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Background and ethnopharmacological relevance: The morbidity and mortality
of cardiovascular diseases (CVDs) are among the highest of all diseases,
necessitating the search for effective drugs and the improvement of prognosis
for CVD patients. Paeoniflorin (5beta-[(Benzoyloxy)methyl] tetrahydro-5-
hydroxy-2-methyl-2,5-methano-1H-3,4-dioxacyclobuta [cd] pentalen-1alpha
(2H)-yl-beta-D-glucopyranoside, C23H28O11) is mostly derived from the plants
of the family Paeoniaceae (a single genus family) and is known to possess multiple
pharmacological properties in the treatment of CVDs, making it a promising agent
for the protection of the cardiovascular system.

Aim of the study: This review evaluates the pharmacological effects and potential
mechanisms of paeoniflorin in the treatment of CVDs, with the aim of advancing
its further development and application.

Methods: Various relevant literatures were searched in PubMed, ScienceDirect,
Google Scholar and Web of Science. All eligible studies were analyzed and
summarized in this review.

Results: Paeoniflorin is a natural drug with great potential for development, which
can protect the cardiovascular system by regulating glucose and lipidmetabolism,
exerting anti-inflammatory, anti-oxidative stress, and anti-arteriosclerotic
activities, improving cardiac function, and inhibiting cardiac remodeling.
However, paeoniflorin was found to have low bioavailability, and its toxicology
and safety must be further studied and analyzed, and clinical studies related to it
must be carried out.

Conclusion: Before paeoniflorin can be used as an effective therapeutic drug for
CVDs, further in-depth experimental research, clinical trials, and structural
modifications or development of new preparations are required.
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1 Introduction

Cardiovascular diseases (CVDs), a chronic non-communicable
disease, refer to a group of disorders of the heart or blood vessels.
Common CVD types include coronary heart disease, aortic disease,
peripheral arterial disease, and stroke (Olvera Lopez et al., 2022).
Ischemic heart disease and ischemic stroke are collectively referred
to as atherosclerotic cardiovascular disease (ASCVD), which is the
most prevalently encountered CVD (Arnett et al., 2019; Wong et al.,
2022). Several risk factors for CVDs have been identified, such as
dyslipidemia, diabetes, metabolic syndrome, hypertension, chronic
kidney disease, smoking, age, and genetic history (Yusuf et al., 2020;
O’Sullivan et al., 2022). At present, the mainstream therapy of CVDs
is medication, including antiplatelet drugs, anticoagulants, statins,
anti-thrombotic drugs, beta receptor blockers, antiarrhythmic agent
and nitrates (Leong et al., 2017). Despite the availability of a wide
range of drugs for clinical use, the morbidity and mortality of CVDs
are the highest among all diseases, which not only pose a severe
challenge to human health but also bring a huge economic burden to
individuals, families, and society (Kalogeropoulos and Butler, 2022;
Townsend et al., 2022). As an important problem that must be faced
and solved, it is pivotal to seek effective drugs for treating CVDs, and
improve the prognosis and quality of life of CVDs patients.

Paeoniflorin (C23H28O11, PubChem CID: 442534), with its
chemical name as 5beta-[(Benzoyloxy)methyl] tetrahydro-5-
hydroxy-2-methyl-2,5-methano-1H-3,4-dioxacyclobuta [cd]
pentalen-1alpha (2H)-yl-beta-D-glucopyranoside, is a pinane
monoterpene bitter glucoside distributed in the roots of Paeonia
albiflora Pall, P. suffrsticosa Andr, P. delarayi Franch and other
Paeoniaceae (Paeonia L.). Paeoniflorin is mostly derived from plants
of Paeoniaceae (a single genus family). In 1963, paeoniflorin was first
isolated from the roots of Paeonia albiflora and named by Shibata
and Nakahara (1963). Further studies showed that the basic skeleton
of paeoniflorin is a pinane derivative, which is chemically stable and
is a water-soluble monoterpene glycoside (Xia et al., 2007; Sun B
et al., 2017). As shown in Figure 1, β-d-glucopyranosyl, benzoyl, and
semi-ketal-acetal structures are linked to the backbone, which

formed the complete chemical structure of paeoniflorin (Zhang
et al., 2022).

Studies have shown that the paeoniflorin can regulate glucose
and lipid metabolism, exert anti-inflammatory, anti-oxidative stress,
and anti-arteriosclerotic activities, improve cardiac function, and
inhibit cardiac remodeling, thus making it a promising candidate for
the treatment of CVDs and protection of the cardiovascular system
(Figure 1). Whilst several previous reviews have approached the
usage of paeoniflorin for neurological disorders and
neurodegeneration (Jiao et al., 2021; Hong et al., 2022), analgesia
(Lin et al., 2019; Ruan et al., 2021), antidepressants (Zhang et al.,
2021a; Lei et al., 2022), neuroprotection (Chen et al., 2020; Guo et al.,
2021), and immunomodulation (Chen et al., 2016; Yang and Wei,
2020), a review specific to paeoniflorin’s protective effect on the
cardiovascular system is notably lacking. At present, no review
articles about paeoniflorin protecting the cardiovascular system
have been found in PubMed or other relevant databases. This
article is thus dedicated to providing an overview of the
pharmacological effects and possible mechanisms of paeoniflorin
in the treatment of CVDs, in the hopes of further advancing its
development and application (Figure 2).

2 Plant sources of paeoniflorin

Paeoniaceae is a monofamily consisting of 34 species, mainly
distributed in temperate Eurasia, northwest Africa and western
North Americ (Hong, 2011). In China, plants of the Paeoniaceae
family are widely cultivated and used for their special medicinal
benefits and ornamental value, which makes China the region with
the highest concentration of Paeoniaceae in the world (Zhou et al.,
2021). The most representative plant in Paeoniaceae is Paeonia
lactiflora Pall (Shaoyao in Chinese). As a medicinal plant, Shaoyao
was first recorded in the book Shennong’s Herbal Classic of Materia
Medica and has a history of more than 2000 years (Xu et al., 2021).
In Zhang Zhongjing’s book “Treatise on Febrile Diseases,” there are
113 prescriptions, 33 of which contain Shaoyao, accounting for 29%
of all prescriptions. In the northern and southern dynasties, Tao
Hongjing pointed out that Shaoyao can be divided into Chishao
(Paeoniae Radix Rubra) and Baishao (Paeoniae Radix Alba) in
Chinese, which are included in modern Chinese pharmacopoeia
(Committee, 2020).

As the traditional Chinese medicines in China, Chishao and
Baishao are all processed from the roots of Paeoniaceae plants. The
Chinese Pharmacopoeia records that Chishao is the dried root of
Paeonia lactiflora Pall or Paeonia veitchii Lynch, while Baishao is the
dried root of Paeonia lactiflora Pall (Committee, 2020). Paeoniflorin
is the main active ingredient of Chishao and Baishao (Zhang et al.,
2022). Chishao and Baishao derive from the same species or closely
related plants, which contain similar chemical components, but the
paeoniflorin content in Chishao is slightly higher than that in
Baishao. According to the Chinese Pharmacopoeia, the
paeoniflorin content in dried Baishao should be higher than
1.6%, and in Chishao should be higher than 1.8% (Committee,
2020). In addition to the roots of Paeoniaceae, paeoniflorin is
distributed throughout the plant including flowers, stems, leaves,
fruits, seeds and rhizomes (Zhang et al., 2022). Since the biosynthetic
pathway of paeoniflorin has not been fully elucidated, the chemical

FIGURE 1
Chemical structure of paeoniflorin.
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synthesis process is complicated and the production cost is high,
therefore, the currently applied paeoniflorin is mainly extracted
from Paeoniaceae plants (SUN L C et al., 2017). However, the low
yield of this generation method does not allow for economical mass
production and is increasingly difficult to meet the current
increasing demand in pharmaceutical formulations. In the next
stage, we should further study the specific modification stage of
paeoniflorin in structure and function, further clarify the
biosynthesis pathway, and increase the production of paeoniflorin
on the basis of environmental protection.

3 Pharmacological effects of
paeoniflorin on the cardiovascular
system

3.1 Regulation of glucose and lipid
metabolism

Dyslipidemia, obesity, and overweight are risk factors for
hypertension, coronary heart disease, and peripheral vascular
disease (Seravalle and Grassi, 2017; Pirillo et al., 2021).
Paeoniflorin has been shown to reduce body weight, regulate
lipid metabolism and serum glucose levels, increase insulin
sensitivity in obese mice, and improve the accumulation of

ectopic lipids (Zhang et al., 2015; Ma et al., 2017a). It has also
been reported to significantly reduce the levels of total cholesterol,
low-density lipoprotein, and triglycerides in hyperlipidemic rats
(Yang et al., 2004; Li et al., 2017a). However, other studies
suggest that the effect of paeoniflorin is mainly achieved by
lowering cholesterol, with only a limited impact on triglyceride
levels (Zhang et al., 2015). Thus, further investigation and discussion
on the effects of paeoniflorin on triglyceride metabolism is
warranted. The identification of lipid metabolism genes targeted
by paeoniflorin has indicated it can regulate lipid synthesis and
metabolism through several signaling pathways, such as the de novo,
lipid oxidation, cholesterol synthesis and output pathways (Zhang
et al., 2015). It has been suggested that paeoniflorin can reduce lipid
synthesis by inhibiting SREBP-1c via the de novo pathway and
decreasing the expression of FAS, ACC-α, and other proteins (Ma
et al., 2017a). It has been found that enzyme 3-hydroxy-3-
methylglutaryl coenzyme A reductase (HMG-COAR) is an
important enzyme for cholesterol synthesis, and cytochrome
P4507A1 (CYP7A1) is a rate-limiting enzyme in the classical
pathway of bile acid synthesis. The two enzymes are the key
enzymes to regulate the metabolic balance of cholesterol in the
body (Osaki et al., 2015). Studies have shown that paeoniflorin can
regulate cholesterol synthesis and metabolism by decreasing HMG-
CoAR activity and increasing CYP7A1 expression (Zhang et al.,
2015; Ma et al., 2017a). Furthermore, Paeoniflorin can attenuate the

FIGURE 2
Multi-system pharmacological effects of paeoniflorin. Paeoniflorin has therapeutic effects on many diseases, and can prevent and treat kidney
diseases, inflammatory bowel disease, rheumatoid arthritis, hypertension and other diseases through anti-inflammatory and anti-oxidant effects. In
addition, paeoniflorin can improve glucose and lipid metabolism, resist atherosclerosis, inhibit myocardial remodeling, and improve
ischemia-reperfusion injury.
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TABLE 1 Summary of pharmacological effects of paeoniflorin (PF).

Type Model Dose (PF) Group Duration Method Effect (PF group) References

vitro LPS-exposed microglia model 48 μg/mL (100 μM), 96 μg/
mL (200 μM)

(1) Control (intact cells); (2) An
LPS-treated group (100 ng/mL); (3)
Low-dose group (LPS + PF
100 μM); (4) High-dose group (LPS
+ PF 200 μM).

1 h ELISA kits, Western blotting analyses,
qRT-PCR.

NF-κB↓, TNF-α↓, IL-1β↓, IL-6↓,
IFNγ↓, IL-4↑, IL-10↑, ROS↓,
MOD↓, SOD↑, GSH↑

Chen et al.
(2020)

vivo Non-alcoholic fatty liver disease model
(HFD-fed C57BL/6J mice)

Corresponding diet
supplemented with
0.05% PF

(1) Control (normal control mice);
(2) Control + PF; (3) High-fat diet-
fed mice; (4) High-fat diet-fed mice
+ PF.

24 weeks Biochemical analysis, histologcal
analysis, qRT-PCR.

TC↓, TG↓, LDL-C↓, HDL-C↓,
ALT↓, AST↓, FAS↓, PPARα ↑,
HMGCR↓, PPARγ↓, ABCA-1↓,
TNF-α↓, IL-1↓, IL-6↓, MCP-1↓

Zhang et al.
(2015)

vivo Non-alcoholic fatty liver disease model
(HFD-fed male Sprague-Dawley rats)

20 mg/kg (1) Control; (2) HFD group; (3)
HFD + PF (PF 20 mg/kg).

4 weeks Biochemical analysis, histologcal
analysis, Western blotting analyses.

TC↓, TG↓, ALT↓, AST↓, SREBP-
1c↓, FAS↓, ACCα↓, HMGCR↓,
CYP7A1↑, p-IRS-1↓, p-Akt↑,
p-GSK3β↑, ROS↓, MOD↓,
CYP2E1↓, HOMA-IR index↓

Ma et al. (2017a)

vivo + vitro Atherosclerosis rat model was established
by administration of excessive vitamin D
and cholesterol. Cell model of
atherosclerosis (VSMCs)

vivo: 10, 20 mg/kg; Vivo: (1) Control (SD rats + saline);
(2) Atherosclerotic group (vitamin
D3 + fat emulsion); (3) Low-dose
group (PF 10 mg/kg/day); (4)
High-dose group (PF 20 mg/kg/
day); (5) Simvastatin group
(simvastatin 5 mg/kg).

vivo:
15 weeks;

Histopathologic evaluation of aortas,
MTT assay, ELISA kits, qRT-PCR,
Western blot analysis.

TLR4↓, MyD88↓, IκBα↓, NF-
κB↓, TC↓, TG↓, LDL-C↓, IL-1β↓,
TNF-α↓, IL-6↓

Li et al. (2017a)

vitro: 5, 10, 30, 60,
100 μmol/L

vitro: (1) Control; (2)
Atherosclerotic group (palmitic
acid 100 μmol/L); (3) Low-dose
group (PF 60 μmol/L); (4) High-
dose group (PF 100 μmol/L).

vitro:1 h

vitro 3T3-L1 adipocyte insulin resistance
model

12.5, 25, 50, 100 mg/L (1) Control; (2) TNFα group
(10 ng/mL); (3) Insulin group
(10 nM); (4) PF group; (5) PF +
TNFα group; (6) TNFα + insulin
group.

24 h ELISA kits, BCA protein assay, MTT
assay, Western blot analysis, qRT-PCR.

TNF-α↓, PPARγ↓, IL-6↓,
MCP-1↓

Kong et al.
(2013)

vivo Apolipoprotein E null mice 10, 20, 30 mg/kg (1) Control (C57BL/6J); (2)
Untreated ApoE −/− group; (3) PF
+ ApoE −/−group (10, 20,
30 mg/kg).

6 weeks T-AOC detection kit, qRT-PCR,
Western blot analysis.

ANGPTL3↓, GALNT2↑, LPL↑,
TC↓, LDL-C↓, TG↓, HDL-C↑

Xiao et al. (2017)

vivo + vitro Experimental DIC mouse model; cell
inflammation model (RAW 264.7 murine
macrophages)

15, 30, 60 mg/kg vivo: (1) Control; (2) LPS
(60 mg/kg); (3) Heparin
(10 IU/kg); (4) low-PF treatment
(15 mg/kg); (5) Medium-PF
treatment (30 mg/kg); (6) High-PF
treatment (60 mg/kg). Thereafter
mice in each group were randomly
divided into three groups: 0-h
group, 2 h group, and 8 h group.

vivo:
every 2 h

MTT assay, ELISA kits, Western blot
analysis.

NF-κB↓, TNF-α↓, IL-6↓, TLR4↓,
IκBα↓

Fang et al.
(2020)
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TABLE 1 (Continued) Summary of pharmacological effects of paeoniflorin (PF).

Type Model Dose (PF) Group Duration Method Effect (PF group) References

vitro: (1) Control, (2) LPS (10 μg/
mL), (3) PF treatment groups (30,
60, 120 μm).

vitro: 30 min

vitro Coculture of differentiated 3T3-L1
adipocytes and RAW 264.7 macrophages

6.25, 12.5, 25, 50, 100 mg/L (1) Vehicle (0.1% DMSO); (2)
Negative control (TNF α or MCP-1
levels released by macrophages
alone, FFA from adipocytes alone);
(3) PF treatment (1–100 mg/L).

24 h MTT assay, ELISA kits, acyl-coenzyme A
oxidase-based colorimetric assay kit,
BCA protein assay, Western blot
analysis, qRT-PCR.

MAPKs↓, NF-κB↓, ERK1/2↓,
p38↓, JNK↓, IKK↓, TNF-α↓,
MCP-1↓, FFA↓

Jiang et al.
(2012)

vitro Lysophosphatidylcholine-induced
inflammatory factor production in
HUVECs

1, 10, 100 μmol/L (1) Control; (2) LPC, (1 μg/mL); (3)
PF + LPC group (PF: 1, 10,
100 μmol/L); (4) PF group
(100 μmol/L); (5) ethanol (less than
0.1% v/v).

2 h MTT assay, ELISA kits, qRT-PCR,
Western blot analysis.

HMGB1↓, RAGE↓, TLR-2↓,
TLR-4↓, NF-κB↓, ICAM-1↓,
MCP-1↓, IL-6↓, TNF-α↓

Li et al. (2013)

vitro LPS-stimulated RAW264.7 macrophages 25, 50, 100, 200, 400 μM (1) Control; (2) LPS (1 μg/mL); (3)
PF + LPS group. (PF: 100, 200,
400 μg/mL)

24 h ELISA kits, Western blot analysis,
qRT-PCR.

NF-κB↓, ERK1/2↓, MAPKs↓,
COX-2↓, iNOS↓, ROS↓

Li et al. (2022)

vitro LPS-stimulated RAW264.7 macrophages 11, 33, 100 µM (1) Control; (2) LPS (60 mg/kg); (3)
PF + LPS group (PF: 11, 33,
100 μM); (4) DXM + LPS group
(DXM: 33 μM).

2 h Microplate reader, ELISA kits. NO↓, TNF-α↓, IL-6↓ Bi et al. (2017)

vitro M1/M2 cells differentiated from bone
marrow progenitor cells of male Balb/c
mice

1, 10, 100 μg/mL (1) Control; (2) LPS (100 ng/mL);
(3) PF + LPS group (PF: 1, 10,
100 μg/mL); (4) IL-4 group (20 ng/
mL); (5) IL-4 + PF group (PF: 1, 10,
100 μg/mL).

24 h CCK-8, ELISA kits, Western blot
analysis, qRT-PCR, NO assay kit,
arginase assay Kit, immunofluorescence
analysis.

NF-κB↓, iNOS↓, NO↓, STAT6↑,
IL-4↑, M1↓, M2↑

Zhai et al. (2016)

vivo + vitro Male C57/BL6 mice,
RAW264.7 macrophages

vivo: 1, 5, 25 mg/kg vivo: (1) Control; (2) LPS (200 ng);
(3) PF + LPS group (PF: 1, 5,
25 mg/kg).

vivo: 1 week MTT assay, ELISA kits, qRT-PCR,
Western blot analysis, calcium imaging,
protein kinase C activity assay kit.

TNF-α↓, IL-1β↓, IL-33↓, NF-
κB↓, TLR4↓, MAPKs↓, IκBα↓,
Ca2+ influx↓

Li et al. (2020)

vitro: 0–25 μM vitro: (1) Control; (2) LPS (1 μg/
mL); (3) PF group (10 μg/mL) (4)
PF + LPS group.

vitro: 24 h

vivo + vitro vivo: Diabetic mice model (8–10 weeks
males WT- C57BL/6J and TLR4−/−
mice);

vivo: 25, 50, 100 mg/kg vivo: (1) WT; (2) WT + STZ; (3)
WT + STZ + PF (PF:25, 50,
100 mg/kg); (4) TLR4−/− mice; (5)
TLR4−/− + STZ.

vivo:
12 weeks

Pathology and immunohistochemistry
analysis, CCK-8 kit, cell migration assay,
flow cytometry analyses, confocal
microscopy analysis, ELISA kits,
Western blotting analyses, qRT-PCR.

TLR4↓, IL-1β↓, MCP-1↓, iNOS↓,
MyD88↓, IκBα↓, NF-κB↓,
p-IRAK1↓, Trif ↓, p-IRF3↓, TNF-
α↓, IL-1β↓, MCP-1↓

Shao et al.
(2019)

vitro: BMDM (6–8 weeks old male
TLR4−/− and C57BL/6JWT).

vitro: 10−8–10−3 mol/L vitro: (1) Normal glucose
concentration control group (LG),
(2) Normal glucose concentration
+ PF intervention group (LG + PF),
(3) High-glucose stimulation group
(HG), (4) PF intervention group
(HG + PF), (5) Normal glucose

vitro: 24 h

(Continued on following page)
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TABLE 1 (Continued) Summary of pharmacological effects of paeoniflorin (PF).

Type Model Dose (PF) Group Duration Method Effect (PF group) References

concentration TLR4 knockout
group (TLR4−/−), (6)
TLR4 knockout macrophages +
high-glucose stimulation group
(TLR4−/− + HG), and (7)
TLR4 knockout macrophages +
high-glucose stimulation + PF
intervention group (TLR4−/− +
HG + PF).

vitro LPS-stimulated HUVECs 20, 50, 80 µM (1) Control; (2) LPS (1 μg/mL); (3)
PF group (PF: 20, 50, 80 µM) (4) PF
+ LPS + 4-PBA (PF: 20, 50, 80 μM;
PBA: 5 mM).

24 h MTT assay, ELISA kits, qRT-PCR,
Western blot analysis, transmission
electron microscope assay,
immunofluorescence staining.

IL-6↓, MCP-1↓, GRP78↓,
CCAAT↓, IRE1α↓, NF-κB↓

Chen et al.
(2018a)

vivo + vitro vivo: Amouse model of cutaneous Arthus
reaction;

vivo: 25, 50 mg/kg vivo: (1) Control; (2) IC (IgG 40 µg/
30 µL in PBS); (3) PF + IC group
(PF: 25, 50 mg/kg);

vivo: 0.5 h Immunohistochemistry, analysis of
myeloperoxidase activity, ELISA kits,
Western blotting analyses, qRT-PCR,
adhesion assay.

E-selectin↓, ICAM-1↓, TNF-α↓,
p38↓, JNK↓

Chen et al.
(2013)

vitro: TNF-α-induced HDMECs vitro: 125, 250, 500 μM vitro: (1) Control; (2) TNF-
α(10 ng/mL); (3) PF + TNF-α
group (PF: 125, 250, 500 μM).

vitro: 0.5 h

vivo + vitro
+ vivo

vivo: ANIT-induced cholestatic liver
injury model (C57BL/6 mice)

vivo: 75, 150, 300 mg/kg vivo: (1) Control; (2) ANIT
(80 mg/kg); (3) PF + ANIT (PF 75,
150, 300 mg/kg); (4) Red Tuihuang
particles (3.9 g/kg) + ANIT.

vivo: 10 days Uridine diphospho-
glucuronosyltransferase assay, MDA
assay kit, Western blotting analyses,
MTT assay.

ALT↓, AST↓, TBIL↓, DBIL↓,
TBA↓, ALP↓, MDA↓, GSH↑,
Nrf2↑, Ntcp↑, Nox4↓, NTCP↑,
NOX4↓, NQO1↑

Mao et al. (2022)

vitro: Nrf2 plasmid or siRNA-Nrf2
transfection on LO2 cells

vitro: 4, 20, 100, 500 µM vitro: (1) Control; (2) ANIT
(50 µM); (3) PF + ANIT (PF
100 µM)

vitro: 24 h

vivo: ANIT-induced cholestatic liver
injury model (Nrf2−/− mice)

vivo: (1) Control; (2) ANIT
(80 mg/kg); (3) PF + ANIT (PF
300 mg/kg).

vivo: 10 days

vivo SAP lung injury rat model 40 mg/kg (1) Sham operation group; (2) SAP
group (5% sodium taurocholate
(1 mL/kg) was retrogradely injected
into the biliopancreatic duct at a
rate of 0.1 mL/min); (3) PF
treatment group (40 mg/kg); (4)
Dexamethasone-positive control
group (2 mg/kg).

24 h H&E Staining, biochemical indicators,
ELISA kits, Western blotting analyses.

AMY↓, lipase activity↓, LDH↓,
MDA↓, SOD↑, TNF-α↓, IL-6↓,
IL-10↑, Cyt-Nrf2↑, HO-1↑,
NQO1↑

Hu and Yang
(2022)

vivo A hyperlipidemic rat model 500 mg/kg, 300 mg/kg, and
100 mg/kg

(1) Normal control group; (2) High
cholesterol group; (3) High
cholesterol + simvastatin group; (4)
High cholesterol + PF group (PF:
500 mg/kg, 300 mg/kg,
100 mg/kg).

12 weeks Rat liver histology and
immunohistochemical analysis, Western
blotting analyses.

HMG-CoAR↓, LDLR↑, PPAR-
α↑, CYP7A1↑, SOD↑, MDA↓,
Nrf2↑

Hu et al. (2017)

(Continued on following page)
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TABLE 1 (Continued) Summary of pharmacological effects of paeoniflorin (PF).

Type Model Dose (PF) Group Duration Method Effect (PF group) References

vitro Oxidative damage model induced by
advanced oxidation protein products
(AOPPs) in HUVECs

50–200 μM (1) Control; (2) BSA (200 μg/mL);
(3) AOPPs (200 μg/mL); (4) PF
(200 μM); (5) Different inhibitors
(RAGE blocking agent FPS-ZM1,
NADPH oxidase inhibitor
Apocynin, ROS scavenger NAC,
NF-κB inhibitor BAY11-7082).

1 h MTT assay, DCFH-DA staining, flow
cytometry, confocal microscopy, ATP
determination kit, Western blotting
analyses.

MMP↑, ATPz↑, NF-κB p65↓,
Nox1↓, Nox2↓, HIF-4α↓,
VEGF↓, RAGE↑

Song et al.
(2017)

vitro DOX-induced cardiomyocyte apoptosis
model (H9c2 cell)

100 μmol/L (1) Control (cultured in normal
condition); (2) DOX group
(incubated with 5 μmol/L DOX for
24 h); (3) PF + DOX group (cells
were treated with 100 μmol/L PF
for 2 h prior to exposure to 5 μmol/
L DOX for 24 h); (4) PF group
(incubated with 100 μmol/L PF
for 26 h).

26 h MTT assay, cardiomyocyte apoptosis
assay, intracellular ROS assay, Western
blotting analyses, qRT-PCR.

ROS↓, microRNA-1↓, Bcl-2↑ Li et al. (2016)

Abbreviations: AMY, serum amylas; ANIT, α-naphthalene isothiocya-nate; AOPPs, advanced oxidation protein products; ApoE −/−, apolipoprotein E null; ALT, alanine aminotransferase; ALP, alkaline phosphatase; AST, aspartate aminotransferase; ATP, adenosine

triphosphate; BMDMs, bone marrow-derived macrophages; BSA, bovine serum albumin; CCK-8, cell counting kit-8; COX, cyclooxygenase; DBIL, direct bilirubin; DCFH-DA. 2′, 7′-dichlorofluorescein-diacetate; DOX, doxorubicin; DXM, dexamethasone; ELISA,

enzyme-linked immunosorbent assay; ERK, extracellular signal-regulated kinase; FFA, free fatty acid; HDL-C, high-density lipoprotein cholesterol; HDMECs, human dermal microvascular endothelial cells; HFD, high-fat diet; HMG-CoAR, 3-hydroxy-3-

methylglutharyl-coenzyme A reductase; HO-1, heme oxygenase-1; HOMA-IR, homeostasis model of insulin resistance; HUVECs, human umbilical vein endothelial cells; IC, immune complex; iNOS, inducible nitric oxide synthase; ICAM, inter cellular adhesion

molecule; IL, interleukin; JNK, c-Jun N-terminal kinase; LDL-C, low-density lipoprotein cholesterol; LPC, lysophosphatidylcholine; LPS, lipopolysaccharide; MAPK, mitogen-activated protein kinase; MMP, matrix metalloproteinase; MTT, thiazolyl blue tetrazolium

bromide; NF-E2 p45-related factor 2 (Nrf2); NF-κB, nuclear factor-kappa B; Nqo1 (NRF2 downstream gene); NTCP, sodium taurocholate co-transporting polypeptide; PBA, phenylbutric acid; ROS, reactive oxygen species; RT-qPCR, reverse transcription polymerase

chain reaction; SAP, severe acute pancreatitis; SOD, superoxide dismutase; STZ, streptozotocin; TBA, total bile acid; TBIL, total bilirubin; TC, total cholesterol; TG, triglycerides; TLR, Toll-like receptor; TNF, tumor necrosis factor; TPG, total paeony glucosides VEGF,

vascular endothelial growth factor; WT, Wild-type.

↑ represents upregulation of expression andid ↓ represents downregulation of expression.
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lipolysis in adipocytes and ameliorate tumor necrosis factor-α
(TNF-α) -induced dysfunction of adipocytes (Kong et al., 2013).
In addition, the N-acetylgalactosamine transferase 2-angiopoietin
like protein 3-lipoprotein lipase (GALNT2-ANGPTL3-LPL)
pathway, which is closely related to dyslipidemia and able to
directly affect HDL metabolism, has been reported to be
effectively regulated by paeoniflorin (Khetarpal et al., 2016; Xiao
et al., 2017). A study by Xiao and colleagues showed that 6-week
paeoniflorin treatment was able to significantly reduce
ANGPTL3 expression, promote GALNT2 and LPL expression,
increase serum HDL cholesterol levels, and regulate lipid
metabolism in ApoE (−/−) mice (Xiao et al., 2018) (Table 1).

3.2 Anti-inflammatory effect

Inflammation is a major pathological factor contributing in the
occurrence and progression of CVDs such as atherosclerosis,
thrombosis, myocardial infarction, and ischemia-reperfusion
injury (Kim and Conte, 2020). Paeoniflorin has prominent anti-
inflammatory effects, which can act by regulating a variety of
signalling pathways, such as the GPCR, MAPKs/NF-κB, PI3K/
Akt/mTOR, JAK2/STAT3, and TGFβ/Smad pathways (Tu et al.,
2019; Xin et al., 2019; Zhang and Wei, 2020). Paeoniflorin can
achieve the regulation of anti-inflammatory effects on macrophages
and endothelial cell dysfunction by regulating upstream and
downstream molecules of NF-κB signaling pathway, which may
indicate that paeoniflorin can treat and alleviate cardiovascular
diseases from anti-inflammatory mechanism (Table 1).

TNF-α, a prototype member of the tumor necrosis factor
superfamily, is predominantly secreted by macrophages and
monocytes. Being a major proinflammatory cytokine, it triggers a
series of inflammatory processes (Aggarwal et al., 2012).
Paeoniflorin can attenuate TNF-α expression by suppressing the
activation of the NF-κB signaling pathway (Fang et al., 2020). The
paracrine loops of free fatty acids (FFA) and TNF-α present between
adipocytes and macrophages form a vicious cycle of inflammation
that increases inflammatory changes and insulin resistance in
adipose tissue of obese individuals (Suganami et al., 2005).
Meanwhile, paeoniflorin is capable of lowering FFA and TNF-α
levels by interfering in the interaction between adipocytes and
macrophages, thereby impeding the occurring of related
inflammatory reactions (Jiang et al., 2012). Research has also
demonstrated its capacity to inhibit TNF-α-stimulated
phosphorylation at ERK, JNK, and IKK subunits, as well as
reduce the expression of pro-inflammatory factors such as IL-6
and MCP-1 in adipocytes (Kong et al., 2013). Pathogen pattern
recognition receptors, such as Toll-like receptors (TLRs), can
regulate the cytokine response to various inflammatory stimuli
(de Kleijn and Pasterkamp, 2003). TLR4 can mediate the
activation of the downstream factors MyD88 and NF-κB and
induce a surge in proinflammatory cytokines like Il-1β, IL-6, and
TNF-α (Fitzgerald et al., 2001). Moreover, paeoniflorin has been
found to effectively regulate TLR-2 and TLR-4 expression, thereby
decreasing inflammation by suppression of the TLR4/MyD88/NF
κB pathway (Li et al., 2013; Li et al., 2017a) (Table 1).

Macrophages are key effectors of inflammation and the innate
immune response, and play an pivotal role in the pathogenesis of

many CVDs (Xu et al., 2022). The study found that paeoniflorin can
reduce the inflammatory response of LPS-stimulated
RAW264.7 macrophages by inhibiting the NF-κB/ERK1/2/
p38 MAPK signaling pathway (Bi et al., 2017; Li et al., 2022).
Linked to that, macrophages show the capability to polarize to
M1 and M2 phenotypes (Murray, 2017). Paeoniflorin can decrease
the pro-inflammatory activities of M1 macrophages by
downregulating inducible nitric oxide synthase (iNOS) expression
and NO production through the NF-κB signaling pathway, while
simultaneously facilitating the anti-inflammatory function of
M2 macrophages by upregulating Arg-1 activity attainable by
modulation of the IL-4/STAT6 signaling pathway (Zhai et al.,
2016). In addition, Interleukin 33 (IL-33) is a newly identified
member of the interleukin family that macrophages, such as
M2 macrophages, can secrete (Furukawa et al., 2017). When
tissue or cell injury occurs, the release of IL-33 increases, and
further adjusts macrophage function by controlling chemokine
expression and triggering macrophage polarization (Joshi et al.,
2010). Paeoniflorin can regulate macrophage polarization and
inhibit IL-33 production by macrophages by regulating the
TLR4/NF-κB/P38 MAPK signaling pathway (Chen et al., 2020; Li
et al., 2020). However, other studies have suggested that paeoniflorin
cannot directly inhibit the activation of macrophages but affects
macrophages by inhibiting the expression of iNOS and the
production of TNF-α, IL-1β, and MCP-1 (Shao et al., 2019).
Therefore, the specific action mode of paeoniflorin in regulating
the function of macrophages deserves further study and discussion
(Table 1).

Endothelial dysfunction is the primary pathological
manifestation of several CVDs (Badimon et al., 2012). On a
molecular level, inflammation associated with endoplasmic
reticulum (ER) stress appears to be the primary culprit of
endothelial dysfunction (ED) (Battson et al., 2017). Paeoniflorin
has been reported to be able to restrain the inositol enzyme 1alpha
(IRE1α)/NF-κB pathway, eventually diminishing vascular
inflammation related to endoplasmic reticulum stress and
subsequently reducing endothelial dysfunction (Chen et al.,
2018a). Additionally, endothelial cell injury can lead to increased
inter cellular adhesion molecule-1 (ICAM-1) expression, which
further induces monocyte migration, adhesion, activation, and
the ensuing intensify of inflammatory response locally (Most
et al., 1992; Frank and Lisanti, 2008). Studies have unveiled that
paeoniflorin has the capacity to reduce ICAM-1 expression and
inhibit vascular damage (Chen et al., 2013) (Table 1).

By combing through the above research literature, we found
that currently, there is limited evidence to directly verify the
anti-inflammatory role of paeoniflorin in cardiovascular disease.
However, the results of the in vitro studies do demonstrate a
remarkable anti-inflammatory effect for paeoniflorin, which can
regulate macrophages and endothelial cells, the two vital cell
types in the cardiovascular system. Therefore, its potential anti-
inflammatory role in cardiovascular disease warrants further
exploration and examination. Notwithstanding, there are a few
shortcomings visible in the above research. For example, the
highest dose of paeoniflorin used by studies conducting cell
experiments stands in great disparity, with some suggesting a
maximum dose of 100 μM (Bi et al., 2017), while others pointing
out that 15 μM paeoniflorin could show obvious cytotoxicity
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when cultured for 48 h (Li et al., 2020). Since dose concentration
is the essential information in pharmacology, it may significantly
hamper forward fundamental and clinical studies and, therefore,
subsequent researches should focus on precisely figuring out the
maximum efficacious dose of paeoniflorin in vivo or in vitro
studies and provide detailed, experimental data for further
studies (Table 1).

3.3 Anti-oxidative effect

In addition to hypertension, diabetes, dyslipidemia,
overweight, obesity, and inflammation, increased oxidative
stress i is considered to be a major contributing factor to the
increased incidence of certain CVDs (Senoner and Dichtl, 2019;
Shaito et al., 2022). Oxidative stress refers to the excessive
generation or accumulation of free radical species, such as the
oxygen reactive species (ROS) (Di Meo and Venditti, 2020).
Previous studies have shown that paeoniflorin can not only
downregulate ROS-producing systems, but also intensifying
antioxidant enzyme systems, which helps in managing ROS
levels and ameliorating the pathological damage induced by
oxidative stress (Han et al., 2022; Hu and Yang, 2022; Mao
et al., 2022). For instance, paeoniflorin can increase superoxide
dismutase (SOD) levels, reduce malondialdehyde (MDA)
concentration, and upregulate nuclear factor erythroid factor
2-related factor 2 (Nrf2) expression, thereby augmenting liver
antioxidant capacity and protecting the liver from oxidative
stress (Hu et al., 2017). At present, At the moment, there is
only a limited number of studies regarding the antioxidant
effects of paeoniflorin on CVDs. Elevated ROS levels can
induce inflammation and mitochondrial dysfunction, thereby
affecting endothelial cell and macrophage function and
ultimately accelerating the occurrence of CVDs (Forstermann
et al., 2017). Paeoniflorin can suppress the secretion of cytokines
and the expression of cyclooxygenase-2 (COX-2) and iNOS in a
dose-dependent manner, at the same time diminish ROS
accumulation in cells without experiencing any effect on
macrophage phagocytosis (Li et al., 2022). ROS can be
generated in cells via the NADPH oxidase system, which
consists of multiple membrane-associated and cytosolic
components (Vignais, 2002). NADPH oxidase 2 (Nox2) and
Nox4 are highly expressed in endothelial cells and play a role in
endothelial cell-cell adhesion and motility, which represent
crucial elements in the oxidative stress-induced
arteriosclerosis (Van Buul et al., 2005). Paeoniflorin can
reduce ROS production by inhibiting the ROS-NF-κB axis
and reducing Nox2/Nox4 expression, resulting in
downregulation of HIF-1alpha/VEGF levels, alleviation of
mitochondrial dysfunction, and protection of human
umbilical vein endothelial cells from oxidative damage
induced by AOPP (Song et al., 2017). Furthermore,
paeoniflorin is capable of diminishing ROS levels in
cardiomyocytes by downregulating the expression of
microRNA-1, thereby improving cardiomyocyte viability and
restraining cardiomyocyte apoptosis induced by doxorubicin (a
highly potent anthracycline antitumor antibiotic) (Li et al.,
2016) (Table 1).

4 Roles of paeoniflorin in various
models of cardiac diseases

4.1 Anti-atherosclerotic effect

ASCVD is defined as an unequivocally diagnosed
arteriosclerosis disease that includes acute coronary syndrome,
stable coronary artery disease, post-revascularization, ischemic
cardiomyopathy, ischemic stroke, transient cerebral ischemia, and
peripheral arteriosclerosis disease. Factors such as dyslipidemia,
impaired insulin sensitivity, inflammatory state, intense oxidative
stress, endothelial dysfunction and other related factors may
contribute to the initiation and progression of arteriosclerosis
processes (Hill et al., 2021; Pirillo et al., 2021). Most ASCVD
events can be avoided by preventing the formation of risk factors
and by controlling traditional cardiovascular factors (Arnett et al.,
2019). In case of ASCVD, adequate drug treatment is exceptionally
critical to impede the progression of the disorder, and a combination
of drugs instead of augmenting the amount of a single medication
can create greater efficacy and decrease risks (Kim et al., 2022).
Paeoniflorin, having multiple pharmacological actions, has great
utilization potentiality in managing ASCVD. The regulatory effects
of paeoniflorin on glucose and lipid metabolism, inflammation, and
oxidative stress suggest its remarkable anti-arteriosclerotic
characteristics, as is documented in 3.1–3.4. Equally, paeoniflorin
can improve the pathological morphology of the aorta in
atherosclerotic rats and alleviate atherosclerosis-related
inflammation by inhibiting the TLR4/MyD88/NF-κB pathway (Li
et al., 2017a). The underlying pathological mechanism of
arteriosclerosis involves the proliferation, migration and
inflammatory response of vascular smooth muscle cells (VSMCs)
(Bennett et al., 2016). It was found that paeoniflorin could activate
HO-1, induce cell cycle arrest, inhibit the p38/ERK1/2/MAPK/NF-
κB signaling pathway, inhibit VSMC proliferation and migration
induced by ox-LDL in a dose-dependent manner, and reduce the
expression of inflammatory cytokines and chemokines (Li et al.,
2018a). Paeoniflorin can also promote VSMC apoptosis by
upregulating caspases (Guo et al., 2017). Furthermore,
paeoniflorin made distinctive anti-platelet effects, counteracting
platelet aggregation and clotting and significantly deterring intra-
arterial thrombosis (Koo et al., 2010; Xie et al., 2017; Ngo et al.,
2019). However, there is a lack of relevant mechanistic studies, so in
vivo or in vitro experiments should be designed to investigate the
specific mechanism behind paeoniflorin’s anticoagulant and anti-
platelet aggregation effects (Table 2).

4.2 Improvement of cardiac function and
inhibition of cardiac remodeling

Many studies have shown that paeoniflorin has pharmacological
effects which improve cardiac function and inhibit cardiac
remodeling. Paeoniflorin ameliorates cardiac dysfunction and
regulates the levels of inflammatory cytokines (e.g., IL-1β, IL-6,
IL-12, MCP-1, IFN-γ, and iNOS), by affecting the PI3K/AKT
signaling pathway and reducing inflammation-related damage
(Zhai and Guo, 2016). What is more, paeoniflorin has been
proven to be effective in inhibiting cardiac remodeling and

Frontiers in Pharmacology frontiersin.org09

Li et al. 10.3389/fphar.2023.1122969

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1122969


TABLE 2 Roles of paeoniflorin (PF) in various models of cardiac diseases.

Disease Type Model Dose (PF) Group Duration Mechanism References

AS Vitro Ox-LDL-induced
VSMCs

20, 40, 80 μM (1) Control; (2) Ox-
LDL-induced
VSMCs (100 μg/mL);
(3) Ox-LDL + PF
group (PF: 20, 40,
80 μM).

24 h PF inhibits VSMCs
proliferation and
migration by arresting
cell cycle and activating
HO-1 through MAPKs
and NF-κB pathway.

Li et al. (2018a)

AS Vitro Non-alcoholic fatty
liver disease model
(HFD-fed C57BL/6J
mice)

25, 50, 100 μg/mL (1) Control; (2) Low-
PF group (25 μg/
mL); (3) Medium-PF
group (50 μg/mL);
(4) High-PF group
(100 μg/mL).

12, 24, 48 h PF inhibits VSMCs
proliferation by down-
regulating proteins
associated with the
nuclear factor-κB
signaling pathway and
promotes VSMCs
apoptosis by up-
regulating the
expression of
cystathione aspartase.

Guo et al. (2017)

Cardiac
dysfunction

Vivo LPS-induced
cardiac dysfunction
in C57BL/6 mice

15 mg/kg (1) Control; (2) PF
group (15 mg/kg;
sterile saline
dissolved with 0.5%
Tween 80); (3) LPS
group (10 mg/kg,
sterile saline
dissolved); (4) LPS +
PF group.

3 days PF attenuates cardiac
dysfunction in
endotoxemic mice via
the inhibition of NF-κB
pathway.

Tomek and Bub
(2017)

Cardiac
remodeling

Vivo Cardiac remodeling
in spontaneous
hypertensive
rats (SHR)

2.25, 4.50,
9.00 mg/kg

(1) Control (Wistar-
Kyoto rats); (2) SHR
group; (3) Low-PF
treatment
(2.25 mg/kg/d); (4)
Medium-PF
treatment
(4.50 mg/kg/d); (5)
High-PF treatment
(9.00 mg/kg/d); (6)
Captopril treatment
(13.5 mg/kg/d).

8 weeks PF improves pressure
overload-induced
cardiac remodeling by
modulating the MAPK
signaling pathway.

Liu et al. (2019a)

Cardiac
remodeling

Vivo Pressure overload-
induced cardiac
remodeling

20 mg/kg (1) Sham operated
control (saline); (2)
Sham + PF
(20 mg/kg); (3) AB
(saline); (4) AB+ PF.

7 weeks PF attenuates pressure
overload-induced
cardiac remodeling via
inhibition of TGFBβ/
Smads and NF-κB
pathways.

Zhou et al.
(2013)

Acute
myocardial
infarction

Vivo Ventricular
remodeling in AMI
rats

2.25, 4.50,
9.00 mg/kg

(1) Sham operated
control; (2) Model
control; (3) Captopril
group (4.50 mg/kg/
d); (4) Low-PF
treatment
(2.25 mg/kg/d); (5)
Medium-PF
treatment
(4.50 mg/kg/d); (6)
High-PF treatmen
(9.00 mg/kg/d).

28 days PF decreases BNP,
TNF-α and IL-6 levels,
increases IL-10 levels
and further inhibits the
expression of
cystathionin-3 and
cystathionin-9.

Chen et al.
(2018b)

Acute
myocardial
infarction

Vivo Myocardial
ischemic damage in
AMI rats

5, 10, 20 mg/kg (1) Sham operated
control; (2) Vehicle
group (saline +
AMI); (3) PF
treatment groups
(AMI + PF 5, 10,
20 mg/kg).

7 days PF ameliorates acute
myocardial infarction
of rats by inhibiting
inflammation and
inducible nitric oxide
synthase signaling
pathways.

Chen et al.
(2015)

I/R Vivo Myocardial I/R
induced injury in

10 mg/kg (1) Sham rats
underwent surgical

1 h PF can reduce
myocardial damage in

Nizamutdinova
et al. (2008)

(Continued on following page)
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TABLE 2 (Continued) Roles of paeoniflorin (PF) in various models of cardiac diseases.

Disease Type Model Dose (PF) Group Duration Mechanism References

Sprague-Dawley
rats

operation, but
without occlu-sion of
LAD; (2) Ischemia
(25 min) and
subsequent
reperfusion (24 h)
and the treatment
with placebo (saline
0.3 mL); (3)
Pretreatment with PF
(10 mg/kg) before I/
R injury.

rat through protection
from apoptosis.

I/R Vivo Myocardial I/R
model

15, 30, 60 mg/kg (1) Sham group; (2)
Model group; (3)
Low-PF group
(15 mg/kg); (4)
Medium-PF group
(30 mg/kg); (5)
High-PF group
(60 mg/kg).

7 days PF can reduce oxidative
stress and apoptosis by
inhibiting the
expression of
apoptosis-related
signaling pathway.

Wu et al. (2020)

Hypertension vitro Blocking effect of
compounds on
calcium channels by
live-cell imaging
analysis (HEK
293 and H9C2)

Moutan Cortex: 1,
0.1, 0.01 mg/mL

(1) Control group;
(2) Model group; (3)
nifedipine group
(10–5 mol/L); (4–6)
Three Moutan
Cortex groups with
different
concentrations (1,
0.1, 0.01 mg/mL).

6 h PF can effectively block
voltage-operated Ca2+

channels (VOCCs) to
exert calcium
antagonism.

Lu et al. (2019)

Arrhythmic vitro Isolated rat
ventricular
myocytes or
transfected human
embryonic kidney
293 (HEK293) cells

10 mmol/L (1) control; (2) PF
group (10 mmol/L).

2 h PF can block I(Ca-L),
I(Na), and I(K1)
without affecting
I(to1), I(Ks), or I(Kr).

Wang et al.
(2011)

Angiogenesis Vivo +
vitro

Vivo: A vascular
insufficiency model
in the Tg(fli-1:
EGFP)y1 transgenic
zebrafish

Vivo:
6.25–100 μmol/L

Vivo: (1) vehicle
control (embryo
water containing
0.1% DMSO); (2)
VRI group (300 ng/
mL) (2) VRI + PF
group (6.25, 12.5, 25,
50, 100 μmol/L);

Vivo: 24 h The mechanism of PF
pro-angiogenic action
may be related to the
activation of VEGF
signaling pathway.

Xin et al. (2018)

Vitro: HUVECs Vitro: 0.001, 0.003,
0.01, 0.03, μmol/L;
0.3, 1, 10 μmol/L;
0.3–10 μmol/L

vitro: (1) Vehicle
control (DMSO
0.1%); (2) Positive
control (VEGF
20 ng/mL); (3) PF
group.

vitro: MTT assay—24 h;
wound healing assay -
10 h; tube formation

assay—4 h

Vascular
remodeling

vitro PDGF-BB - induced
proliferation of
primary cultured rat
VSMCs

50, 100, 200 μM (1) Control; (2)
PDGF-BB group
(1 ng/mL); (3)
PDGF-BB + PF
group (50, 100,
200 μM); (4) PF
group.

Flow cytometry analysis
of cell cycle

progression—20 h;
Scratch migration
test—24 h; ROS

measurement—1 h;

PF suppresses PDGF-
BB-induced VSMC
proliferation through
the ROS-mediated
ERK1/2 and
p38 signaling pathways.

Fan et al. (2018)

Angiogenesis vitro Angiogenesis in ox-
LDL-induced
HUVECs

10, 1, 0.1,
0.01 μmol/L

(1) Control; (2) Ox-
LDL group (20 μg/
mL); (3) Ox-LDL +
PF group (10, 1, 0.1,
0.01 μmol/L).

24 h PF suppresses ox-LDL-
induced angiogenesis in
HUVECs by inhibiting
both the VEGF/
VEGFR2 and the
Jagged1/
Notch1 signaling
pathways.

Yuan et al.
(2018)

(Continued on following page)
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alleviating myocardial infarction and ischemia-reperfusion injury. It
should be noted that cardiac remodeling denotes an alteration in the
size, shape, and function of the heart, which is triggered by gene
expression changes induced by cardiac injury or hemodynamic
stress and is drastically correlated to hypertension as well as
other cardiovascular abnormalities (Tomek and Bub, 2017). Of
all these alterations, myocardial hypertrophy and fibrosis are the
most predominant, and the severity of myocardial hypertrophy and
fibrosis is closely related to the mortality of patients following heart
failure (Heinzel et al., 2015; Shenasa and Shenasa, 2017).
Paeoniflorin attenuates cardiac hypertrophy, fibrosis, and
inflammation in spontaneously hypertensive rats by inhibiting
MAPK signaling, and ameliorates pressure overload-induced
cardiac remodelling (Liu et al., 2019a). Moreover, to validate the
efficacy of paeoniflorin, a model of cardiac remodeling was
established by aortic band (AB)-induced pressure overload in
mice. The findings demonstrated that treatment with paeoniflorin
decreased the heart weight to body weight ratio (HW/BW), reduced
the expression of hypertrophic genes, inhibited the apoptosis of
cardiomyocytes, alleviated myocardial fibrosis and improved
ventricular function by suppressing the activity of the TGF-β/
Smads/NF-κB pathways (Zhou et al., 2013). Strikingly, another
study also demonstrated that paeoniflorin inhibited the TGF-β1/
Smad signaling pathway to reduce cardiac remodeling in an
isoproterenol (Iso)-induced rat cardiac remodeling model (Liu
et al., 2019b) (Table 2).

Ischemic heart disease, myocardial infarction (MI),
hypertension, and valvular heart disease (VHD) are common
causes of heart failure (Heidenreich et al., 2022). In China, the
occurrence and development of ventricular remodeling after
myocardial infarction are the main causes of heart failure. To test
this, a rat model of acute myocardial infarction (AMI) was

established by ligation of the anterior descending coronary artery,
and paeoniflorin was administered orally for 4 weeks post-surgery.
Subsequent examination of doppler ultrasonography showed
significantly increased left ventricular ejection fraction (LVEF),
decreased left ventricular end-diastolic diameter (LVIDd), and
decreased left ventricular end-systolic diameter (LVIDs).
Furthermore, pathological results from myocardial samples
(pericardium tissue) taken from within a 2 mm radius from the
visible edge of the infarct showed that paeoniflorin treatment
decreased myocardial degeneration in rats. Collectively, these
results highlight the ability of paeoniflorin to enhance cardiac
function and mitigate the adverse remodeling of the left ventricle
post-infarction (Chen et al., 2018b). Additionally, an additional
study attributed paeoniflorin’s cardioprotective effects to its
ability to reduce inflammation and inhibit the iNOS signaling
pathway (Chen et al., 2015) (Table 2).

4.3 Alleviation of ischemia-reperfusion
injury

Early access to coronary intervention following myocardial
infarction is a crucial measure for improving prognosis, yet it is
paramount to not underestimate ischemia-reperfusion (I/R) injury
that may occur after revascularization (Yellon and Hausenloy,
2007). To assess the effects of Paeoniflorin on I/R injury, a rat
study was conducted, in which 10 mg per kilogram (mg/kg) of
Paeoniflorin was intraperitoneally injected 1 h before I/R injury. The
results of this study demonstrated that Paeoniflorin significantly
improved hemodynamic parameters and reduced myocardial
infarction size, as well as downregulated the expression of
caspase-3 and Bax, while upregulating the expression of Bcl-2,

TABLE 2 (Continued) Roles of paeoniflorin (PF) in various models of cardiac diseases.

Disease Type Model Dose (PF) Group Duration Mechanism References

Insulin
resistance

vitro Human HepG2 cells 3, 30, 100 mM (1) Control; (2) PA
group (0.25 mM); (3)
PA + PF group (3,
30, 100 mM).

1 h PF suppresses lipid
accumulation and
alleviates insulin
resistance by regulating
the Rho kinase/IRS-
1 pathway in palmitate-
induced HepG2Cells.

Ma et al. (2017b)

Insulin
resistance

vivo Fructose-induced
insulin resistance
and hepatic
steatosis in Sprague-
Dawley rats

10, 20, 40 mg/kg (1) Control group
(Saline); (2) Fructose
group (20% Fructose
drink); (3–5)
Fructose + PF group
(10, 20, 40 mg/kg);
(6) Fructose +
pioglitazone group
(10 mg/kg).

8 weeks PF ameliorates
fructose-induced
insulin resistance and
hepatic steatosis by
activating LKB1/
AMPK and AKT
pathways.

Li et al. (2018c)

Diabetes vitro Rat insulin-
secreting beta-cell
line (INS-1)

20, 40, 80 μM (1) Control; (2) STZ
group (3 mmol/L);
(3) STZ + PF group
(20, 40, 80 μM).

2 h PF protects pancreatic
beta cells from STZ-
induced damage
through inhibition of
the p38 MAPK and
JNK signaling
pathways.

Liu et al. (2019c)

Abbreviations:AB, aortic banding; AMI, acute myocardial infarction; AS, atherosclerosis; HEK 293, human embryonic kidney cells; HUVECs, human umbilical vein endothelial cells; H9C2, rat

myocardial cells; SHR, spontaneous hypertensive rats; VSMCs, vascular smooth muscle cells; MAPK, mitogen-activated protein kinase; NF-κB, nuclear factor-kappa B; PDGF-BB, platelet
derived growth factor-BB; STZ, streptozotocin; VRI, VEGF receptor tyrosine kinase inhibitor II.
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thus indicating that Paeoniflorin can protect against I/R injury
through its anti-apoptotic action (Misao et al., 1996). Another
study also revealed the potential of Paeoniflorin to have
immediate effects on I/R injury (Nizamutdinova et al., 2008). As
the occurrence times of acute cardiac events cannot be predicted
during clinical diagnosis and treatment, a course of traditional
Chinese medicine preparations are usually taken orally for a
certain period of time in order for its therapeutic properties to be
adequatelyeffective. Prior to constructing the I/R rat model, Wu
et al. orally administered Paeoniflorin for seven consecutive days to
the experimental animals, with the last dose being 30 min prior to
the induction of ischemia (Wu et al., 2020). It was shown that
paeoniflorin pretreatment significantly reduced the size of
myocardial infarction, the degree of myocardial injury, apoptosis,
and oxidative stress. The specific mechanism of action may be
related to the regulation of the MAPK signaling pathway (Wu
et al., 2020) (Table 2).

4.4 Improvement of hypertension and
arrhythmia

Paeoniflorin also has the pharmacological effect of improving
hypertension and arrhythmia. Studies have found that, compared
with its single use, the combination of Paeoniflorin-enriched extract
and metoprolol can enhance the bioavailability of Paeoniflorin and
contribute to a greater anti-hypertensive effect; it can concurrently
reduce systolic and diastolic blood pressure in spontaneously
hypertensive rats (SHR), increase NOS expression in vascular
endothelium, improve the arrangement of elastic fibers and cell
hypertrophy in the vascular wall, as well as limit aortic vascular
damage and other organ damages (Li et al., 2017b; Li et al., 2018b).
Yu et al. suggested that the anti-hypertensive mechanism of
paeoniflorin may be related to the effective blocking of voltage-
controlled calcium channels (VOCCs) (Lu et al., 2019). This
hypothesis is further supported by research which suggests that
Paeoniflorin not only blocks L-type calcium current (I(Ca-L)),
inward rectifier potassium current (I(K1)) and sodium current
(I(Na)) in rat cardiomyocytes, but does so without affecting the
instantaneous outward potassium current (I(to1)), slow delayed
rectifier current (I(Ks)) and HERG current (I(Kr)), which may
partly explain its anti-arrhythmic effects with minimal pro-
arrhythmic potential (Wang et al., 2011) (Table 2).

4.5 Regulation of angiogenesis

Angiogenesis has been shown to be beneficial in patients with
cardiac insufficiency or myocardial infarction (Oka et al., 2014).
Paeoniflorin has been demonstrated to bidirectionally regulate
angiogenesis, and its angiogenic effect has been demonstrated in
a zebrafish model of vascular insufficiency, as well as in human
umbilical vein endothelial cells (HUVECs) (Xin et al., 2018). When
Platelet-derived growth factor BB (PDGF-BB) is released in the
context of vascular injury, it binds to the cell membrane receptor
PDGFR-β and activates NADPH oxidase to generate large amounts
of ROS. This leads to aberrant proliferation and migration of
vascular smooth muscle cells (VSMCs), and consequently to

arteriosclerosis and restenosis (Rivard and Andres, 2000; Lee
et al., 2007; Ding et al., 2015). In such cases, it is important to
limit angiogenesis. Paeoniflorin has been shown to inhibit PDGF-
BB-induced VSMC proliferation by modulating ERK12 and
p38 signaling pathways, suggesting the potential of paeoniflorin
to act as a therapeutic for arteriosclerosis and restenosis following a
percutaneous coronary intervention (Fan et al., 2018). In addition,
paeoniflorin can stabilize arteriosclerosis plaques, by inhibiting both
the VEGF/VEGFR2 and Jagged1/Notch1 signaling pathways (Yuan
et al., 2018) (Table 2).

4.6 Improvement of insulin resistance

The contribution of insulin resistance and diabetes to the
pathogenesis of CVDs has already been established (Fox et al.,
2007; Hill et al., 2021). CVDs is considered to be the leading
cause of death and complications in type 1 diabetes (T1D)
mellitus and type 2 diabetes (T2D) mellitus (Cheng et al., 2018).
The main pathological feature of T2D mellitus is chronic insulin
resistance (Madsbad, 1992). The gradual decline in pancreatic β cell
function is the main cause of impaired insulin sensitivity
(Shoemaker et al., 2015). Recent studies have shown that
paeoniflorin can improve insulin resistance and protect β cells,
by inhibiting the activation of Rho kinase (ROCK) and serine
phosphorylation of INSR substrate (IRS)-1, and promoting AKT
and glycogen synthase kinase (GSK)-3β phosphorylation (Ma et al.,
2017b). Additionally, paeoniflorin can also reduce serum insulin and
glucagon levels and improve insulin sensitivity by activating the
LKB1/AMPK signaling pathway (Li et al., 2018c). Furthermore,
paeoniflorin also can significantly ameliorate pancreatic beta cell
injury, and regulate glucose metabolism by inhibiting the
p38 MAPK and JNK signaling pathways (Liu et al., 2019c) (Table 2).

5 Pharmacokinetics of paeoniflorin

Since 1985, research on paeoniflorin pharmacokinetics has
gradually deepened and its effects become better understood
(Hattori et al., 1985; Shen et al., 2021). Researchers have delved
into studying of the processes of absorption, distribution,
biochemical conversion (or metabolism), and excretion of
paeoniflorin in the body, particularly its changes in blood
concentration over time, which is of great help for the further
development and application of paeoniflorin. The usual
bioavailability of paeoniflorin absorbed by oral or intestinal
perfusion is approximately at 2%–4% (Fei et al., 2016; Wang
et al., 2016; Yu et al., 2019). Poor fat solubility of paeoniflorin,
P-glycoprotein (P-gp)-mediated transport mechanism, and
degradation by gut microbiota enzymes are causes that impede
its bioavailability (Liu et al., 2006; Yu et al., 2019).

After absorption, paeoniflorin is widely distributed in various
tissues, such as the heart, liver, spleen, lung, kidney, stomach, and
intestines (Luo et al., 2014). Additionally, paeoniflorin can pass the
blood-brain barrier by passive diffusion (Luo et al., 2014; Hu et al.,
2016). Many researchers think it is the metabolite of paeoniflorin,
benzoic acid, that actually reaches the barrier mentioned above (Yu
et al., 2019). Most paeoniflorin is mainly eliminated in the urine via
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glomerular filtration of the renal system (Cheng et al., 2016). As
experimental data collected from rats show, the serum concentration
of paeoniflorin is dose-dependent, with a half-life (T1/2) of
approximately 1.8 h (Fei et al., 2016; Chen et al., 2021). In
traditional Chinese medicine, Chinese herbal preparations made
by combinations of various kinds of botanical drugs can usually
achieve the role of synergistic effect and attenuation of toxicity.
Moreover, studies show that the compatibility of such botanical
drugs or the combination of their active ingredients can play a role in
altering paeoniflorin’s pharmacokinetic parameters: when
combined with Angelica sinensis, its absorption rate is
accelerated, peak time (T max) is shortened, T1/2 is increased,
mean residence time (MRT) is prolonged, and its distribution within
said tissues is widened (Luo et al., 2014). Conversely, when
combined with glycyrrhizic acid, it has been noticed that the T1/
2 of paeoniflorin reduces, while its drug clearance andmetabolism in
rats speed up (Sun et al., 2019). In addition, paeoniflorin displays
distinct effects when used in combination with other
pharmaceuticals such as quinidine, verapamil, sinomenine, and
cyclosporine A (Chan et al., 2006; Liu et al., 2006; Gong et al.,
2015; Xu et al., 2016; He et al., 2017).

6 Clinical application

At present, the clinical application of paeoniflorin in traditional
Chinese medicine is seldom studied by searching the relevant

databases (Figure 3). Peony is the main source of paeoniflorin,
especially Chishao (Zhang et al., 2022). Some Chinese patent
medicines or preparations containing Peony or paeoniflorin
showed good cardiovascular protection; for instance,
XS0601 consists of active ingredients (Paeoniflorin and
Chuangxiongol) that have been shown through animal studies to
inhibit neointimal hyperplasia arteries (Xu et al., 2001). Notably, a
multicenter, randomized, double-blind, placebo-controlled trial
involving 335 patients has confirmed that administering of
XS0601 for 6 months significantly reduces restenosis after
percutaneous coronary intervention (PCI) (Chen et al., 2006).
Naoxintong is composed of Chishao and 15 additional botanical
drugs (Han et al., 2019). It has been proved through clinical trials to
protect endothelial cells and treat coronary artery disease (Lv et al.,
2016; Long-Tao, 2018). Supplementing aspirin with NXT has
further been revealed to heighten the antiplatelet effect in
cerebrovascular disease patients (Chen et al., 2008a). Buyang
Huanwu (BYHW) decoction containing Chishao is also a
traditional Chinese medicine compound preparation. Relevant
clinical studies and meta-analysis have proved that its therapeutic
effect on stable angina pectoris (SAP)and stroke (Zhang et al., 1995;
Gao et al., 2021; Wang et al., 2022a). Recently, Wang et al. (2022b)
designed a randomized, blinded, parallel controlled, multicenter
clinical trial to compare the efficacy and safety of NXT and BYHW
in the treatment of SAP. The results of the trial have yet to be
published. Xuefu Zhuyu (XFZY) decoction is composed of Chishao
and 10 additional botanical drugs (Li et al., 1998). It has great

FIGURE 3
Clinical application of paeoniflorin. Some Chinese patent medicines or preparations containing Peony or paeoniflorin showed good cardiovascular
protection; for example, XS0601, Naoxintong (NXT), Buyang Huanwu (BYHW), Xuefu Zhuyu (XFZY), Shensong Yangxin (SSYX), Tongxinluo (TXL), Danlou
(DL). The above drugs can reduce the symptoms of angina pectoris, reduce the restenosis after PCI, reduce the level of blood lipids, improve ECG, and
effectively treat the related cardiovascular diseases.

Frontiers in Pharmacology frontiersin.org14

Li et al. 10.3389/fphar.2023.1122969

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1122969


advantage in treating coronary heart disease. It can effectively relieve
symptoms of angina pectoris, improve ECG, reduce the level of
blood lipids, and improve endothelial function, among others
(Wang and Qiu, 2019; Zhang et al., 2021b). Additionally,
Shensong Yangxin (SSYX) capsule consists of Chishao and
11 additional botanical drugs. A randomized, double-blind,
controlled, multicenter trial demonstrated a significant effect of
SSYX capsules in reducing the number of premature ventricular
contractions (PVC) and relieving symptoms associated with PVC
compared with placebo or mexiletine (Zou et al., 2011).
Furthermore, Tongxinluo (TXL) capsule contains radix paeoniae
rubra and 11 additional botanical drugs (Hao et al., 2015). Related
clinical studies have shown that TXL can anti arteriosclerosis, reduce
blood lipid levels, improve angina pectoris, reduce the incidence of
restenosis, and significantly reduce the incidence of no-reflow and
myocardial infarction area after primary PCI (Chen et al., 2008b;
Chen et al., 2011; Zhang et al., 2019). Danlou (DL) tablets are also a
kind of Chinese patent medicine composed of Chishao and other
botanical drugs. It has been widely used to treat coronary artery

disease in China for a long time. Relevant clinical research
demonstrated that DL can treat stable angina pectoris, alleviate
adverse left ventricular remodeling after myocardial infarction, and
reduce the peri-procedural myocardial injury among patients
undergoing PCI for non-ST elevation acute coronary syndrome
(Wang et al., 2015; Mao et al., 2016; Yang et al., 2020; Zhao et al.,
2021).

7 Conclusion and future directions

Paeoniflorin, an effective component of natural plants, protects
the cardiovascular system through multiple pharmacological actions
(Figure 4). It can regulate lipid synthesis and metabolism via
numerous processes, such as the de novo synthesis, lipid
oxidation, cholesterol synthesis, and output. Also, it can inhibit
the inflammatory response induced by the NF-κB signaling pathway
through multiple targets, regulate macrophage function, and
inflammation-induced endothelial dysfunction. Additionally,

FIGURE 4
The mechanism of Paeoniflorin in the treatment of cardiovascular disease. The treatment of paeoniflorin has the advantage of multi-targets and
multi-pathways. It regulates theNF-κB, p38MAPK, ERK 1/2MAPK and other signaling pathways in the liver, macrophages, adipocytes, vascular endothelial
cells, smooth muscle cells and myocardial cells. Paeoniflorin can regulate insulin sensitivity and liver activity, and improve glucose and lipid metabolism.
Moreover, paeoniflorin can improve the proliferation and migration of VSMCs, regulate the levels of blood lipids, protect the vascular endothelium
and achieve the goal of anti-atherosclerosis through exerting anti-inflammatory and antioxidant stress. In addition, paeoniflorin can inhibit
cardiomyocyte apoptosis and myocardial remodeling, reduce ischemia-reperfusion damage, and improve cardiac function. Abbreviations: ANGPTL3,
angiopoietin like protein 3; COX-2, cyclooxygenase-2; CYP7A1, cytochrome P4507A1; FFA, free fatty acids; GALNT-2, N-acetylgalactosaminyltransferase
2; GSK3β, glycogen synthase kinase (GSK)-3β; HMG-CoAR, 3-hydroxy-3-methylglutaryl coenzyme A reductase; ICAM-1, inter cellular adhesion
molecule-1; IL, interleukin; iNOS, nitric oxide synthase; IREα, inositol enzyme 1alpha; IRS, INSR substrate; LPL, lipoprotein lipase; MCP-1, monocyte
chemoattractant protein-1; MDA, malondialdehyde; NF-κB, ; Nrf2, nuclear factor erythroid factor 2-related factor 2; Nox, NADPH oxidase; PDGF-BB,
platelet-derived growth factor BB; ROCK, Rho kinase; ROS, reactive oxygen species; SOD, superoxide dismutase; TGF-β, transforming growth factor-β;
TLR, toll like receptors; TNF-α, tumor necrosis factor-α; VSMCs, vascular smooth muscle cells.
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paeoniflorin decreases oxidative stress-induced cellular dysfunction
by decreasing the excessive production or accumulation of ROS. It
can also stymie atherosclerosis by decreasing cholesterol deposition,
and eradicating inflammatory, oxidative and platelet aggregation
effects. Besides, it ameliorates cardiac dysfunction by regulating the
PI3K/Akt signalling pathway, attenuating cardiac remodeling, and
alleviating ischemia-reperfusion injury inspired by inhibition of the
MAPK signaling pathway. Not only this, but paeoniflorin also has
various pharmacological benefits, such as reduction in blood
pressure, arrhythmia improvement, angiogenesis regulation, and
lucubration of insulin resistance.

In summary, paeoniflorin is a natural drug with high potential
development. However, pharmacokinetic studies have shown that
its low bioavailability, and therefore necessitating combining it with
other traditional Chinese medicines to significantly improve its
pharmacokinetic parameters. It has been shown that the
esterified derivatives of paeoniflorin could improve the
bioavailability and have beneficial pharmacodynamics.
Consequently, how to further develop paeoniflorin, improve its
bioavailability and extend its medicinal applications is the next
focus in pharmaceutics. In regards to safety, certain basic
experiments have revealed hepatoprotective effects of
paeoniflorin, such as its ability to interfere with bile acid
metabolism and pivotal inflammation-related targets, as well as
its capacity to ameliorate cholestatic liver injury (Wei et al., 2020;
Liu et al., 2022). Despite this, whether paeoniflorin could cause liver
injury has not been declared yet. In addition, paeoniflorin is mainly
excreted in urine through glomerular filtration, and its effect on
renal function has not been reported. In attempts to promote
paeoniflorin application, it is essential to analyze its possible
toxicity and safety.

At present, the protective effects of paeoniflorin on CVDs are
mainly based on animal or cell experimental model. Most of the
corresponding clinical studies mainly address Chinese herbal
compound preparations containing paeoniflorin or Chishao, with
popular treatments including NXT, BYHW, XFZY, Shensong
Yangxin, TXL,DL, and so on. Although most studies have proved
that paeoniflorin has a wide range of effects on the prevention and
treatment of CVDs, but the above studies inevitably have some objective
limitations, which is not enough for the scientific research and clinical
application of paeoniflorin. Therefore, the next step is to carefully design
multicenter, large-scale, and randomized controlled trial studies to
assess the efficacy and toxicological characteristics of paeoniflorin

alone for CVDs. In addition, paeoniflorin’s basic research, including
metabonomics, proteomics, genomics and network pharmacology,
should be carried out to fully understand its pharmacological effects
and molecular mechanisms. As a therapeutic agent with significant
medical application potential, paeoniflorin is worthy of further
development and utilization in the foreseeable future.
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