxygen supply HBOC201 Polymerized Hb II/III Orthopedics/cardiac/thymoma Mackenzie et al. (2019), Rubinstein
et al. (2020)

Fluosol-DA PFC-based oxygen
carrier

I/II Glioblastoma; head and neck carcinoma Rose et al. (1986)

NVX-108 PFC-based oxygen
carrier

I/II Glioblastoma Unger et al. (2017)

Hypoxia-ralated signaling
pathways

2ME2 NCD HIF-1α inhibitor II Myeloma; ovarian cancer; resistant prostate
cancer

Matei et al. (2009)

17-AGG HIF-1α inhibitor II Metastatic renal cell carcinoma; relapsed
lymphoma

Solit et al. (2008), Oki et al. (2012)

Vorinostat HIF-1α inhibitor II/III Gliobastoma; melanoma; lymphoma Haas et al. (2014)

Bevacizumab VEGF antibody Approval Non-small cell lung cancer; colorectal
cancer; breast cancer

Chen and Hurwitz (2018)

Sunitinib VEGFR inhibitor III/
Approval

Metastatic renal cell carcinoma (Approval);
Pancreatic tumor

Motzer et al. (2014)

Apatinib VEGFR inhibitor Approval Gastric cancer; lung cancer; liver cancer Roviello et al. (2016)

MEDI9447 CD73 antibody I Solid tumor Hay et al. (2016)
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exhibits significantly higher oxygen delivery capacity, lower
recommended dose, and fewer side effects than Flusol-DA with
respect to direct oxygen delivery. At the same time, polyhedral
hemoglobin has been further explored and practiced in clinical
practice. Currently, a variety of drugs targeting hypoxia-related
signaling pathways have been approved, but the results of various
clinical trials are far from being as expected. Therefore, many critical
issues must be carefully elaborated.

First, nanomaterials themselves lack active targeting and only
take advantage of the EPR of tumors. However, EPR is a
controversial topic in nanomedicine, and its reliability has been
doubted by many researchers (Nichols and Bae, 2014). However, the
accumulation of nanotherapeutics in the tumor site after
intravenous injection is still limited even by the EPR effect, and
most nanotherapeutics are mainly distributed in various organs
(Huang et al., 2021; Dai et al., 2022). In addition, due to multiple
factors, such as the high interstitial fluid pressure of the tumor and
dense intercellular substances, most nanotherapeutics reaching the
tumor site are blocked around the tumor and cannot penetrate into
the tumor, especially vascular insufficiency at the hypoxia site (Ding
et al., 2019). Therefore, nanotherapeutics should be carefully
designed to have highly efficient tumor enrichment and deep
penetration abilities.

Second, the biocompatibility of nanotherapeutics for alleviating
tumor hypoxia in animals needs to be studied in depth. Metal-based
nanoplatforms such as manganese, cerium, copper, and iron are
used for oxygen delivery and generation, and non-specific
accumulation in the body may be potentially toxic to normal
tissues and organs (Lin et al., 2021). Although short-term
(≤30 days) toxicity assessments of these nanoplatforms have been
reported in most literature; however, long-term toxicity
(≥6 months) still needs to be evaluated for future clinical
transformation. In addition, due to the complex and variable
physiological environment, nanotherapeutics may release oxygen
prematurely in the circulation, which may lead to cytotoxicity to
other organs. Therefore, it is important to develop nanomaterials
with controlled release andmonitor their biosafety. Therefore, it is of
great significance to develop nanoplatforms with good biological
safety and controllable oxygen release.

Third, the design of nanoscale oxygen-carrying platforms is
considered suitable for clinical transformation. At present, oxygen
delivery is mainly used as the source of ROS production in various
oxygen-related treatments. How much oxygen can be carried by the
nanoplatform, how much oxygen can be supplied for the tumor, and
how long its oxygen supply can last all need to be considered. Therefore,
when designing nanomaterials, it is necessary to consider the oxygen
supply level, oxygen retention time and oxygen consumption required
for treatment in the tumor to obtain an oxygen production/delivery
nanoplatform. In addition, the design of facile synthetic
nanotherapeutics is conducive to industrial production.

Fourth, nanomaterials should have imaging capabilities that can
reflect hypoxia information during tumor treatment. The current

polarographic Clark electrodes for measuring the partial pressure of
oxygen have technical limitations, are invasive, and cannot be used
for the clinical evaluation of tumor hypoxia. Immunostaining of
hypoxia markers in tumor tissue only shows the hypoxic area of the
tumor and does not provide accurate quantitative information in
real time. The combination of imaging technologies such as CT,
MRI, and positron emission computed tomography (PET) can fill
the gap in tumor hypoxia assessment (Liu et al., 2017b). For
example, hypoxia-sensitive fluorescent nanoprobes can be used
for hypoxia monitoring. Furthermore, the combined use of these
imaging modalities may provide additional valuable information
about tumor physiology. Therefore, the development of
nanoplatforms with hypoxia relief and imaging abilities is a
future trend.
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