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Background: Renal clear cell carcinoma (ccRCC) is one of themost prevailing type
of malignancies, which is affected by chemokines. Chemokines can form a local
network to regulate the movement of immune cells and are essential for tumor
proliferation and metastasis as well as for the interaction between tumor cells and
mesenchymal cells. Establishing a chemokine genes signature to assess prognosis
and therapy responsiveness in ccRCC is the goal of this effort.

Methods:mRNA sequencing data and clinicopathological data on 526 individuals
with ccRCC were gathered from the The Cancer Genome Atlas database for this
investigation (263 training group samples and 263 validation group samples).
Utilizing the LASSO algorithm in conjunctionwith univariate Cox analysis, the gene
signature was constructed. The Gene Expression Omnibus (GEO) database
provided the single cell RNA sequencing (scRNA-seq) data, and the R package
“Seurat” was applied to analyze the scRNA-seq data. In addition, the enrichment
scores of 28 immune cells in the tumor microenvironment (TME) were calculated
using the “ssGSEA” algorithm. In order to develop possible medications for
patients with high-risk ccRCC, the “pRRophetic” package is employed.

Results: High-risk patients had lower overall survival in this model for predicting
prognosis, whichwas supported by the validation cohort. In both cohorts, it served
as an independent prognostic factor. Annotation of the predicted signature’s
biological function revealed that it was correlated with immune-related pathways,
and the riskscore was positively correlated with immune cell infiltration and
several immune checkpoints (ICs), including CD47, PDCD1, TIGIT, and LAG-3,
while it was negatively correlated with TNFRSF14. The CXCL2, CXCL12, and
CX3CL1 genes of this signature were shown to be significantly expressed in
monocytes and cancer cells, according to scRNA-seq analysis. Furthermore,
the high expression of CD47 in cancer cells suggested us that this could be a
promising immune checkpoint. For patients who had high riskscore, we predicted
12 potential medications.
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Conclusion: Overall, our findings show that a putative 7-chemokine-gene
signature might predict a patient’s prognosis for ccRCC and reflect the disease’s
complicated immunological environment. Additionally, it offers suggestions on
how to treat ccRCC using precision treatment and focused risk assessment.

KEYWORDS

chemokine, renal clear cell carcinoma, immunotherapy, tumor microenvironment, gene
signature

1 Introduction

Kidney cancer is among the top 10 most common cancers, with
400,000 new cases and 175,000 deaths from cancer globally each
year, and it accounts for 4% of all newly diagnosed cancers. (Kotecha
et al., 2019; Siegel et al., 2021). Renal clear cell carcinoma (ccRCC) is
the most prevalent subtype of the disease and is one of the principal
reasons for patient death. (Hsieh et al., 2017). Surgery remains the
primary therapy for kidney cancer patients, and despite the
popularity of some emerging treatments, many patients develop
distant metastases and locally advanced disease. (Capitanio and
Montorsi, 2016). Therefore, novel treatment strategies are urgently
needed.

Immunotherapy is a powerful treatment approach that has
changed the landscape of treatment for many tumors. (Riley
et al., 2019; Kennedy and Salama, 2020). Immunotherapy
remains a promising therapeutic approach in the field of kidney
cancer, and more new and rational immunotherapy approaches are
needed besides targeting PD-1, CTLA4 or PD- L1. (Braun et al.,
2021). The successful realization of immunotherapy cannot be
achieved without the contribution of the TME. Chemokines have
been found to either directly or indirectly affect tumor immune in
the TME. (Nagarsheth et al., 2017). It is noteworthy that chemokines
can entice various immune cells to reach the TME.

Chemokines are divided into four families: CC-chemokines,
CXC-chemokines, XC-chemokines and CX3C-chemokines.
(Griffith et al., 2014). They are not only involved in tumor
proliferation and invasion, but also in inflammatory response
and regulation of neoangiogenesis. (Ozga et al., 2021). The
chemokine system is intricate, as shown by the fact that a
single chemokine can draw in and activate both pro- and
anti-tumor regulatory cells, hence promoting both pro- and
anti-tumor actions. (Ozga et al., 2021). Studies have been
performed to analyze the tertiary lymphoid structure-related
chemokines in ccRCC. (Xu et al., 2022). In glioma and lung
squamous cell carcinoma, comprehensive analyze of
chemokines have been performed through public
transcriptome databases, (Fan et al., 2022; Lai et al., 2022),
while in ccRCC there are rarely. Thus, there is a need to further
analyze the relationship between chemokines and ccRCC.

There is increasing evidence that chemokines are involved in the
pathophysiological processes of tumors. (Reschke and Gajewski,
2022). Thus, it is necessary to incorporate chemokines into
preclinical models to develop prognostic signature and new
therapeutic targets. To address the above issues, we sought to
apply chemokine family genes to develop and validate risk
stratification signature of ccRCC patients from an independent
public database to assess prognosis and discover new candidate

drugs. This work may help to optimize precise treatment and further
improve clinical outcomes for patients with ccRCC.

2 Materials and methods

2.1 Acquisition of samples and datasets

We downloaded clinicopathological information and RNA
sequencing data for ccRCC patients from The Cancer Genome
Atlas (TCGA) database (accessed on 2022/9/11 at https://
xenabrowser.net/datapages/). Transcripts per kilobase million
(TPM) values were derived by converting the gene expression
values (FPKM values) from the RNA sequencing data. This
study used 526 ccRCC tumor samples, which were randomly
split into a training cohort (N = 263) and a validation cohort
(N = 263) in a 1:1 ratio. All 526 qualifying ccRCC patients’
clinical features were compiled (SupplementaryTable S1).
Patients whose survival information was unknown were
excluded from further analysis.

2.2 Construction of 7-chemokine-genes
signature

Firstly, we conducted differential expression analysis on training
cohort samples and normal samples using the R package “DESeq2”
to find differentially expressed genes (DEGs). According to the
criteria of | log2 FoldChange|>1 & p < 0.05, we deemed them
statistically significant. The 37 chemokine-related genes we chose to
focus on were then intersected with these genes. After taking the
intersection, genes associated with prognosis were further filtered
using univariate Cox regression analysis. Lastly, seven genes were
identified using the least absolute shrinkage and selection operator
machine learning algorithm (LASSO). (Tibshirani, 1997). The
expression values of the seven chemokine genes were multiplied
by their corresponding correlation coefficients and then summed to
obtain the riskscore.

2.3 Validation of 7-chemokine-genes
signature

The median riskscore used as the dividing line between the
high-risk and low-risk patient groups. In order to evaluate the
effectiveness of the signature’s predictive ability, we conducted
survival analysis, receiver operating characteristic (ROC) curve,
univariate, and multivariate analysis. The “survival” package was
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used to run survival analysis on the training and validation
cohorts. ROC curves for 1, 3, and 5 years were plotted using
the “timeROC” R package. Using IBM SPSS Statistics 26,
univariate and multivariate Cox regression analysis were
carried out.

2.4 Construction of a nomogram for
evaluation of gene signatures

Nomogram analysis was carried out for the training and
validation cohorts using the R package “rms”. The scoring system
and prediction system are located in the upper and bottom portions,
respectively. In ccRCC patients, the overall score and the sum of the
scores for each component correctly predicted the 1-, 3-, and 5-year
survival. For both cohorts of patients, the predictive accuracy of OS
was validated. To demonstrate the accuracy of survival prediction,
calibration curves and C-index values were used.

2.5 GO analysis and gene set variation
analysis (GSVA)

By using Pearson correlation analysis (R > 0.3, p < 0.05), it was
possible to identify genes that were positively correlated with riskscore.
These genes were then uploaded to the DAVID database (https://david.
ncifcrf.gov/home.jsp) for annotation, visualization, and integrated
discovery. Homo sapiens was chosen as the species and official gene
symbol as identifier. The Gene Ontology (GO) study produced rich
results in the end. The MSigDB database was used to acquire the
HALLMARK gene set. Using the “GSVA” package (Hänzelmann et al.,
2013), functional enrichment scores were computed for each sample,
and a heatmap of the data was created (https://www.xiantao.love/). To
ascertain the relationship between the riskscore and the HALLMARK
set, Pearson correlation analysis was used.

2.6 Gene mutation analysis

The TCGA database (https://portal.gdc.cancer.gov/) was
utilized to get somatic mutation data, which were analyzed using
the “maftools” R package. The tumor mutation burden (TMB),
based on somatic mutation data, was then determined for each
patient in the training cohort, and the TMB between the high-risk
and low-risk groups was compared. The TMB score was used as the
basis for the survival analysis.

2.7 scRNA-seq analysis

The Gene Expression Omnibus (GEO) database provided the
scRNA-seq data GSE152938 for ccRCC. Seurat is a R package for
scRNA-seq expression data quality control, normalization,
downscaling, and processing. It was used to evaluate the
expression of 7 chemokine genes in tumor tissues. Expression
data were normalized and downscaled for clustering using the
UMAP method. Cellular markers were obtained from
“CellMarker” (http://xteam.xbio.top/CellMarker/).

2.8 Evaluation of immune cell infiltration
status

We evaluated the absolute proportion of 22 infiltrating immune
cells in the training cohort ccRCC samples using the “CIBERSORT”
algorithm in order to investigate the relationship between riskscore
and immune cell infiltration. (Newman et al., 2015). The relative
abundance of each TME cell infiltration in the training cohort
ccRCC samples was also determined using the single sample gene
set enrichment analysis (ssGSEA) algorithm. (Hänzelmann et al.,
2013).

2.9 Drug sensitivity analysis

An R package called “pRRophetic” can analyze gene expression
data to forecast the effectiveness of clinical chemotherapy and the
sensitivity to targeted treatments. (Geeleher et al., 2014). Based on
gene expression and drug sensitivity data from Cancer Genome
Project (CGP) cell lines, we utilize the “pRRophetic” package to
predict responsiveness to therapeutic drugs based on half maximal
inhibitory dose (IC50) for each ccRCC sample.

2.10 Statistic analysis

R software (version 4.1.3 & 4.2.1), IBM SPSS Statistics (version
26), and GraphPad Prism (version 9) were used to conduct the
statistical analyses. The assessment and comparison of survival
times was done using Kaplan-Meier (K-M) survival curves. To
determine whether there was a correlation between the variables,
Spearman or Pearson correlation analysis was used. The Wilcoxon
test was used to continuous variables. For all statistical methods, a
difference was deemed significant if p < 0.05.

3 Results

3.1 Construction of a 7-chemokine-genes
signature for predicting prognosis of ccRCC

A total of 37 chemokines were used in this work, including
21 CC-chemokines, 13 CXC-chemokines, 2 XC-chemokines, and
1 CX3C-chemokine (Supplementary Table S2). We constructed a
signature of the 7-chemokine-genes (Figure 1A). Firstly, the
TCGA database’s ccRCC tumor samples were separated into a
training cohort and a validation cohort at random. Then, the
training cohort samples were subjected to differential analysis
with normal samples to obtain DEGs (| log2 FoldChange|>1 & p <
0.05), which were intersected with the selected 37 chemokine
genes to gain 22 chemokine genes. Next, 11 chemokines related to
prognosis were discovered by a univariate Cox regression
analysis (Supplementary Table S3). Subsequently, we executed
the LASSO algorithm and identified 7 chemokines (Figures
1B,C). Finally, the expression values of the seven candidate
chemokine genes and their corresponding correlation
coefficients were used to construct a prognostic index with the
following equation:
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RiskScore � ∑ i � Coef i( ) × Expr i( )

In addition, to further investigate the association between the
signature and the expression profiles of the 7 potential genes, we
used principal component analysis (PCA). The results showed a
significant association between riskscore and the expression profiles
of the seven potential genes (Figures 1D, E).

3.2 Association of clinicopathological
features of ccRCC with gene signature

In order to ascertain the clinicopathological implications of
this gene signature, we analyzed the relationship between
riskscore and clinicopathological information, such as age,
gender, histological grade, and tumor stage. Patients with
different riskscore exhibited different clinical and
pathological features. Histological grade and tumor stage
showed an uneven distribution as the riskscore increased in
either the training and validation cohorts (Figures 2A, B). The
various groups of these samples underwent comparison
analysis. Riskscore was higher in high-grade ccRCC in the
training cohort (Figure 2C). In addition, stage III/IV tumor
samples showed higher riskscore (Figure 2D). The validation
cohort verified the aforementioned findings (Figures 2E, F).
Overall, these findings collectively imply that the signature and
clinicopathological traits are tightly connected.

3.3 Prognostic value of the 7-chemokine-
genes signature

The expression levels of the seven chemokine genes and patient
survival timeswere ordered by riskscore values in order to further evaluate
the relationship between signature and overall survival time of patients.
All patients were classified into high-risk and low-risk patient groups
based on the median riskscore values. (Figures 3A, B). The results of the
survival analysis showed that patients with low risk had a significantly
better prognosis than those with high risk (Figure 3C). The validation
cohort provided strong confirmation of the aforementioned findings
(Figure 3D).Notably, for patients with ccRCC in both cohorts, riskscore is
shown to be an independent prognostic factor of overall survival times.
(Supplementary Tables S4, S5). Furthermore, an individualized prediction
model was created to aid in the clinical use of prognostic prediction
models. Age, gender, histological grade, tumor stage, and riskscore were
included as independent predictors in the construction of the OS
prediction model. The results showed that the prediction model may
be used to assess the likelihood of 1-, 3-, and 5-year overall survival times
in patients with ccRCC. (Figure 3E). Notably, the nomogram and
calibration curves actually observed results in the training and
validation cohorts are satisfactory, showing excellent prediction
accuracy (Figure 3F). This nomogram model has a C-index of 0.769,
which is better compared to any other predictionmodel (Figure 3G). The
above results are verified in the validation cohort (Supplementary Figures
S1A, B). Collectively, the signature can well predict the prognosis of
ccRCC and is expected to translate into clinical applications.

FIGURE 1
Construction of 7-chemokine-genes prognostic signature. (A) Flow chart of model construction. (B) Cross-validation was performed to optimize
the parameter selection of the LASSO regressionmodel. (C)Distribution of lasso coefficients of 11 prognosis-related chemokine genes. (D, E)Correlation
between chemokine genes signature and profiles of seven chemokine genes’ expression in the training cohort and validation cohort.
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3.4 Biological function and signaling
pathways analysis

To investigate the biological processes and the pathways
related to the 7 chemokine genes signature, we used GO and
GSVA analyses. First, we sought genes positively associated with
riskscore (Pearson correlation, R > 0.3 & p < 0.05), finding
657 and 466 genes in the training and validation cohorts,
respectively. Then, GO analysis revealed that genes with
positively associations were mainly associated with mitosis
(Figures 4A–D). In addition, the hallmark analysis also
showed that riskscore were positively correlated with EMT
and KRAS signaling pathways, but negatively correlated with
TGF-β and WNT signaling pathways (Figure 4E). The
validation cohort verified the aforementioned findings

(Figure 4F). This suggests that our signature can also predict
the malignant course of ccRCC.

3.5 Comparison of somatic mutations and
TMB characteristics

In order to compare the differences in gene mutations between
the high-risk and low-risk groups, data on single nucleotide
variations were gathered from TCGA. VHL (49%), PBRM1
(35%), TTN (21%), SETD2 (15%) and BAP1 (12%) were the top
5 genes with the highest frequency of mutations in the training
cohort’s high-risk group (Figure 5A). In contrast, VHL (45%),
PBRM1 (45%), TTN (15%), MUC16 (12%) and BAP1 (11%)
were the top 5 genes with the highest frequency of mutations in

FIGURE 2
Association between chemokine-based gene signature and clinical features in ccRCC. (A) Correlation of riskscore and clinicopathological
characteristics of patients in the training cohort. (B) Correlation of riskscore and clinicopathological characteristics of patients in the validation
cohort. (C, E) In the training and validation cohorts, riskscore considerably rise at higher-grade ccRCC. (D, F) In the training and validation cohorts,
riskscore considerably rise at higher-stage ccRCC. The significance of the difference was tested with Wilcoxon test.
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the training cohort’s low-risk group (Figure 5B). The TMB of the
two groups were also compared and no significant differences were
found (Figure 5C). No difference in survival time existed between
the groups with high and low TMB. (Figure 5D). After merging our
models, the high-risk + high-TMB group’s prognosis was noticeably
poorer than the low-risk + low-TMB group’s. (Figure 5E). This
indicates that our chemokine gene predictive signature combined
with TMB can more accurately predict the prognosis of patients.

3.6 Single-cell analysis

To estimate the TME in patients with ccRCC, we performed
scRNA-seq analysis. We first collected single-cell sequencing data
from 2 ccRCC patients in the GSE152938 dataset. The dataset’s
overall picture was plotted (Supplementary Figures S2A, B).
After quality control, quality control visualization and removal
of samples with gene expression less than 200 and mitochondrial

FIGURE 3
K-M survival analysis and nomogram survival prediction. (A, B) Distribution of riskscore, survival status and survival time in ccRCC patients, and heat
map of 7 chemokine genes. (C, D) K-M survival curves for OS and ROC curves for 1-, 3-, and 5-year survival rates. (E) Nomogram prediction combining
clinicopathological features and riskscore. (F) Predicted and observed 1-year, 3-year and 5-year survival in calibration plots for training and validation
cohorts. (G) The C-index is used to visualize the predictive effect of predictive model, riskscore, predictive model without riskscore, and
clinicopathological factors.

Frontiers in Pharmacology frontiersin.org06

Lin et al. 10.3389/fphar.2023.1120562

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1120562


gene proportion greater than 20%, a total of 22,623 genes and
18,032 cells were preserved. Variable features were set to 2000,
and the top 10 genes of the 2000 highly variable features were
plotted (Supplementary Figure S2C). Subsequently, PCA was
conducted out to show the genes included in the 12 PCs in the
PCA (Supplementary Figure S2D). Dimensionality reduction
analysis was performed using the “UMAP” method. Cells were
clustered into 19 clusters (Supplementary Figure S2E).
According to the expression of marker genes (Supplementary
Figures S2F, G), we identified five different cell clusters and one
unidentified cell cluster (Figure 6A), namely, T cell, Endothelial
cell, Mesangial cell, Cancer cell, and Monocyte. The signature
genes CXCL2, CXCL12 and CX3CL1 were mainly expressed in
cancer cells and monocytes (Figures 6B,C). In addition, we
further downscaled the cancer cell subtypes using the
“UMAP” method, and the cells were clustered into 7 clusters

(Figure 6D), and we investigated the distribution of signature
genes across clusters (Figures 6E, F). This suggests that genes in
our signature have an impact on the physiological processes of
cancer cells, especially the CXCL2 and CX3CL1 genes.

3.7 Immune checkpoints and immune cell
infiltration associated with gene signatures

We evaluated the correlation between riskscore and known
suppressive ICs. The findings revealed that the riskscore was
positively correlated with CD47, PDCD1, TIGIT, LAG3 and
negatively correlated with TNFRSF14 (Figure 7A). scRNA-seq
analysis indicated that TNFRSF14 and CD47 were highly
expressed in cancer cells (Figure 7B), suggesting that
CD47 may be better therapeutic targets. Previous studies

FIGURE 4
Biological functions associated with the 7-chemokine-genes signature. (A–D) The biological processes (BP) and cell components (CC) that are
enriched by genes that are positively correlated with riskscore. (E, F) Correlation of riskscore with the HALLMARK gene set. The heat map shows the
enrichment scores of the HALLMARK for each patient. Bar and line plots show R- and p-values for correlation analysis.
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have shown that both inflammatory response and TME are
essential for the development of tumors. Therefore, we
further examined the association between this signature and
TME. Using the ssGSEA approach, we compared the enrichment
scores of 28 different immune cell types. The analysis revealed a
higher enrichment score of activated CD4 T cells, activated
dendritic cells, central memory CD8 T cells, gamma delta
(γδ) T cells, macrophages, myeloid-derived suppressor cells
(MDSC) and natural killer T cells in the high-risk group

compared to the low-risk group. In contrast, higher
enrichment scores of memory B cells, neutrophils, and
plasmacytoid dendritic cells were found in the low-risk
group. (Figure 7C). Subsequently, we analyzed the proportion
of 22 immune infiltrating cells in the tumor microenvironment
using the CIBERSORT method. Our findings reveal that the
abundance of monocyte was elevated in the low-risk group and
negatively correlated with the riskscore. In contrast, the
abundance of γδ T cell and M0 macrophage were positively

FIGURE 5
Differences in mutations between high- and low-risk groups. (A, B) Somatic mutation waterfall plots in the training cohort. (C) TMB difference
between low-risk and high-risk group. (Wilcoxon test). (D) K-M survival curves comparing the groups with high and low TMB levels. (E) Intergroup K-M
survival curves for the four groups.
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correlated with the riskscore (Figure 7D). The study imply that
the signature may partially reflect the tumor immunological
microenvironment.

3.8 Identification of potential therapeutic
agents

Given that chemotherapy remains a common adjuvant therapy
in clinical practice, we explored drug candidates with higher drug
sensitivity in high-risk patients. To assess the therapeutic drug
response, we determined the IC50 of each ccRCC sample using
the “pRRophetic” algorithm. First, compounds with IC50 estimates
negatively correlated with riskscore were chosen (Spearman
correlation, R < −0.30 & p < 0.05). Crossover results between the
training and validation cohorts yielded 12 compounds, including SB
216763, MS-275, PFI-1, rTRAIL, HG-5-88–01, 17-AAG, LFM-A13,
YK 4–279,Mitomycin C, Vinblastine, Bryostatin 1, CI-1040 (Figures
8A, C). Among them, SB 216763 acted as an inhibitor of GSK-3
targets in theWNT signaling pathway. Further analysis revealed that
the IC50 estimates for each of these compounds were lower in the
high-risk group (Figures 8B, D). This means that these drugs are
promising therapeutic options for ccRCC patients at high risk.
Finally, we evaluated the difference in IC50 of several VEGFR
inhibitors (sunitinib, sorafenib, pazopanib, and axitinib) in the
two cohorts. In contrast to the low-risk group, the high-risk
group had higher pazopanib IC50 values (Figures 8E, F). This

indicates that high-risk patients may not be sensitive to
pazopanib treatment.

4 Discussion

Renal clear cell carcinoma is the most common solid cancer
in the kidney. (Capitanio and Montorsi, 2016). The advent of
targeted therapies and immune checkpoint inhibitors (ICIs) has
transformed the treatment of patients with ccRCC. In addition,
many targeted therapeutic agents and ICIs have been applied to
treat advanced ccRCC. (Ward and Stadler, 2010; Powles et al.,
2020; Rini et al., 2020). However, these treatments inevitably
lead to some significant adverse events. Chemokines are key
players not just in the immune system, but also in the
development, growth, and metastasis of tumors. (Strieter
et al., 2004; Zlotnik, 2004; Tsaur et al., 2012). Recently, it has
been shown that chemokine-based risk signatures show good
predictive power in clinical prognosis and response to
immunotherapy in glioma, lung adenocarcinoma and
pancreatic adenocarcinoma. (Chen et al., 2021; Huang et al.,
2021; Fan et al., 2022). As a result, we investigated thoroughly
the chemokine genes in ccRCC. First, we selected seven
chemokine genes with prognostic value for study.
Additionally, we created a brand-new prognostic signature
for ccRCC patients and validated it. We discovered that the
TME and the response to immunotherapy were connected with

FIGURE 6
scRNA-seq data analysis in GSE152938. (A) Cell-type annotation of clusters. (B) Signature genes expression levels in several cell subtypes. (C) UMAP
shows expression of signature genes in all cell subtypes. (D) Subtypes of Cancer cells. (E) Signature genes expression levels in different subtypes of cancer
cells. (F) UMAP shows expression of signature genes in subtypes of cancer cells. (CCL11 is unavailable).
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our prognostic signature, which may offer practical leads for
predicting the prognosis of patients and selecting drug options
for patients on immunotherapy.

In the previous study, expression of both CXCR4 and its
ligand CXCL12 in VHL-null 786-O cells, even in the lack of
exogenous CXCL12, may promote ccRCC proliferation and
metastatic dissemination by stimulating autocrine receptors.
(Struckmann et al., 2007). In addition, Jin et al. (2019).
Reported that miR-34a-5p/CCL22 axis positively regulates the
proliferation and metastasis of renal cell carcinoma (RCC). Also,
the CCL22-derived peptide vaccination successfully slowed the
progression of tumors in vivo and demonstrated good therapeutic
efficacy. (Lecoq et al., 2022). In other chemokine genes,
Parenchymal polymorphonuclear-MDSC (PMN-MDSC)
positively correlates with CXCL5, IL1b, IL8, and Mip-1a,
which are able to attract PMN-MDSC into ccRCC
parenchyma. (Najjar et al., 2017). Interestingly,
CXCL5 expression in non-small cell lung cancer was related to
a reduced survival rate. (Kowalczuk et al., 2014). In addition,
according to research by Dai, et al. (2021), CXCL13+CD8+ T cell

infiltration levels within tumors are independent predictors of
poor OS and RFS in ccRCC and are related with immune evasion
of TME. Moreover, CX3CL1 plays a role in tumor promotion and
dissemination in patients with RCC besides CXCL12. (Tsaur
et al., 2012). There is a lack of articles discussing the
tumorigenic aspects of CCL11 and CXCL2 in ccRCC.
However, these chemokines have been found to be associated
with tumorigenesis and progression in ovarian and
hepatocellular carcinoma. (Nolen and Lokshin, 2010; Xu et al.,
2021). The gene signature we developed includes each of the
chemokines mentioned above. It also implies that this gene
signature might play a key role in identifying patients with
advanced ccRCC who have poor prognoses and reflecting
TME. Moreover, among the clinicopathologic characteristics
of malignancy that strongly correlate with high riskscore are
high histologic grade and tumor stage. High-risk patients also
have shorter survival times. It is noteworthy that this gene
signature also functions as an independednt predictor. The
nomogram, which included the riskscore and
clinicopathological characteristics, demonstrated good

FIGURE 7
Immune infiltration reflected by gene signature. (A) Correlation between riskscore and inhibitory ICs. The R-value is shown by the band’s width. The
p-value is indicated by the band’s color. The correlation was examined using Pearson correlation analysis. (B) Expression levels of inhibitory ICs in various
subtypes of cancer cells. (C)Comparison of 28 immune cell enrichment scores. (D)Comparison of the difference in the abundance of immune infiltrating
cells by the CIBERSORT algorithm. The significance of the difference was tested with Wilcoxon test. *p < 0.05, **p < 0.01, and ***p < 0.001.
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accuracy. The aforesaid results were supported by the validation
cohort. These findings suggest that the 7-chemokine gene may
someday be applied in the clinic.

Chemokines can not only control the migration and localization
of immune effector cells in tissues, but also coordinate the
interactions between immune cells to reshape the tumor immune
microenvironment. (Sokol and Luster, 2015; Nagarsheth et al.,
2017). As a result, when we analyzed immune cell infiltration
between the high-risk and low-risk groups in our study, we
discovered that the high-risk group had a higher density of

immune cell infiltration. The high-risk group also showed an
increase in T cell activation and antigen-presenting capacity.
According to our findings, the high-risk group had greater
enrichment fractions of natural killer T cells, activated
CD4 T cells, activated dendritic cells, central memory
CD8 T cells, γ δ T cells, macrophages, and MDSC. One study
reported that MDSC may protect cancer from the patient’s immune
system. (Tesi, 2019). These might help to partially explain why the
prognosis is worse for patients in the high-risk group. Furthermore,
scRNA-seq analysis revealed that CD47 was substantially expressed

FIGURE 8
Twelve drug agents were identified as well as four VEGFR inhibitors for analysis. (A, C) Correlation between riskscore and the IC50 estimates for the
12 agents. The correlation was examined using Spearman correlation analysis. (B, D) Differences in the estimated IC50 for 12 agents between the high-
and low-risk groups. (E, F) Comparison of IC50 estimates of four VEGFR targeted drugs (sunitinib, sorafenib, pazopanib and axitinib). The significance of
the difference was tested with Wilcoxon test. *p < 0.05, **p < 0.01, and ***p < 0.001.
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in tumor cells, and we discovered that riskscore were positively
linked with CD47, PDCD1, TIGIT, and LAG3. This shows that the
high-risk group may benefit more therapeutically from targeting
CD47. The therapeutic potential of CD47 has also been
demonstrated in earlier research. (Liu et al., 2015; Logtenberg
et al., 2020). Collectively, these results suggest that our 7-
chemokine-genes signature may serve as an indicator of the
tumor’s immune infiltration status and a promising therapeutic
target for immunotherapy of ccRCC patients.

Finally, we obtained 12 drugs that are expected to be
therapeutic agents for patients at high risk of ccRCC. Through
Genomics of Drug Sensitivity in Cancer (GDSC) and
ClinicalTrials.gov (https://clinicaltrials.gov/ct2/home), we
obtained the details of these drug candidates (Supplementary
Table S6). These drugs act on signaling pathways such as WNT,
MAPK, and Apoptosis regulation. Wnt signaling acts as a targeted
growth factor to induce cell proliferation and holds promise as a
real therapy. (Nusse and Clevers, 2017). Among them, MS-275, 17-
AAG, Mitomycin C, Vinblastine, Bryostatin 1, and CI-1040 are
already in clinical trials. However, further trials are needed to
validate them. Furthermore, we compared four VEGFR inhibitors,
sunitinib, sorafenib, pazopanib and axitinib, and showed that the
IC50 estimates for pazopanib were elevated in the high-risk group
compared to the low-risk group. This indicates that patients in the
high-risk group had less responsiveness to the medication
pazopanib. In order to prevent overtreatment or adverse effects
in non-responders, clinicians can utilize this signature as a
predictor of the sensitivity of chemotherapeutic and targeted
medicines prior cancer treatment.

However, there are still some limitations of this study that need
to be resolved. First off, all of the cohorts used in our analysis were
obtained from the TCGA database, and external cohorts are
required to confirm the findings. Although the use of an
immunotherapy cohort would provide additional insights, our
dataset sample size is less than fifty and these data will be
presented in our further studies. Second, additional research into
the molecular mechanisms needs to be conducted in subsequent
studies.

In summary, we established and validated a genetic
signature for ccRCC patient prognosis and explored the
function of chemokine-related genes in patients with ccRCC.
To predict patient OS, a predictive nomogram was created by
incorporating factors such as age, sex, tumor stage, histological
grade, and riskscore. Also noteworthy, we also developed
12 drug candidates. In addition, the signature can be utilized
by clinicians to forecast patient receptivity to targeted and
immunochemotherapy treatments.
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