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Background: Several clinical trials have demonstrated that glucagon-like peptide-
1 (GLP-1) receptor agonists (GLP-1RAs) reduce the incidence of non-fatal
myocardial infarction (MI) in patients with type 2 diabetes mellitus (T2DM).
However, the underlying mechanism remains unclear. In this study, we applied
a network pharmacology method to investigate the mechanisms by which GLP-
1RAs reduce MI occurrence in patients with T2DM.

Methods: Targets of three GLP-1RAs (liraglutide, semaglutide, and albiglutide),
T2DM, and MI were retrieved from online databases. The intersection process and
associated targets retrieval were employed to obtain the related targets of GLP-
1RAs against T2DM andMI. GeneOntology (GO) and Kyoto Encyclopedia of Genes
and Genes (KEGG) enrichment analyses were performed. The STRING database
was used to obtain the protein-protein interaction (PPI) network, and Cytoscape
was used to identify core targets, transcription factors, and modules.

Results: A total of 198 targets were retrieved for the three drugs and 511 targets for
T2DM with MI. Finally, 51 related targets, including 31 intersection targets and
20 associated targets, were predicted to interfere with the progression of T2DM
and MI on using GLP-1RAs. The STRING database was used to establish a PPI
network comprising 46 nodes and 175 edges. The PPI network was analyzed using
Cytoscape, and seven core targets were screened: AGT, TGFB1, STAT3, TIMP1,
MMP9, MMP1, and MMP2. The transcription factor MAFB regulates all seven core
targets. The cluster analysis generated three modules. The GO analysis for
51 targets indicated that the terms were mainly enriched in the extracellular
matrix, angiotensin, platelets, and endopeptidase. The results of KEGG analysis
revealed that the 51 targets primarily participated in the renin-angiotensin system,
complement and coagulation cascades, hypertrophic cardiomyopathy, and AGE-
RAGE signaling pathway in diabetic complications.

Conclusion: GLP-1RAs exert multi-dimensional effects on reducing the
occurrence of MI in T2DM patients by interfering with targets, biological
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processes, and cellular signaling pathways related to atheromatous plaque,
myocardial remodeling, and thrombosis.
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Introduction

Over the past four decades, the number of people living with
diabetes has increased from 108 million in 1980 to 537 million in
2021, of which the overwhelming majority (over 90%) were
diagnosed as type 2 diabetes mellitus (T2DM). In 2021,
6.7 million deaths were caused by diabetes or its complications
(International Diabetes Federation, 2022). Among the extensive
T2DM-related complications, acute myocardial infarction is a
life-threatening and severe complication (Rosenblit, 2019). More
than one-third of T2DM patients with myocardial infarction (MI)
die within 10 years, and long-term all-cause mortality and
cardiovascular mortality are even higher in younger patients than
in elderly patients (Singh et al., 2020; Zheng et al., 2021). Numerous
studies have shown that strict glycemic control promotes a decrease
in non-fatal MI (Rodriguez-Gutierrez et al., 2019). However,
intensive controls are followed by severe side effects, such as
hypoglycemia; therefore, effective and safe methods for
controlling glycemic levels, while simultaneously reducing risk
factors for MI, act as necessary interventions in treating patients
with T2DM.

Glucagon-like peptide-1 receptor agonists (GLP-1RAs), such as
liraglutide and dulaglutide, are widely used to treat patients with
T2DM and obesity. They exert beneficial effects, including
inhibition of glucagon secretion, delayed gastric emptying,
decreased appetite, rare occurrence of hypoglycemia, and
controlled weight gain (Helmstadter et al., 2022). In recent years,
four clinical trials have shown that dulaglutide (REWIND trial)
(Gerstein et al., 2019), albiglutide (HARMONY trial) (Hernandez
et al., 2018), semaglutide (SUSTAIN-6 trial) (Marso et al., 2016a),
and liraglutide (LEADER trial) (Marso et al., 2016b) have
cardiovascular benefits in patients with T2DM, including
reducing the occurrence of non-fatal MI. A meta-analysis
reported that patients with T2DM benefited from different GLP-
1RAs in terms of major adverse cardiac events, all-cause mortality,
hospital admission for heart failure, and renal function (Sattar et al.,
2021). However, although GLP-1RA therapies are approved and
considered safe for treating patients with T2DM, the exerted
cardiovascular protection mechanism is still not fully clear. An
increasing number of studies have demonstrated that the GLP-1
receptor is expressed in numerous types of cells, including those in
the cardiovascular tissues, such as endothelial cells of the left
ventricle (GTExPortal, 2021). Theoretically, GLP-1 binds to its
receptor, stimulating the adenylyl cyclase pathway, and leading to
insulin synthesis and release. As the treatment for T2DM may not
fully explain the cardiovascular protective effects of GLP-1RAs,
these still must be comprehensively investigated.

Network pharmacology is a big data integration method based
on numerous databases and statistical algorithms (Hong et al.,
2021). It aims to investigate diseases at the systemic level and

define the interaction between drugs and the body based on the
equilibrium theory of biological networks (Zhang, 2016). Chronic
diseases are generally caused by a complicated dysfunction of a
related regulatory network instead of a single protein or gene
(Nogales et al., 2022). Based on an integrated research strategy,
the network pharmacology method provides a more efficient and
convenient system for determining the relationship between drugs
and diseases. In this study, we applied an integrated research strategy
to investigate the mechanism of specific GLP-1RAs in T2DM and
MI, which may provide a comprehensive interpretation of the
cardiovascular protective effect of GLP-1RAs. A flow chart of the
study process is shown in Figure 1.

Materials and methods

Target prediction for GLP-1 agonists

The chemical structures (mainly in SMILES format) of three
GLP-1Ras (liraglutide, semaglutide, and albiglutide) were retrieved
from PubChem, an open chemistry database at the National
Institutes of Health (https://pubchem.ncbi.nlm.nih.gov). As
dulaglutide does not have a defined chemical structure, it was
excluded from our study. Next, the following four target
prediction databases were selected to retrieve targets for the GLP-
1RAs: (1) The Binding Database (http://www.bindingdb.org/bind/
ByTargetNames.jsp), a public and web-accessible database
containing 2,096,653 binding data points for 8,185 proteins and
over 920,703 drug-like molecules (Gilson et al., 2016); (2) The SEA
database (https://sea.bkslab.org/), which can be rapidly used to
search large compounds and to build cross-target similarity maps
(Keiser et al., 2007); (3) The Swiss Target Prediction (http://www.
swisstargetprediction.ch/) that allows estimating the most probable
protein targets of a small molecule (Daina et al., 2019), and (4) the
TargetNet (http://targetnet.scbdd.com/home/index/), an open web
server that can be used to predict the binding of multiple targets for
any given molecule across 623 proteins by establishing a high-
quality model for each human protein (Yao et al., 2016). All targets
from the four databases were further standardized into official gene
symbols using Universal Protein Resource (https://www.uniprot.
org/) (Consortium, 2021) for subsequent analysis.

Target collection for T2DM and MI

With the keywords “type 2 diabetes,” “type 2 diabetes mellitus,”
“myocardial infarction,” “non-fatal myocardial infarction,” “acute
myocardial infarction,” “ST-segment elevation myocardial
infarction,” and “non-ST-segment elevation myocardial
infarction,” the target genes associated with T2DM and MI were
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retrieved from the PharmGkb (https://www.pharmgkb.org/), TTD
(http://db.idrblab.net/ttd/), GeneCards (https://www.genecards.
org), DrugBank (https://go.drugbank.com/), and OMIM (https://
www.omim.org) databases. The PharmGKB database is a
pharmacogenomic knowledge resource containing clinical
information (Whirl-Carrillo et al., 2021). The TTD database
provides information about the known and explored therapeutic
protein and nucleic acid targets, the targeted disease, pathway
information, and the corresponding drugs directed at each target
(Wang et al., 2020). The GeneCards database integrates gene-centric
data from more than 150 web sources, including genomic,
transcriptomic, proteomic, genetic, clinical, and functional
information (Stelzer et al., 2016). The DrugBank database
contains information regarding drugs and drug targets (Wishart
et al., 2018). The OMIM database is a comprehensive and
authoritative compendium of human genes and genetic
phenotypes. The five databases provided comprehensive and
complementary resources for obtaining targets for the diseases.
All T2DM and MI targets from the five databases were
transformed into the official gene symbol format.

Related targets

The targets of GLP-1RAs, T2DM, and MI were uploaded
to an online Venn diagram tool (http://www.bioinformatics.com.
cn/static/others/jvenn/example.html) to obtain a Venn diagram
showing the intersection targets of GLP-1RAs against T2DM
and MI. Then, the GeneMANIA database was applied to find

extra targets, highly associated with the intersection targets,
using a massive set of functional association data (Warde-Farley
et al., 2010). Finally, these targets and intersecting targets
were integrated into a set of related targets for further analysis.

Construction of the drug-target-disease
network

The relationship among the two diseases, three GLP-
1RAs, and extra targets was established using Microsoft
Excel and then input into Cytoscape (Version 3.8.2) to build
and visualize a drug-target-disease network presented by nodes
and edges. Nodes represent drugs, diseases, and target genes,
whereas edges represent the existing correlations between any
two nodes.

Protein-protein interaction (PPI) network
data

The related targets were uploaded to the STRING database
(https://string-db.org/) and processed in a multiple protein
analysis pattern to obtain the PPI network data. The STRING
database focuses on researching the interactive relationships
between proteins, which helps identify core regulatory genes
(Szklarczyk et al., 2019). Some key parameters were also set. For
example, the organism was chosen as Homo sapiens; the interaction
score was selected as high confidence of 0.7, and disconnected nodes

FIGURE 1
Flow chart for the process of the study. The flow chart shows the process of investigating the pharmacologymechanism of GLP-1RAs against T2DM
and MI.
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were hidden in the network. Finally, the network data were
downloaded in a “TSV” format file for further analysis, and a
visualized network image was obtained.

Gene Ontology (GO) and Kyoto
Encyclopedia of genes and genomes (KEGG)
enrichment analysis

To further uncover the underlying biological process and
involved signaling pathways in related targets, the KEGG
pathway and GO enrichment analysis, including biological
process (BP), cellular component (CC), and molecular function
(MF), were conducted using Enrichr web tools (Kuleshov et al.,
2016), and these enrichment results were presented in a scatter
plot using the Appyters web application (Clarke et al., 2021).
Similar gene sets were clustered in a scatter plot using the Leiden
algorithm. According to the q value (adjusted p-value), the top
five GO and KEGG analysis terms were listed and marked in the
scatter plots.

PPI network analysis

The “TSV” file of the PPI network data was input to the
Cytoscape software to identify hub targets and clusters using the
Cytohubba (Version 0.1) and MCODE (Version 2.0.0) plugins,
respectively. The Cytohubba plugin provides 11 methods for
exploring virtual nodes in biological networks (Chin et al., 2014).
Referring to the method from Shen Jiayu et al., the maximal clique
centrality (MCC), edge percolated component (EPC), maximum
neighborhood component (MNC), and degree algorithms (Shen
et al., 2019) were selected in this study to generate four values for
each target, calculate a mean value for each algorithm, and finally
select the targets for which the values were simultaneously higher
than the mean values of each algorithm as the core targets. The

Iregulon (Version 1.3) plugin was used to identify the direct
transcription factor of core targets (Janky et al., 2014). The
MCODE plugin can mine protein complexes or functional
modules from complex protein networks (Bader and Hogue,
2003). All the processing parameters were set to the default
values. Additionally, the most important node in the cluster,
SEED node, may be the critical target of each cluster. Next, the
targets in each cluster were subjected to KEGG pathway enrichment
analysis using the Enrichr web tool.

Results

Potential targets of the agonists/diseases
and their related targets

We collected the molecular structures of three GLP-1RAs
(liraglutide, semaglutide, and albiglutide) from the PubChem
database. The detailed information is listed in Table 1. In total,
210 targets were obtained from the Binding Database: 77 were for
albiglutide, 77 for liraglutide, and 56 for semaglutide. A total of
370 targets were identified using the SEA database: 155 for
albiglutide, 133 for liraglutide, and 82 for semaglutide. The Swiss
database was used to obtain 158 potential targets: 62 for albiglutide,
60 for liraglutide, and 36 for semaglutide. From the TargetNet
database, 167 targets were obtained: 61 for albiglutide, 56 for
liraglutide, and 50 for semaglutide. Finally, 198 targets remained
after the integration and elimination of duplicates.

When collecting disease targets, T2DM-related keywords were
input into the five databases, and a total of 5004 targets were
obtained: 4486 from the GeneCards database, 282 from the
OMIM database, 24 from the PharmGkb database, 109 from the
TTD database, and 103 from the DrugBank database. Finally,
4623 targets remained after removing repetitions. Parallelly, we
also retrieved the MI-related targets from the five databases, and
727 targets were identified, including 313 from the GeneCards

TABLE 1 Chemical information for three GLP-1RAs from the PubChem database.

Order Name PubChem ID Molecular formula Molecular weight 2D structure

1 Albiglutide 145994868 C148H224N40O45 3283.6

2 Liraglutide 16134956 C172H265N43O51 3751

3 Semaglutide 56843331 C187H291N45O59 4114
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database, 18 from the OMIM database, 121 from the PharmGkb
database, 47 from the TTD database, and 133 from the
DrugBank database. A total of 511 unique targets were identified
after removing duplicates. Interestingly, 511 targets of MI were all
covered into targets of T2DM. The online Venn diagram tool
generated 31 intersection targets between drugs and diseases
(Figure 2A).

The GeneMANIA database provided additional 20 targets
(Figure 2B), highly associated with intersection targets. Finally,
51 related targets were identified, indicating potential
mechanisms to understand how diabetic patients benefit from the
three GLP-1RAs in preventing MI. All 51 related targets were
uploaded to the STRING database, and a PPI diagram
(Figure 2C) and a TSV format file were obtained. The PPI
network included 46 nodes and 175 edges.

Construction of the drugs-diseases-targets
network

The three GLP-1RAs, T2DM andMI, and 51 related targets were
input into Cytoscape to construct a drug-disease-target network
(Figure 3A). The network contains 56 nodes and 114 edges. We
found that T2DB was linked to 47 related targets and MI to
38 targets. Furthermore, 25 connections linked albiglutide to all
targets, 21 to liraglutide, and 13 to semaglutide. In contrast, four
nodes (NLRC4, ITGA11, ITGA9, and CTSZ) were not associated
with any agonists or diseases. Although the three agonists had
disparate targets, we intended to explore some shared targets for
intervention in the progression of T2DM and MI, and 12 common
targets were identified (Figure 3B), namely, AGTR1, AGTR2,
CASP1, CCNA2, CCND1, CXCR4, EDNRA, F7, MME, REN,

FIGURE 2
Intersection targets and associated targets constructed the protein-protein interaction (PPI) network. (A) The 31 intersection targets overlap
between the targets of GLP-1RAs and the targets of T2DM with MI. (B) Twenty targets associated with 31 intersection targets were generated via the
GeneMANIA database. (C) The 51 related targets constructed a PPI network containing 46 nodes and 175 edges. The interaction score was set at 0.7 (high
confidence) and hid disconnected nodes in the network.

FIGURE 3
The construction of a drug-target-disease network. (A)Network construction of drug-target-disease composed of three drugs (purple), 102 targets
(cyan), and two diseases (orange) via Cytoscape software. (B) Venn diagram shows 12 common targets of three drugs against T2DM and MI, and these
targets could be regarded as crucial factors mediating the effects of GLP-1RAs on T2DM and MI.
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SCN5A, and SIRT1, suggesting that these 12 targets may contribute
to the fundamental mechanisms of GLP-1RAs against T2DM
and MI.

Analysis of the PPI network of the related
targets

The TSV file of the PPI network was loaded into Cytoscape
software, and the MMC, MNC, EPC, and Degree algorithms in the
“Cytohubba” plugin were used to calculate the core targets. Seven

core targets were identified, including AGT, TGFB1, STAT3,
TIMP1, MMP9, MMP1, and MMP2 (Figure 4A), suggesting that
they may play a pivotal role in the PPI network of GLP-1RAs
interfering with T2DM and MI.

Next, the Iregulon plugin was applied to find the direct
transcription factors of seven core targets, and the normalized
enrichment score (NES) was calculated and used for ranking
purposes (Table 2). The higher the NES value, the better the
confidence. The transcription factor MAFB had the highest
transcription target number and NES value simultaneously
(target number = 7; NES = 7.802) (Figure 4B). The Iregulon

FIGURE 4
Seven core targets and one important transcription factor. (A) The core targets are obtained by the intersection of the four algorithms’ results: AGT,
TGFB1, STAT3, TIMP1, MMP9, MMP1, and MMP2. (B) The interaction between the transcription factor (octagon) and seven core targets (ellipse) was
analyzed and constructed by the Iregulon plugin in Cytoscape software.

TABLE 2 The top ten transcription factors (ranked by NES) related to six core targets.

Rank Transcript factor NES Targets number Motifs/Tracks

1 MAFB 7.802 7 11

2 ATF6 7.084 5 10

3 POU3F4 5.922 4 4

4 CBFB 5.803 3 3

5 CEBPA 5.719 4 10

6 FOXO1 5.684 3 8

7 FOXA1 5.561 6 14

8 NKFB1 5.536 4 6

9 SLC18A1 5.516 2 1

10 POU4F3 5.373 3 8
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plugin detects transcription factors using more than one thousand
ChIP-Seq tracks, providing highly credible results. Therefore, we
suggest that MAFB may positively contribute to the beneficial effect
of GLP-1RAs in reducing MI in T2DM patients.

The MCODE plugin was then used to predict the modules in the
PPI network. The targets were clustered into three modules. Each
module represents a densely connected region of the molecular
interaction network (Bader and Hogue, 2003). Detailed

characteristics of the modules are shown in Figure 5. Moreover,
three seed nodes, TIMP1, AGT, and TFPI (marked by a rhombic
shape), had the highest weights in the respective modules. KEGG
analysis was performed using the Enrichr web tool. The three top-
ranked terms in eachmodule were the AGE-RAGE signaling pathway
in diabetic complications (module 1), the renin-angiotensin system
(RAS) (module 2), and complement and coagulation cascades
(module 3). KEGG results are presented in Table 3.

FIGURE 5
Three modules were clustered from 46 related targets of the PPI network and distinguished by different colors. The module-1 has top clustered
strength according to the score. The size of each node is proportionate to the degree value of the node. The diamond-shaped nodes in each module
represent the seed node with the highest weight.

TABLE 3 The top three terms (ranked by Odds Ratio) from KEGG pathway enrichment analysis for each module.

Module KEGG term Odds ratio q value Genes

1 AGE-RAGE signaling pathway in diabetic complications 207.25 3.57E-06 TGFB1; IL1B; MMP2; STAT3

1 Relaxin signaling pathway 158.94 4.99E-06 TGFB1; MMP1; MMP2; MMP9

1 Bladder cancer 315.06 1.28E-05 MMP1; MMP2; MMP9

2 Renin-angiotensin system 2912.88 4.16E-18 ACE2; ACE; CMA1; ATP6AP2; AGTR1; REN; AGT

2 Renin secretion 204.36 3.22E-07 ACE; CMA1; AGTR1; REN; AGT

2 Diabetic cardiomyopathy 99.96 3.22E-07 ACE; AGTR1; REN; AGT

3 Complement and coagulation cascades 59745.00 6.67E-07 F2; TFPI; F3

3 AGE-RAGE signaling pathway in diabetic complications 100.49 0.044 F3

3 Platelet activation 80.79 0.044 F2
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Global GO and KEGG enrichment analysis

The 51 related targets were uploaded to Enrichr for KEGG and
GO enrichment analyses, and the top five terms ranked by q-value
were selected for display. For the GO enrichment analysis, we
identified the top five terms from BP, CC, and MF. The results are
shown in detail in Figures 6A–C. First, in BP analysis, the top three
terms were extracellular matrix (ECM) organization, angiotensin
maturation, and regulation of angiotensin levels in the blood. The

top three terms for CC were collagen-containing ECM, platelet-alpha
granules, and platelet-alpha granule lumen. In theMF analysis, the top
three terms were endopeptidase activity, serine-type endopeptidase
activity, and serine-type peptidase activity.

The top five terms for global KEGG enrichment analysis are
shown in Figure 6D. The detailed terms were RAS, complement and
coagulation cascades, pathways in cancer, hypertrophic
cardiomyopathy, and the AGE-RAGE signaling pathway in
diabetic complications.

FIGURE 6
GO and KEGG enrichment analysis of 51 related targets via the Enrichr database. (A–C) Biological processes, cellular components, and molecular
functions in GO biological annotation analysis. (D) KEGG pathway enrichment analysis entries. All results show the top five items according to the q value.
The lower the q value, the higher the credibility.
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Discussion

Complications related to diabetes result in 1.5 million deaths per
year, and cardiovascular events are the primary cause of death
(Collaborators, 2018). Several trials have demonstrated that GLP-
1RAs protect diabetic patients from the occurrence of MI, but the
underlying mechanism remains unclear. The present study provides
novel and systematic explanations for how GLP-1RAs decrease the
occurrence of MI in T2DM patients. We applied network
pharmacology to predict 51 related targets between GLP-1RAs
and diseases and filtered out seven core targets: AGT, TGFB1,
STAT3, TIMP1, MMP9, MMP1, and MMP2. MAFB is an
essential transcription factor that regulates the expression of all
seven core targets. The GO enrichment terms mainly involved
angiotensin, ECM, and platelets. For KEGG enrichment analysis,
the related targets were principally enriched in RAS, complement
and coagulation cascades, and the AGE-RAGE signaling pathway in
diabetic complications.

Researchers have proposed various hypotheses to elucidate the
therapeutic mechanism of GLP-1RAs in cardiovascular diseases.
Many studies have consistently reported that several GLP-1RAs
exert inhibitory effects on plaque formation, development, and
rupture (Tashiro et al., 2014; Sudo et al., 2017; Wu et al., 2019;
Li et al., 2020). However, evidence is insufficient to comprehensively
explain the signaling pathways involved in the prophylactic effects of
GLP-1RAs on MI. Our results are aligned with previous studies and
hypotheses while also unveiling novel perspectives. After applying
the CytoHubba plugin using a multi-algorithm, we identified seven
core targets. Four targets (MMP1, MMP2, MMP9, and TIMP1) are
associated with metalloproteinases. MMP1, MMP2, and
MMP9 participate in ECM proteolysis, whereas TIMP1 acts as a
metalloproteinase inhibitor that inhibits the function of MMP 1,
MMP2, and MMP9 (Moore et al., 2012). The dynamic balance
between MMPs and TIMP1 maintains myocardial ECM stability.
Several reports have demonstrated that diabetes disrupts the balance
of MMPs/TIMPs in the serum and related tissues (Li et al., 2013;
Bastos et al., 2017; Zhou et al., 2021), which may significantly
enhance the activities of MMPs and pathological remodeling of
the vessel wall (Wang and Khalil, 2018), subsequently resulting in
obstruction and ischemia. Several reports have shown that GLP-1,
exenatide, and semaglutide reduce MMP expression (such as
MMP1, MMP2, MMP9, and MMP13), which maintains intact
fibrous caps and protects atheromatous plaque from rupture
(Burgmaier et al., 2013; Garczorz et al., 2018; Rakipovski et al.,
2018). GLP-1RAs may contribute to the reduction of atherosclerotic
plaque instability and cardiac ECM degradation by maintaining the
balance between MMPs and TIMPs.

The other three core targets identified were AGT, STAT3, and
TGFB1. AGT-encoding angiotensinogen is an essential component
of the RAS and participates in the regulation of blood pressure, body
fluids, and electrolyte balance. Angiotensinogen undergoes two
cleavages to form angiotensin II (Ang II), which has well-known
adverse effects on the myocardium. A recent study showed that the
mRNA expression of GLP-1R was considerably associated with the
components of the renin-angiotensin-aldosterone system (RAAS)
detected in epicardial and pericardial fat in patients with severe
coronary artery disease (Haberka et al., 2021). However, the
interactive regulation between GLP-1R and the RAAS is still

unclear. TGFB1 mediates Ang II-induced myocardial fibrosis
(Frangogiannis, 2019). Limited data have shown an inconsistent
relationship between GLP-1RAs and TGFB1. Long-acting
semaglutide decreased hepatic TGFB1 expression (McLean et al.,
2021), whereas exendin-4 and liraglutide did not reduce
TGFB1 levels in adipose tissue (Pastel et al., 2016; Pastel et al.,
2017). Although GLP-1 has a beneficial effect on myocardial ECM
remodeling (Robinson et al., 2015), the relationship between GLP-
1RAs and TGFB1 in the heart is unclear and requires further
investigation.

STAT3 responds to cytokines and growth factors. Shiraishi et al.
demonstrated that GLP-1 induces macrophage transformation into
the M2 phenotype, contributing to the beneficial effects of GLP-1
against diabetes (Shiraishi et al., 2012). A later study also provided
consistent evidence that in the process of myocardial repair,
STAT3 activation was a prerequisite for macrophage
transformation to the reparative M2 phenotype (Shirakawa et al.,
2018). Thus, the changes induced by GLP-1RAs contribute to a
reduction in the size and instability of atherosclerotic plaques
(Vinué et al., 2017), which could, to some extent, explain the
lower MI mortality and incidence in patients using GLP-1RA.

The Iregulon plugin used in this study showed that the
transcription factor MAFB may regulate all seven core targets,
suggesting that it exerts crucial effects on GLP-RAs by interfering
with T2DM and MI. In patients with T2DM, MAFB expression is
significantly reduced (Guo et al., 2013). In contrast, overexpressed
MAFB can upregulate some cell cycle regulators and subsequently
promote human β cell proliferation (Lu et al., 2012). Many previous
studies have consideredMAFA to be a characteristic of human β-cell
function, whereas this view is increasingly being challenged
(Velazco-Cruz et al., 2019). Recently, it was suggested that MAFB
could be regarded as an essential regulator of the human β-cell
signature (Russell et al., 2020). However, only a few studies have
tried to reveal the potential relationship between GLP-1 and MAFB.
A recent study showed that exendin (9-39) accelerated the
transdifferentiation from α cells to β cells by reducing MAFB
expression in α cells (Zhang et al., 2019). Therefore, the
relationship between GLP-1 and MAFB in β-cells warrants
further investigation.

The MCODE plugin provides a practical clustering algorithm to
identify the potential functional modules behind these targets. Three
modules were obtained in this study and were subsequently
subjected to KEGG analysis. The enrichment results mainly
focused on the AGE-RAGE signaling pathway, RAS, and
complement and coagulation cascades. These biological processes
have been demonstrated to have a significant pathogenic
relationship with T2DM and MI (Beckman et al., 2002; Husain
et al., 2015; Yamagishi, 2019). Some researchers have provided
evidence regarding the association between GLP-1RAs and the
abovementioned results. GLP-1RAs, such as liraglutide and
exenatide, attenuate RAGE expression in several cell types,
especially under diabetic conditions (Zhang et al., 2016; Zhang
et al., 2017; Zhang et al., 2020), suggesting that the
downregulation of RAGE represents a potential mechanism of
GLP-1RAs against T2DM. In module two, RAS was a significant
KEGG-enriched item. GLP-1RAs play a competitive role in
regulating RAS by inhibiting renin synthesis and increasing the
inactive form of renin in blood circulation (Puglisi et al., 2021). The
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final module included three coagulation-related targets. To date,
there is rare information on the direct influence of GLP-1RAs on the
processes of coagulation cascades. Furthermore, hyperglycemia
facilitates coagulation activation and invalidation of fibrinolytic
activity in diabetic patients (Sechterberger et al., 2015). Thus, we
hypothesize that the effect of GLP-1RAs on blood coagulation is
mediated primarily through controlling blood glucose levels.

Several GLP-1RAs trials have demonstrated that these agonists
reduce cardiovascular risk factors, including glycated hemoglobin
(HbAc1) values, systolic blood pressure, and body weight (Marso
et al., 2016a; Marso et al., 2016b; Hernandez et al., 2018). The
median duration of these trials ranged from 1.6 to 3.8 years.
Cumulative beneficial changes induced by GLP-1RAs contributed
to a decrease in MI prevalence. However, the exact mechanisms
underlying the contribution of GLP-1RAs remain unclear, as no
cardiac tissue was detected in the trials. The GO and KEGG analyses
showed that the enrichment terms mainly focused on ECM,
coagulation, RAS, and endopeptidase. As most matrix
metalloproteinases are elastase-type endopeptidases, mainly
MMP2 and MMP9 (Shapiro, 1998), the dynamic balance of
MMPs/TIMPs maintains the stabilization of the ECM; however,
diabetes disturbs this balance and causes atherosclerotic plaque
disruption, myocardial fibrosis, and remodeling. Four of the
seven core targets were involved in this balance, and AGT and
TGFB1 directly influenced fibrosis and remodeling. These
pathological processes considerably induce cardiac death in
diabetic cardiomyopathy and acute MI. Therefore, our results
suggest that GLP-1RAs play a crucial role in regulating plaque
stability, myocardial fibrosis, and remodeling. Other significant
enrichment sets included coagulation, complement, and platelets.
The burden of thrombus formation induced by coagulation and the
complement system in the coronary artery mainly determines the
MI area and clinical outcomes (Sianos et al., 2007; Sianos et al.,
2010). Thus, inhibition of the coagulation cascades is an effective
measure when plaque ruptures occur. To a certain extent, the related
targets and enrichment terms involved in coagulation and
complement provide a plausible mechanistic explanation for the
fact that some GLP-1RAs reduce non-fatal MI in patients
with T2DM.

Conclusion

Our study provides a comprehensive investigation and analysis
of the multi-dimensional effects of GLP-1RAs on preventing MI in
patients with T2DM, which may be mainly mediated by interfering

with specific targets, biological processes, and cellular signaling
pathways related to atheromatous plaque, myocardial remodeling,
and thrombosis. However, this study has some limitations as it lacks
a series of experiments to prove the proposed hypothesis.
Accordingly, further experiments and multi-omics studies are
warranted to understand the comprehensive mechanism of GLP-
1RAs.
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Glossary

AGE advanced glycosylation end products

AGT angiotensinogen

AGTR1/2 angiotensin II receptor type 1/2

AMI acute myocardial infarction

Ang II angiotensin II

BP biological process

CASP1 caspase 1

CC cellular component

CCNA2 cyclin A2

CCND1 cyclin D1

ChIP-seq chromatin immunoprecipitation-squence

CTSZ cathepsin Z

CXCR4 C-X-C motif chemokine receptor 4

ECM extracellular matrix

EDNRA endothelin receptor type A

EPC edge percolated component

F7 coagulation factor VII

GLP-1 glucagon-like peptide-1

GLP-1RAs GLP-1 receptor agonists

GO gene ontology

ITGA9/11 integrin subunit alpha 9/11

KEGG Kyoto encyclopedia of genes and genes

MAFA MAF BZIP transcription factor A

MAFB MAF BZIP transcription factor B

MCC maximal clique centrality

MCODE molecular complex detection

MF molecular function

MI myocardial infarction

MME membrane metalloendopeptidase

MMP1/2/9 matrix metallopeptidase 1/2/9

MNC maximum neighborhood component

NES normalized enrichment score

NF-κB nuclear factor kappa B subunit 1

NLRC4 NLR family CARD domain containing 4

OMIM online mendelian inheritance in man

ox-LDL oxidized low density lipoprotein

PharmGKB pharmacogenetics and pharmacogenomics
knowledge base

PPI protein-protein interaction

RAAS renin-angiotensin-aldosterone system

RAGE receptor for advanced glycosylation end products

RAS renin-angiotensin system

REN renin

SCN5A sodium voltage-gated channel alpha subunit 5

SIRT1 sirtuin 1

SMILES simplified molecular input line entry system

STAT3 signal transducer and activator of transcription 3

T2DM type 2 diabetes mellitus

TFPI tissue factor pathway inhibitor

TGFB1 transforming growth factor beta 1

TIMP1/2/3 tissue inhibitor of metalloproteinases 1/2/3

TSV tab separated values

TTD therapeutic target database.

Frontiers in Pharmacology frontiersin.org13

Deng et al. 10.3389/fphar.2023.1125753

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1125753

	Systematic investigation of the underlying mechanisms of GLP-1 receptor agonists to prevent myocardial infarction in patien ...
	Introduction
	Materials and methods
	Target prediction for GLP-1 agonists

	Target collection for T2DM and MI
	Related targets
	Construction of the drug-target-disease network
	Protein-protein interaction (PPI) network data
	Gene Ontology (GO) and Kyoto Encyclopedia of genes and genomes (KEGG) enrichment analysis
	PPI network analysis

	Results
	Potential targets of the agonists/diseases and their related targets
	Construction of the drugs-diseases-targets network
	Analysis of the PPI network of the related targets
	Global GO and KEGG enrichment analysis

	Discussion
	Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References
	Glossary


