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Parkinson’s disease (PD), the second most common neurodegenerative disease
worldwide, often occurs in middle-aged and elderly individuals. The pathogenesis
of PD is complex and includes mitochondrial dysfunction, and oxidative stress.
Recently, natural products with multiple structures and their bioactive
components have become one of the most important resources for small
molecule PD drug research targeting mitochondrial dysfunction. Multiple lines
of studies have proven that natural products display ameliorative benefits in PD
treatment by regulating mitochondrial dysfunction. Therefore, a comprehensive
search of recent published articles between 2012 and 2022 in PubMed, Web of
Science, Elesvier, Wliey and Springer was carried out, focusing on original
publications related to natural products against PD by restoring mitochondrial
dysfunction. This paper presented the mechanisms of various kinds of natural
products on PD-related mitochondrial dysfunction regulation and provided
evidence that natural products are promising to be developed as drugs for PD
therapeutics.
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1 Introduction

Parkinson’s disease (PD) is a progressive debilitating neurodegenerative disease
worldwide that affects approximately 0.1%–0.2% of the general population but
approximately 1% of the population over the age of 60 years in modern countries
(Wright Willis et al., 2010; Zou et al., 2014). As an age-related neurodegenerative
disease, PD onset has shown a serious increase in prevalence rates in the past 60 years
(Muhammad et al., 2022). Due to global population aging, the prevalence of PD is expected
to increase, and therapies for this disease may face large challenges in the future. The main
clinical manifestations of PD are bradykinesia, tremor, postural instability, cognitive
impairment and other nonmotor impairments (Blauwendraat et al., 2020;
Mohammadipour et al., 2020), and the main pathological features are progressive loss of
dopaminergic neurons in the substantia nigra striatum, deposition of neuronal α-synaptic
nucleoproteins and formation of Lewy bodies with complex pathogenesis, including
mitochondrial dysfunction, oxidative stress, neuroinflammation and so on (Kalia and
Lang, 2015). Various treatment strategies have been put into effect, for example, clinical
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treatment with pharmacotherapy such as levodopa, dopamine
agonists and anticholinergics, as well as nondrug interventions
such as surgery and exercise (Voon et al., 2017). However, long-
term use of these treatments can lead to serious side effects but fail to
completely halt disease progression. Therefore, it is of great
significance to develop novel drugs that are safe and effective for
PD prevention and treatment.

Mitochondria are vital organelles that provide energy to cells
and play a particularly important role as the cellular “powerhouse”
of dopaminergic neurons (Schapira and Patel, 2014; Gao et al.,
2022). Increasing evidence supports the critical role of
mitochondrial dysfunction, such as adenosine triphosphate (ATP)
depletion, oxidative stress elevation, aberrant mitochondria-
dependent apoptosis and other effects, in the development of PD
(Cong et al., 2016; Shahba et al., 2021), suggesting that targeting
mitochondrial dysfunction is a promising therapeutic target for PD
treatments. Natural products originated from plants, animals, or
other natural sources have been applied as substances with
therapeutic potential to treat different diseases. As reported in
previous studies, many kinds of natural products, such as
flavonoids and polyphenols, have manifested the strong effects of
PD treatment by targeting mitochondrial dysfunction (Kim et al.,
2017; van der Merwe et al., 2017). Therefore, this paper provides a
brief review of the roles that various natural products play by
targeting mitochondrial dysfunction in PD, highlighting the
mechanisms of effects to shed light on developing novel
therapeutics for PD.

2 Mitochondrial dysfunction and PD

Mitochondria are the energy suppliers of the cells.
Mitochondrial respiration can support a vast amount of
energy in the ATP form by the oxidative phosphorylation
cycle and regulate energy-dependent cell functions, including
intermediary metabolism, protein folding, and cell motility
(Wallace et al., 1999; Jin et al., 2021). In addition,
mitochondria are dynamic organelles that undergo constant
fusion and fission (Ashrafi and Schwarz, 2013). Mitophagy is
the selective clearance of damaged mitochondria via autophagy.
Mitochondria strive to maintain a balance between biogenesis
and mitophagy to maintain mitochondrial quality (Ventura-
Clapier et al., 2008; Voigt et al., 2016; Wang et al., 2021). In
addition, reactive oxygen species (ROS), which are intimately
related to oxidative stress, can be generated through the electron
carriers of the respiratory chain (Wang et al., 2015). ROS cause
mitochondrial membrane lipid peroxidation and protein
nitrification; damage mitochondrial DNA, mitochondrial
membrane structure and electron transport chain enzyme
complexes; weaken or prevent oxidative phosphorylation;
reduce ATP production; release caspase-3; and trigger further
mitochondrial damage, which leads to mitochondrial
dysfunction (Ali et al., 2015; Badshah et al., 2016).

A number of studies have shown that dysfunction of related
mitochondrial respiration is of great importance in PD progression
(Figure 1). Neurons have a higher energy demand to maintain their

FIGURE 1
Primary mitochondrial dysfunction associated pathways and disease progression in Parkinson’s disease. Mechanisms of mitochondrial dysfunction
in Parkinson’s disease include dysregulation of mitochondrial respiration, apoptosis, dynamics, biogenesis and mitophagy related to a variety of
molecules. Mitochondrial dysfunction resulted in progressive loss of dopaminergic neurons in the substantia nigra striatum and ultimately cause severe
motor and nonmotor disorders in Parkinson’s disease.
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function. ATP deficiency induced by mitochondrial dysfunction
leads to a decrease in vesicular dopamine uptake, resulting in
increased dopaminergic degradation in PD neurons (Wu et al.,
2021). ROS, which are a prime culprit for causing mitochondrial
dysfunction, play a pivotal role in the pathogenesis of PD
(Bhattacharjee and Borah, 2016; Lu et al., 2016). In previous
studies, it was also reported that impaired mitochondrial
biogenesis led to depletion of mitochondria and that the
imbalance of biogenesis and mitophagy is a mechanism
mediating PD (Zhu et al., 2012; Liu et al., 2021a). Mitochondrial
fission is a process of mitochondrial dynamics. When equilibrium is
disrupted, excessive mitochondrial fragmentation leads to
mitochondrial dysfunction and neuronal death in PD (Wang
et al., 2022). In addition, mitochondrial apoptosis has also been
reported in many PD studies (Khan et al., 2018; Balakrishnan et al.,
2021). Thus, it is obvious that neurons are highly sensitive to
mitochondrial dysfunction in PD and that mitochondria may be
a target with great potential.

3 Natural products targeting
mitochondrial dysfunction in PD

Natural products have been shown to have therapeutic potential
for various diseases. Many kinds of natural products, such as
flavonoids, polyphenols, terpenoids, and glycosides, have strong
effects on PD by targeting mitochondrial dysfunction (Figure 2).
Then, we reviewed the natural compounds and their molecular

mechanisms by targeting mitochondrial dysfunction from different
mechanisms of action (Table 1).

3.1 Targeting mitochondrial respiration and
bioenergetics

Mitochondria are double-layer organelles where aerobic
respiration occurs. It is the major site that generates ATP via
oxidative phosphorylation. The electron transfer chain, which is
composed of approximately 80 polypeptides and located in the inner
membrane of mitochondria, plays a vital role in ATP production.
The inner membrane of mitochondria contains different
transmembrane protein complexes (I-V) (Yadav et al., 2022).
Along with the circulation of electrons through the entire
electron transfer chain, different protein complexes set up
mitochondrial membrane potential (MMP) across the inner
mitochondria membrane and maintain mitochondrial integrity
and perform its normal function (Papa et al., 2012). Electrons are
prone to leak out of complex I and complex III in the electron
transfer chain and transfer to O2 to produce superoxide radicals and
hydrogen peroxide, which are referred as ROS (Sies et al., 2017). A
balanced amount of mitochondrial ROS is involved in various
beneficial processes such as various signaling pathways (Bhat
et al., 2015). However, aberrant production of ROS causes severe
oxidative stress and triggers PD pathogenesis via mtDNA damage,
and lipid peroxidation associated with mitochondrial dysfunction
(Ali et al., 2015; Badshah et al., 2016). In the respiratory chain,

FIGURE 2
The structure of natural products targeting therapeutics in PD.
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TABLE 1 Natural compounds targeting to mitochondrial dysfunction and PD models.

Category Compounds or
extracts

Biological
source

In vitro experiments In vivo experiments Mechanisms Refs

Models Dosage Time Models Dosage Time Targeting
mitochondrial
respiration and
bioenergetics

Targeting
mitochondrial
biogenesis and
mitophagy

Targeting
mitochondrial
dynamics

Targeting
mitochondrial
apoptosis

Flavanoids Baicalein Scutellaria
baicalensis

Rotenone-induced
SH-SY5Y cells

10 µM 24 h Rotenone-treated
mice

100 mg/kg 6 weeks MMP↑ LC3B-II↑,
autophagic flux↑

- Caspase-3
activity↓

Kuang et al.
(2017)

Calycosin Astragalus
membranaceus

- - - Paraquat-exposed
drosophilas

0–400 μM 5 days ATP, MMP,
complex I and
III activity↑

p62,
phosphorylation
levels of S6K and
4EBP1↓

- JNK
phosphorylation
and caspase-3
activation↓

Chaouhan et al.
(2022)

Hyperoside Acer
tegmentosum

6-OHDA-induced
SH-SY5Y cells

0.1–2 μM 24 h - - - MMP↑; ROS↓ - - - Gao et al. (2022)

Icaritin Epimedium
sagittatum
maxim

- - - MPTP-injected mice 4.7–18.9 mg/
kg

5 days ATP, ADP,
inosine, and
citric acid↑

- - - Wu et al. (2021)

SDHA, VDAC
and ATP5B↑

Myricitrin Myrica cerifera MGO-induced SH-
SY5Y cells

0.1–10 μM 24 h - - - ATP,
MMP↑; ROS↓

- - - Wang et al.
(2014)

AGEs/RAGE/
NF-κB
pathway↓

Naringenin Citrus
reticulata

MG-induced SH-
SY5Y cells; Paraquat-
induced SH-SY5Y
cells

10–100 μM 2/24 h Paraquat -exposed
rats

40 mg/kg 21 days MMP, ATP,
complex I and V
activity↑

- - Bcl-2↑; Bax, Cyt-c
release, caspase-
3/9 activation↓

de Oliveira et al.
(2019), Ahmad
et al. (2021)

Nobiletin Citrus depressa
or Citrus
sinensis

Lipopolysaccharide-
exposed BV-2 cells

0–100 μM 4 h Lipopolysaccharide-
exposed mice

100 mg/kg 6 weeks MMP, complex
I-IV↑; ROS↓

- - - Qi et al. (2019)

Quercetin Bupleurum
chinense or
Crataegus
pinnatifida

- - - Aluminumtreated
rats

10 mg/kg 12 weeks ROS↓;
superoxide
dismutase
activity↑

- Improving the
mitochondrial
integrity

Bax/Bcl-2 ratio,
Cyt-c release,
caspase-3↓

Sharma et al.
(2016)

Silibinin Silybum
marianum (L.)
Gaertn

- - - MPTP (1-methyl-4-
phenyl-1,2,3,6-
tetrahydropyridine)-
induced mice

70, 140 and
280 mg/kg

24 days MMP↑ PINK1, Parkin↑ Mfn1↑; Drp1↓ - Liu et al. (2021a),
Liu et al. (2021b)

Phenols and
polyphenols

Curcumin Curcuma longa
(turmeric)

Paraquat -induced
SH-SY5Y cells and
PINK1 siRNA
transfected SH-SY5Y
cells

2 μM 1 h Rotenone-treated
mice

50, 100 and
200 mg/kg

21 days MMP, complex
II and IV
activity,
maximal
respiration↑

- - - Khatri and
Juvekar (2016),
van der Merwe et
al. (2017)

(Continued on following page)
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TABLE 1 (Continued) Natural compounds targeting to mitochondrial dysfunction and PD models.

Category Compounds or
extracts

Biological
source

In vitro experiments In vivo experiments Mechanisms Refs

Demethoxycurcumin A derivative of
curcumin

Rotenone-induced
SH-SY5Y cells

0–1 μM 28 h - MMP↑; ROS↓ - - Bcl-2, Bcl-xL↑;
Bax, Bad, caspase-
3/6/8/9, Cyt-c
release↓

Ramkumar et al.
(2017)

Green tea polyphenols - Glutamate-treated
primary cortical
neurons

0.5–10 μM 24 h - - - - - Bcl-2↑; Bax,
caspase-3↓

Cong et al.
(2016)

Mangiferin Mangifera
indica

Rotenone-induced
SK-N-SH cells

2.5, 5, 10, 20 and
40 μg/mL

4 h MPTP-induced mice 10, 20 and
40 mg/kg

12 days ATP, MMP↑ - Improving the
mitochondrial
integrity

Cyt-c release,
caspase-3/9↓

Kavitha et al.
(2014), Wang et
al. (2022)

Oleuropein Fraxinus
rhynchophylla

Glutamate-treated
HT-22 cells

0–20 μM 1 h - - - ATP↑; ROS↓ - Drp1↓ Bcl-2↑; Bax↓ Kim et al. (2018)

fragmented
mitochondria↓

Paeonolum Paeonia
suffruticos

MPP+-treated PC12
cells

10–150 μM 24 h MPP+-exposed
zebrafish

100 μM - MMP↑; ROS↓ - - - Lu et al. (2015)

Polydatin A non-
glycosylated
derivative of
resveratrol

Rotenone-induced
SH-SY5Y cells;
Parkin shRNA
transfected SH-SY5Y
cells

0–500 μM 6 h - - - - LC3-II↑,
autophagic flux↑

Mfn2↑;
PGC-1β↓

- Bai et al. (2020)

Resveratrol Veratrum
grandiflorum or
Polygonum
cuspidatum

Rotenone-induced
SH-SY5Y cells,
transfected SH-SY5Y
cells; rotenone-
induced PC12 cells;
primary fibroblasts
from two patients

0–50 μM 24/
48 h

- - - ATP, MMP,
complex I
activity, citrate
synthase
activity, basal
oxygen
consumption↑;
ROS↓

LC3-II, PGC-1α,
TFAM, COX 1,
mtDNA/nDNA↑

Short and
fragmented
mitochondria↓

- Ferretta et al.
(2014), Lin et al.
(2014), Lin et al.
(2018), Wang et
al. (2018)

Sativex® (a mixture of
tetrahydrocannabinol
and cannabidiol)

- - - - Transgenic mice 4.63 mg/kg of
Sativex®

1 month complex II and
IV activity↑

- - - Casarejos et al.
(2013)

α-Arbutin Ericaceae
species

Rotenone-induced
SH-SY5Y cells

1–100 μM 6 h Parkin-null
drosophila

1 mM 20 days MMP↑, ROS↓ - - - Ding et al. (2020)

Terpenoids Celastrol Tripterygium
wilfordii

Rotenone-induced
SH-SY5Y cells

1–10 nM 24 h - - - MMP↑; ROS↓ - - - Choi et al. (2014)

Ginsenoside Re Panax ginseng PINK1 null
dopaminergic cell
lines

0–5 μM - - - - Complex IV
activity, NO
production↑

- - - Kim et al. (2012)

LRPPRC,
Hsp90, and
Hsp60↑

(Continued on following page)
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TABLE 1 (Continued) Natural compounds targeting to mitochondrial dysfunction and PD models.

Category Compounds or
extracts

Biological
source

In vitro experiments In vivo experiments Mechanisms Refs

Mogroside V Siraitia
grosvenorii

Rotenone-induced
SH-SY5Y cells

25–100 μM 24 h Rotenone-treated
mice

2.5, 5 and
10 mg/kg

6 days ATP, MMP,
oxygen
consumption
rate↑; ROS↓

- - Cyt-c release,
caspase 3
activity↓

Luo et al. (2022)

SIRT3↑

Urolithin A - LPS-induced BV2
cells

2.5–10 μM 2 h MPTP-treated mice 20 mg/kg 7 days - LC3-II, Parkin,
PINK1
protein↑; p62↓

- - Qiu et al. (2022)

Ursolic acid Malus
domestica,
Origanum
majorana,
Rosmarinus
officinalis,etc

- - - Rotenone-treated rat 5 and
10 mg/kg

30 days Complex I
activity↑

- COX1↑ - Peshattiwar et al.
(2020)

Vanillic acid - SH-SY5Y cells 300 μM 24 h - - - - PGC-1, TFAM↑ - - Ay (2022)

Glycosides Astragalus
polysaccharide

Astragalus - - - MPTP-induced mice 10 mg/kg 14 days MMP↑; ROS↓ - - Bcl-2↑; Bax, Cyt-c
release, pro-
caspase-3,
caspase-3↓

Liu et al. (2018a)

Cordycepin Cordyceps
militaris

- - - Rotenone-treated
mice

2.5, 5 and
10 mg/kg

21 days MMP, ATP,
complex I
activity↑; ROS↓

- - - Zhang et al.
(2021)

Echinacoside Cistanche salsa 6-OHDA induced
PC12 cells

0.1–10 μM 24 h - - - MMP↑ - - – Wang et al.
(2015)

Alkaloids Piperine and
piperlonguminine

Piper longum Rotenone-treated
MN9D and SK-N-
SH cells

250 μg/mL
piperine and 5 μg/
mL
piperlonguminine

- Rotenone-treated rats 12.5 and
25 mg/kg

1 week MMP, complex I
activity↑

LC3-I/II↑ - Cyt-c release↓ Wang et al.
(2016)

Nicotine and caffeine - Mn3+ or H2O2

treated HEK293T,
PC12 and SH-SY5Y
cells

1–500 μM - - - - - Nrf2/Keap1 and
PGC-1α
pathway↑

- - Zhou et al.
(2019)

Quinones Anthraquinone Pleurotus
ostreatus

6-OHDA-induced
SH-SY5Y cells

5–50 nM 2.5 h - - MMP↑ Jin et al. (2021)

Embelin Embelia ribes
Burm

N27 cells 1–5 μM 2–24 h MPTP-induced mice 10 mg/kg 14 days ATP, basal
oxygen
consumption
rate↑

mtDNA,
pAMPK, SIRT1,
PGC1α, nuclear
respiratory factor
1/2 and TFAM↑

- - Rao et al. (2020)

Alkenes Isolongifolene Murraya
koenigii

- - - Rotenone-treated rats 5, 10 and
20 mg/kg

4 weeks - - - Bcl-2↑; Bax, Cyt-c
release, caspases↓

Balakrishnan et
al. (2021)

(Continued on following page)
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TABLE 1 (Continued) Natural compounds targeting to mitochondrial dysfunction and PD models.

Category Compounds or
extracts

Biological
source

In vitro experiments In vivo experiments Mechanisms Refs

Extracts Ethanol and hexane
leaf extracts

Calyptranthes
grandifolia

6-OHDA-induced
SH-SY5Y cells

300 μg/mL 3 h - - - MMP↑ - - caspase-3/9
activity↓

Kich et al. (2016)

Methanol and
dichloromethane
extracts

Sargassum
muticum,
Codium
tomentosum,
and Ulva
compressa

6-OHDA-induced
SH-SY5Y cells

1 mg/mL 24 h - - - MMP↑ - - caspase-3/9
activity↓

Silva et al. (2018)

Ethyl acetate stem bark
extract

Eucommia
ulmoides

6-OHDA-induced
SH-SY5Y cells

2.5–100 μg/mL 24 h - - - MMP↑; ROS↓ - - Bcl-2↑; Bax, Cyt-c
release and
caspase-3/9↓

Kwon et al.
(2014)

Methanol fruits extract Zizyphus
spinachristi

MPP+-induced SH-
SY5Y cells

20–100 μg (gallic
acid equivalents)

24 h - - - MMP↑; ROS↓ - - Cyt-c release,
caspase-3/9
activity↓

Singh et al.
(2018)

Ethanol extract of the
root and rhizome

Acanthopanax
senticosus

- - - MPTP-induced mice 45.5 mg/kg 20 days ATP, MMP↑ - - - Liu et al. (2018b)

Methanol extract Ganoderma
lucidum

MPP+-treated
neuro-2a

100–800 μg/mL 0–48 h MPTP-induced mice 400 mg/kg 4 weeks ATP, MMP↑ - - Cyt-c release,
caspase-3/9
activity↓

Ren et al. (2019)

Standardized extract Bacopa
monnieri

Paraquat- or MPP+-
induced SK-N-SH
cells; paraquat-
induced PC12 cells

12.5–100 μg/mL 1–3 h Paraquat-treated mice 200 mg/kg 4 weeks MMP, complex
I-III
activity↑; ROS↓

- - - Singh et al., 2012
(2013),
Hosamani et al.
(2016)

Aqueous extract of
tomato seeds

- - - - Rotenone-exposed
mice

50 and
100 mg/kg

3 weeks Complex I-III
activity↑

- - - Gokul and
Muralidhara
(2014)

Methanol extract od
saffron stigmas

Crocus sativus - - - Rotenone-treated
drosophilas

- 1 week Complex I-III
activity↑

- - - Rao et al. (2016)

Ethyl acetate fruits
extract

Morinda
citrifolia

- - - Rotenone-exposed
mice

150 mg/kg 1 month Complex I and
IV activity↑

- - Bcl-2↑; Bax, Cyt-c
release, caspase-
3/9 activity↓

Kishore Kumar
et al. (2017)

Standardized extract Centella
asiatica

- - - Rotenone-exposed
mice

10–100 mg/kg 20 days Complex
I↑; ROS↓

- - - Teerapattarakan
et al. (2018)

Aqueous extract of red
clover flowers

Trifolium
pratense

Rotenone-exposed
E17 embryos of rats

0.1–20 μg/mL 24 h - - - oxygen
consumption
rate↑; ROS↓

- - - de Rus Jacquet et
al. (2021)

Tris-HCl extract of
Ginseng total protein

Panax ginseng - - - Transgenic
drosophilas

0.02–0.16 mg/
mL

- - mtDNA↑ - - Liu et al. (2020)

Hydroethanol extract
of cocoa beans

Theobroma
cocoa

MPP+-treated SH-
SY5Y cells

0–8 μg/mL 20 h - - - - PPARγ, PGC1α,
Nrf2, TFAM and
COX4 proteins↑

Fis1↓; Mfn2↑ Bcl-2↑ Chidambaram et
al. (2020)
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TABLE 1 (Continued) Natural compounds targeting to mitochondrial dysfunction and PD models.

Category Compounds or
extracts

Biological
source

In vitro experiments In vivo experiments Mechanisms Refs

Ethanol extract of
leaves

Artemisia argyi MPP+-treated SH-
SY5Y cells

10–250 μg/mL 24 h MPTP-treated mice 100 mg/kg 2 weeks - LC3B↑ Drp1, p-Drp1↓ - Wu et al. (2022)

Methanol extract of
seeds

Mucuna
pruriens

- - - Transgenic
drosophilas

- 0–3 months - - Damaged,
swollen and
fragmented
mitochondria↓

- Poddighe et al.
(2014)

Aqueous extract of
roots

Decalepis
hamiltonii

- - - Paraquat-treated
drosophilas

0.55–2.75 mM 5 days - - Fragmented
mitochondrial
cristae↓

- Niveditha and
Shivanandappa
(2018)

Aqueous extract of
edible bird’s nest

Aerodramus (or
Collocalia)

6-OHDA-induced
SH-SY5Y cells

0–500 μg/mL 48 h - - - - - - caspase-3/9
activity↓

Yew et al. (2014)

Petal juicing and freeze
drying

Echium
amoenum

- - - Mn2+ -induced mice 5 mg/kg 15 days - - - caspase-3/9
activity↓

Sadeghi et al.
(2018)

Ethanol extract of root
bark

Paeonia
suffruticosa

Embryos of rats 0.1–1 μg/mL 1 h MPTP-treated mice 1–50 mg/kg 12 days - - - Bcl-2↑; Bax, Cyt-c
release, caspase-
3/9 activity↓

Kim et al. (2014)

Methanol extract and
ethanol extract

Humulus
japonicus

6-OHDA-induced
SH-SY5Y cells

0–200 μg/mL 24 h 6-OHDA-treated
mice

300,
500 mg/kg

3 days - - - Cyt-c release,
cleaved PARP,
cleaved caspase-9
and cleaved
caspase-3↓

Ryu et al. (2017)

Hand-squeezed juice Citrus bergamia 6-OHDA- or H2O2-
induced SH-SY5Y
cells

- 1 h - - - MMP↑; ROS↓ - - Bcl-2↑; Bax
and p53↓

Ferlazzo et al.
(2020)
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damage to any of the complexes also causes severe cell and
mitochondrial dysfunction such as loss of MMP in PD (Qi et al.,
2019). Mitochondrial respiration is an important process through
which mitochondria can provide energy that supports physiological
activity and body function. Many natural compounds and plant
extracts can beneficially function in mitochondrial dysregulation.
Most of them are flavonoids and polyphenols, in addition to
glycosides, terpenoids, etc.

3.1.1 Flavanoids
Flavanoids isolated from various sources induced mitochondrial

protection and improved mitochondrial function in PD by
upregulating the production of ATP, and ROS, and maintaining
the mitochondrial membrane potential and activity of
mitochondrial complexes. The dicarbonyl compound
methylglyoxal (MG) has been shown to be linked to PD
development by inducing mitochondrial dysfunction (Bakala
et al., 2012). Exposure of SH-SY5Y cells to MG caused decreases
in cell viability, intracellular ATP, and mitochondrial membrane
potential. The flavonoid naringenin is extracted from the pericarp of
Citrus reticulata Blanco, known as 5,7-dihydroxy-2-(4-
hydroxyphenyl)-2,3-dihydrochromen-4-one. It is one of the most
important polyphenolic flavanones and has been reported to have
neuroprotective effects in PD possessing potent free radical
scavenging properties (Lou et al., 2014). SH-SY5Y cells were
pretreated for 2 h with naringenin (at 10–80 μM) and then
challenged with MG at 500 μM for 24 h. Naringenin significantly
increased MMP, ATP, and complex I and V activity, and attenuated
the effects on mitochondrial function and the redox environment
(de Oliveira et al., 2019). In another study, 80 μM Naringenin
treatment in paraquat-induced SH-SY5Y cells resulted in
increased cell viability, reduced oxidative stress, elevated MMP,
and higher cellular ATP levels. In paraquat-induced rats,
40 mg/kg naringenin treatment resulted in significant
neuroprotection against paraquat -induced behavioral deficits,
oxidative stress, mitochondrial dysfunction, and astrocytosis
(Ahmad et al., 2021). Calycosin, an isoflavonoid extracted from
Astragalus membranaceus. , has been revealed to exhibit
neuroprotective functions against cerebral ischemia and
reperfusion-induced neurological injury, high glucose-induced
oxidative stress and neuroinflammation, as well as neuronal
apoptosis in earlier studies (Wang and Zhao, 2016; Hsu et al.,
2020). Chaouhan et al. (2022) reported that calycosin
administration increased ATP and MMP. Flies feed with 100 μM
calycosin exhibited significant resistance against paraquat-induced
mortality and locomotor deficits in terms of reduced oxidative stress,
loss of DA neurons, depletion of dopamine content. Nobiletin is a
natural polymethoxylated flavone. The disruption of mitochondrial
respiratory complexes I-IV and the enhancement of ROS induced by
lipopolysaccharide were ameliorated by nobiletin pretreatment,
which also enhanced MMP in BV-2 microglial cells (Qi et al.,
2019). Silibinin is a flavonoid extracted and isolated from the
fruit of Silybum marianum (L.) Gaertn and has been widely used
to exploit drugs for the treatment of diseases. Previous studies
showed that silibinin could potentially exert protective effects
against neuronal diseases including PD (Kujawska and Jodynis-
Liebert, 2018). Silibinin restored MMP decline in mitochondrial
respiration (Liu et al., 2021b). Baicalein, 5, 6, 7-trihydroxyflavone, is

a flavonoid and is mainly derived from the root of the herb
Scutellaria baicalensis Georgi, which is a well-known traditional
Chinese medicine (Kuang et al., 2017). Baicalein has neuroprotective
effects in PD models by exerting anti-inflammatory, anti-apoptosis,
and antioxidative effects. In previous studies, it has been manifested
that baicalein protected PC12 and SH-SY5Y cells against
neurotoxicity induced by several toxic substances and
ameliorated the neurotoxicity in rats (Mu et al., 2009; Zhang
et al., 2012). It has been reported that 10 μM baicalein increased
cell viability and restored mitochondrial function in SH-SY5Y cells.
Baicalein administration (5 mg/kg) prevented rotenone-induced
behavioral deficits, dopaminergic neuronal loss, and
mitochondrial dysfunction in mice by restoring mitochondrial
disorders of MMP decline. Hyperoside, which is a flavonoid
glycoside, maintained MMP and ROS and improved
mitochondrial function (Kwon et al., 2019). Quercetin
(3,5,7,30,40-pentahydroxyflavone), found in Bupleurum chinense
or Crataegus pinnatifida, has been proven to have
neuroprotective and cognitive enhancing effects in different brain
injury models (Selvakumar et al., 2012). A recent study reported that
administration of quercetin (10 mg/kg) reduced aluminum-induced
oxidative stress including decreasing ROS production and
increasing mitochondrial superoxide dismutase (Sharma et al.,
2016).

In addition, advanced glycation end products (AGEs) ligate to
the receptor of AGEs (RAGE), improving activation of the
transcription factor NF-κB, which may be involved in the
development of neurodegenerative diseases (Qin et al., 2009).
Myricitrin, a flavanoid contained in the root bark of Myrica
cerifera, alleviated MG-induced dysfunction of mitochondrial
bioenergetics, including an increase in ATP and MMP and a
decrease in ROS at concentrations of 1 and 10 μm, and the
possible mechanism is through inhibiting the AGE/RAGE/NF-κB
pathway (Wang et al., 2014). Icaritin, a flavonoid extracted from
Epimedium sagittatum maxim, reversed the decline in the levels of
ATP, ADP, inosine, and citric acid in the substantia nigra of PDmice
induced by MPTP. Icaritin improved the levels of SDHA, VDAC
and ATP5B, which are closely related to mitochondrial respiration
and energy supply (Wu et al., 2021).

3.1.2 Phenols and polyphenols
In previous studies, various phenols and polyphenols exerted

potent mitochondrial protection effects, such as resveratrol,
mangiferin, curcumin, tea polyphenols, etc. Resveratrol is a
natural polyphenolic compound sustained in a variety of plant
species, such as Veratrum grandiflorum and Polygonum
cuspidatum. It has been reported that resveratrol has potent
potential for PD therapy via multiple mitochondria-related
pathways (Yadav et al., 2022). The functional impacts of
resveratrol on mitochondrial bioenergetics included a decrease in
ROS, an increase in complex I and citrate synthase activities, basal
oxygen consumption, mitochondrial ATP production, and an
attenuated loss of MMP (Ferretta et al., 2014; Lin et al., 2018;
Wang et al., 2018). Mangiferin is the primary polyphenol
component of Mangifera indica L., possessing neuroprotective
effects in PD. Mangiferin (20 μg/mL) pretreatment of rotenone-
or MPTP-treated cells resulted in a higher MMP and significantly
enhanced ATP levels in SK-N-SH neuroblastoma cells and a PD
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mouse model (Kavitha et al., 2014; Wang et al., 2022).
Demethoxycurcumin (a natural derivative of curcumin),
paeonolum and α-Arbutin, which are extracted from Curcuma
longa, Ericaceae species, and Moutan cortex, respectively, have
been shown to prevent MMP loss and ROS production (Lu et al.,
2015; Ramkumar et al., 2017; Ding et al., 2020). In addition, Sativex®
(a mixture of 9-tetrahydrocannabinol and cannabidiol) significantly
increased mitochondrial complex II activity and complex IV protein
levels in mice (Khatri and Juvekar, 2016). Oleuropein, isolated from
Fraxinus rhynchophylla, plays a role as a protective molecule against
glutamate-induced mitochondrial dysfunction by regulating ATP
and ROS levels (Kim et al., 2018). Additionally, Parkin deficiency is
able to trigger mitochondrial dysfunction and dopaminergic
neuronal loss (Lim and Ng, 2009). Polydatin, a nonglycosylated
derivative of resveratrol extracted from grapes, protected
mitochondrial function by increasing MMP and decreasing ROS
in cells exposed to rotenone or knocked down Parkin (Bai et al.,
2020). Putative kinase 1 (PINK1), linked to familial Parkinson’s
disease, is known to affect mitochondrial function (Kim et al., 2012).
Curcumin is an active natural polyphenolic compound extracted
from rhizomes of C. longa, which is widely used. It has been reported
that curcumin has multiple pharmacological effects, including the
ability to inhibit the key characteristic features of PD such as ROS
production, apoptosis, and cognitive deficits in cell cultures and
animal models (Yang et al., 2005). In a recent study, it was shown
that curcumin at different doses (50, 100, and 200 mg/kg) could
significantly rescue complex II activity in mice that were given
chronic administration of rotenone for 3 weeks and had significant
alterations in mitochondrial enzyme complex activity (Khatri and
Juvekar, 2016). The PINK1 gene plays a vital role in the maintenance
and regulation of healthy mitochondria, and mutations in the
PINK1 gene result in an autosomal recessive form of early-onset
PD (Schapira AH et al., 1998). Subsequently, it was also reported
that curcumin at a concentration of 2 μM increased MMP and spare
respiratory capacity in paraquat-treated PINK1 siRNA and control
SH-SY5Y cells (van der Merwe et al., 2017).

3.1.3 Terpenoids
Several triterpenoids are capable of repairing the function of

mitochondrial bioenergetics, including ginsenoside Re, ursolic,
celastrol and mogroside V. Ginsenoside Re is one of the
primary biologically active components of ginseng. Ginsenoside
Re enhanced NO production and was capable of reversing the
deficit in complex IV activity in PINK1 null cells by increasing
LRPPRC, Hsp90, and Hsp60 levels, which are mitochondria-
related complex IV assembly factors (Kim et al., 2012). Ursolic
acid, a pentacyclic triterpenoid carboxylic acid, is found in many
plant species. In rotenone-induced damage rats, treatment with
ursolic acid at 5 and 10 mg/kg prevented inhibition of
mitochondrial complex I activity in the mid-brain (Peshattiwar
et al., 2020). Celastrol, a natural triterpene, protected SH-SY5Y
cells from rotenone-induced MMP loss and ROS production (Choi
et al., 2014). SIRT3 is present in the mitochondria and participates
in multiple mitochondrial functions, including maintaining ATP
levels (Ahn et al., 2008). Mogroside V, as a bioactive triterpene,
recovered ROS and increased MMP, ATP production and the
oxygen consumption rate in a dose-dependent manner, which may
be associated with SIRT3 upregulation (Luo et al., 2022).

3.1.4 Glycosides
Treatment with the phenylethanoid glycoside echinacoside

significantly attenuated the MMP decrease induced by 6-
hydroxydopamine (6-OHDA) in PC12 cells (Wang et al., 2015).
Astragalus polysaccharide is one of the main active ingredients in
astragalus. Astragalus polysaccharide maintained MMP and ROS
and improved mitochondrial function (Liu H. et al., 2018).
Additionally, cordycepin (3′-deoxyadenosine) is the main
bioactive ingredient isolated from Cordyceps militaris. It
effectively preserves mitochondrial function by increasing MMP,
ATP content, and complex I activity and decreasing ROS levels
(Zhang et al., 2021).

3.1.5 Quinones
Pretreatment of cells with 50 nM anthraquinone, extracted from

edible fungi Pleurotus ostreatus, reversed the decrease in MMP
induced by 6-OHDA (Bindhu et al., 2020). Treatment with 5 μM
embelin resulted in a time-dependent enhancement of the basal
oxygen consumption rate and ATP production in rat N27 cells (Rao
et al., 2020).

3.1.6 Plant extracts
Many plant extracts restored MMP and decreased

mitochondrial depolarization, including the extracts of
Calyptranthes grandifolia leaves (Kich et al., 2016) and the
seaweeds Sargassum muticum, Codium tomentosum, and Ulva
compressa (Silva et al., 2018). The extracts of Eucommia
ulmoides, Zizyphus spinachristi fruits and Citrus bergamia fruits
restored both MMP and ROS (Kwon et al., 2014; Singh et al., 2018;
Ferlazzo et al., 2020). Extracts of Acanthopanax senticosus and
Ganoderma lucidum reversed mitochondrial membrane potential
collapse and ATP depletion caused by MPTP (Liu S. M. et al., 2018;
Ren et al., 2019). Bacopa monnieri L. has been proven to have
neuroprotective effects, and the standardized extract also plays a role
by targeting mitochondrial respiration. Pretreatment with a
standardized extract of Bacopa monnieria maintained complex I
activity in SK-N-SH cells and complexes II-III activity in the mouse
striatal region and prevented MMP loss and ROS production (Singh
et al., 2012, 2013; Hosamani et al., 2016). Tomato seed extracts
efficiently restored ROT-induced activity loss of complexes I-II (in
the hippocampus) and complexes II-III (in the striatum) (Gokul and
Muralidhara, 2014). Rao et al. (2016) studied the neuroprotective
efficacy of saffron methanolic extract and its bioactive constituent
crocin. They both increased the activity of complexes I-III (Rao et al.,
2016). Supplementation of the ethyl acetate extract of Morinda
citrifolia significantly augmented the activity of complex I by 22%
and complex IV by 23% compared to only ROT-treated rats
(Kishore Kumar et al., 2017). The standardized extract of
Centella asiatica ECa233 (30 mg/kg) protected against the
inhibition of complex I and an increase in ROS (Teerapattarakan
et al., 2018). Selaginella delicatula extract restored rotenone-induced
perturbations in the activity levels of complexes I-II, MMP and
activity of ATPases to normalcy among mice (Chandran and
Muralidhara, 2013). Piper longum L. extract, containing two
active alkaloids, reversed the reduction in MMP in MN9D cells
caused by rotenone and protected mitochondrial complex I activity
(Wang et al., 2016). Pretreatment with red clover (Trifolium
pratense) extract and the individual isoflavone daidzein both
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decreased ROS levels and enhanced the oxygen consumption rate
(de Rus Jacquet et al., 2021).

3.2 Targeting mitochondrial biogenesis and
mitophagy

Mitochondrial biogenesis is a pivotal biological process that
plays a critical role in maintaining mitochondrial homeostasis, and
ultimately adapts to the cellular physiological demand for energy
supply. Mitochondrial biogenesis is the process in which existing
mitochondria divide directly to produce new mitochondria. The
original mtDNA is indispensable for the mitochondrial biogenesis
process due to its obligation to encode essential mitochondrial
tRNAs and RNAs (Richter-Dennerlein et al., 2015). Peroxisome
proliferator-activated receptor gamma coactivator (PGC)-1α is a
member of a family of transcription coactivators that play a central
role in the regulation of mitochondrial biogenesis and cellular
energy metabolism (Finck and Kelly, 2006; Handschin and
Spiegelman, 2006). PGC-1α activation is attributed to adenosine
monophosphate-activated protein kinase (AMPK) induced by
SIRT1 (Fernandez-Marcos and Auwerx, 2011). PGC-1α can
function to activate nuclear respiratory factor (Nrf) 1/2 as a
transcriptional modulator, and then bind to the mitochondrial
transcription factor A (TFAM) promoter to activate TFAM and
complete and promote the replication and transcription of mtDNA.
Cytochrome c oxidase (MtCO-1/COX1) is a mtDNA-encoded
polypeptide and is a downstream target of PGC-1α. Upregulation
of COX1 transcripts provides evidence for the activation of
mitochondrial biogenesis and respiratory activity (Peshattiwar
et al., 2020). Therefore, the biogenesis of new mitochondria
depends on the activation of SIRT1/AMPK/PGC-1α-Nrf-TFAM
pathway. Plenty of studies have shown that anomalous
expression of SIRT1/AMPK and the decreased expression of
PGC-1α, Nrf and TFAM leaded to mitochondrial dysfunction in
PD (Li et al., 2017; Mohammadipour et al., 2020).

Mitophagy is a type of selective autophagy that controls the
quantity and quality of mitochondria and maintains the normal
function of the mitochondrial network. Abnormal mitophagy can
cause many pathological changes that can lead to Alzheimer’s
disease and Parkinson’s disease (Fang X et al., 2022).
Phosphatase and tensin homolog (PTEN)-induced PINK1 and
Parkin, the two PD-associated genes, are involved in the selective
removal of damaged mitochondria (Geisler et al., 2010). PINK1 acts
upstream of Parkin in the mitochondrial quality control pathway,
and the two synergistically mediate the polyubiquitination process
of damaged mitochondrial surface structures or functional proteins,
and play a key role in depolarizing mitophagy degradation (Matsuda
et al., 2010). LC3 is the most widely used autophagosome marker to
evaluate autophagic flux. During autophagy, LC3I, the cytoplasmic
form, is conjugated with phosphatidylethanolamine to form LC3II,
which is recruited to autophagosome membranes (Klionsky et al.,
2021). During the late stages of autophagy, p62 and p62-bound
polyubiquitinated proteins that are incorporated into the
autophagosome are degraded in autolysosomes. Accordingly, the
level of p62 indicates damaged mitochondria accumulation instead
of mitophagy (Lin et al., 2014). Studies have revealed that PINK1/
Parkin-dependent mitophagy augmentation occurred in treated PD

models and exerted neuroprotective effects along with decreased
p62 protein and increased Parkin and LC3-II levels (Kuang et al.,
2017; Palikaras and Tavernarakis, 2020; Chaouhan et al., 2022).

Balance maintenance of mitochondrial biogenesis and
autophagy plays a crucial role in controlling mitochondrial
physiology and function (Narendra et al., 2008). Mitochondrial
dysfunction of impaired mitochondrial biogenesis has been
observed in neurodegenerative diseases, including Parkinson’s
disease (Zhu et al., 2012). Various natural products have shown
significant effects on regulating mitochondrial biogenesis and
mitophagy.

3.2.1 Flavanoids
The flavonoid baicalein could also increase autophagic flux in

rotenone-treated mice by increasing the LC3B-II protein level
(Kuang et al., 2017). PTEN-induced PINK1 and Parkin, the two
PD-associated genes, are involved in the selective removal of
damaged mitophagy (Geisler et al., 2010). Silibinin promoted
clearance of the toxic effects of damaged mitochondria. MPTP-
injected mice were protected against dopaminergic neuronal loss by
oral administration of silibinin (280 mg/kg), which increased the
expression of PTEN-PINK1 and Parkin, suggesting mitophagy
activation (Liu et al., 2021a). The level of p62, an essential
mitophagy regulator that indicates the accumulation of damaged
mitochondria, was observed to be dramatically increased in
paraquat-exposed flies. However, calycosin treatment inhibited this
effect. It also decreased the phosphorylation levels of S6K and 4EBP1,
indicating mitophagy stimulation (Chaouhan et al., 2022).

3.2.2 Phenols and polyphenols
Resveratrol regulated mitochondrial biogenesis and mitophagy

in PD by regulating the PGC-1α, LC3-II, p62 protein-related
pathways, etc. Resveratrol also promoted LC3-II accumulation,
inhibited p62 expression and augmented autophagic flux, which
was inhibited by rotenone in SH-SY5Y cells (Lin et al., 2014; Lin
et al., 2018). A significant resveratrol (25 μM) -mediated increase in
the PGC-1α transcriptional activity of downstream genes TFAM
and COX 1, the mtDNA/nDNA ratio, and enhanced
macroautophagic flux through upregulating LC3-II levels was
observed in skin fibroblasts from PD patients (Ferretta et al.,
2014). Resveratrol at a concentration of 20 μM promoted LC3-II
accumulation, inhibited p62 expression and augmented autophagic
flux, which was inhibited by rotenone in SH-SY5Y cells (Lin et al.,
2014; Lin et al., 2018). Vanillic acid is a phenolic compound found in
various plants and fruits. Its treatment resulted in significant
increases in the mRNA expression of PGC-1α and TFAM, and
treatment with 300 µM for 24 h significantly elevated the mtDNA
copy number and mitochondrial mass of SH-SY5Y cells (Ay, 2022).
Urolithin A, a natural compound produced by gut bacteria from
ingested ellagitannins and ellagic acid, decreased p62 protein levels
and increased LC3-II and other related protein levels of Parkin and
PINK1, regulating mitophagy (Qiu et al., 2022). Polydatin increased
the expression of LC3-II, indicating that autophagic flux was
augmented by polydatin (Bai et al., 2020).

3.2.3 Terpenoids
Ursolic acid caused a prominent upregulation of COX1, the

downstream gene of PGC-1α, in treated rats at a dose of 10 mg/kg,
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manifesting the promotion of mitochondrial biogenesis
(Peshattiwar et al., 2020).

3.2.4 Alkaloids
Pretreatment with the alkaloids piperine and piperlonguminine

upregulated LC3-I/II in neurons compared to those without
pretreatment, implying an increase in mitophagy (Wang et al.,
2016). Nuclear factor erythroid 2-related factor 2-keap1 signaling
pathways function to promote mitochondrial biogenesis and cell
proliferation (Barone et al., 2011). The alkaloids nicotine and
caffeine played a role in the activation of the nuclear factor
erythroid 2-related factor 2-Keap1 and PGC-1α signaling pathways,
thus regulating mitochondrial biogenesis (Zhou et al., 2019).

3.2.5 Quinones
Embelin, a natural benzoquinone compound, increased mtDNA

levels in a dose- and time-dependent manner in N27 cells. It also
caused a substantial increase in the mitochondrial biogenesis
regulators of pAMPK, SIRT1, PGC1α and mRNA levels of its
downstream targets (Nrf 1/2 and TFAM) (Rao et al., 2020).

3.2.6 Plant extracts
Incubation of PC12 cells with alkaloid component extracts from

Huperzia selago and Diphasiastrum complanatum for 24 h evoked
significant upregulation of the expression of the gene for DNA
polymerase γ (Polg), which is responsible for replication of mtDNA
and its repair processes (Lenkiewicz et al., 2016). Ginseng total protein
administration led to an increase in mtDNA levels and supported
mitochondrial biogenesis in PINK1B9-mutated Drosophila (Liu et al.,
2020). Theobroma cocoa extract at a concentration of 10 μg/mL
produced significant upregulation of PPARγ, PGC1α, Nrf2, TFAM,
and COX4 proteins in 1-methyl-4-phenyl-1,2,3,6- pyridine (MPP+)-
treated SH-SY5Y cells, mediating mitochondrial biogenesis
(Chidambaram et al., 2020). Supplementation with Artemisia argyi
extract increased LC3B expression in a dose-dependent manner in
comparison with cells treated with MPP+ alone (Wu et al., 2022).

3.3 Targeting mitochondrial dynamics

Mitochondria are dynamic organelles that undergo constant fusion
and fission and control mitochondrial morphology, providing energy
for cells, which is vital for retaining the usualmitochondrial functions as
well as cell endurance (Suarez-Rivero et al., 2016). Mitochondrial fusion
supplements enzymes and mitochondrial gene products in partially
damaged mitochondria to optimize mitochondrial function and reduce
the accumulation of age-related mutations in the mitochondrial
genome (Westermann, 2012). Fission events create multiple small
mitochondria and contribute to separating the fragments of
damaged mitochondria from healthy mitochondria, further
facilitating their clearance by mitophagy or apoptosis when under
high levels of cellular stress (Twig et al., 2008; Lin et al., 2018).
Several GTPases mediate mitochondrial dynamics, such as
mitochondrial fission 1 (Fis1) and dynamin-related protein-1 (Drp1)
for fission in the cytoplasm and mitofusions (Mfn1 and Mfn2) and
Optic Atrophy-1 (Opa1) for fusion located on the mitochondrial
membrane (Zhang et al., 2021). In addition, the balance between
mitochondrial fusion and fission events has been reported to be

regulated by PGC-1α and 1β (Scarpulla, 2011). Unbalanced fusion
and fission occur in PD with increased fragmented mitochondria or
aberrant expression of related genes, and ultimately increased oxidative
stress (Kim et al., 2018; Lin et al., 2018) (Chandra et al., 2019).

3.3.1 Flavanoids
Silibinin administration to MPTP-treated mice restored

mitochondrial dynamic disorder by decreasing Drp1 expression and
increasing Mfn1 expression in the hippocampus (Liu et al., 2021b).
Quercetin attenuated aluminum-induced mitochondrial swelling, loss of
cristae and chromatin condensation and restored the size of
mitochondria to normality in the aluminum-treated rat hippocampus,
improving mitochondrial integrity and function (Sharma et al., 2016).

3.3.2 Phenols and polyphenols
Resveratrol pretreatment reversed high percentages of short and

fragmented mitochondria in rotenone-exposed SH-SY5Y cells (Lin
et al., 2018). Oleuropein, a polyphenolic compound extracted from
F. rhynchophylla, amended a glutamate-induced mitochondrial
dynamic imbalance and reduced the number of cells with
fragmented mitochondria, regulating the phosphorylation of Drp1 at
amino acid residue serine 637 (Kim et al., 2018). MPTP promoted
Drp1 translocation to mitochondria. However, mangiferin (10 and
40 mg/kg) markedly inhibited this effect to prevent MPTP-induced
excessive mitochondrial fission with reversed expression of mitophagic
proteins, including PINK1, Parkin, NIX, BNIP3, FUNDC1 and p62,
and mitigated mitochondria with a disrupted and swollen structure,
vaguemitochondrial cristae, and condensatematrix (Wang et al., 2022).

3.3.3 Plant extracts
Treatment with 0.1% standardized methanolic extract of Mucuna

pruriens seeds significantly reduced the number of damaged, swollen and
clearly fragmented mitochondria in presynaptic boutons of antennal
lobes of PINK1B9 mutant flies compared with untreated mutants
(Poddighe et al., 2014). 4-Hydroxyisophthalic acid is a bioactive
component extracted from the roots of Decalepis hamiltonii.
Fragmented mitochondrial cristae caused by paraquat exposure could
be markedly reduced in the brains of flies fed 4-hydroxyisophthalic acid
(Niveditha and Shivanandappa, 2018). Pretreatment with cocoa (10 μg/
mL) extract downregulated the expression of mitochondrial Fis1 and
upregulated the expression of Mfn2 proteins to balance mitochondrial
dynamics in SH-SY5Y cells (Chidambaram et al., 2020). Artemisia leaf
extract downregulated mitochondrial fission proteins (Drp1 and
p-Drp1) and protected the mitochondria (Wu et al., 2022).

3.4 Targeting mitochondrial apoptosis

Mitochondria are crucial to the regulation of intrinsic apoptosis.
In the mitochondrial apoptotic pathway, the antiapoptotic Bcl-2 and
proapoptotic Bax/Bak markers have a primary role. Bax and Bak can
be activated and accumulate at the outer mitochondrial membrane
(Debatin et al., 2002). Then, they oligomerize and create multimeric
pore complexes that alter the permeability of the outer
mitochondrial membrane sufficiently, and induce leakage and
overactivation of Cytochrome C (Cyt-c) (Jin et al., 2021). Cyt-c is
an important mediator in the mitochondrial-associated pathway,
which ultimately leads to activation of caspases (Badshah et al.,
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2015). Inappropriate mitochondrial apoptosis is a crucial process
causing neurotoxicity in PD. Thus, a variety of natural products
inhibit mitochondrial apoptosis to exert neuroprotective effects by
regulating related molecules.

3.4.1 Flavanoids
Baicalein inhibited the rotenone-induced increase in caspase-3

activity and significantly prevented rotenone-induced cleaved
caspase-3 protein expression in mice (Kuang et al., 2017).
Quercetin significantly reduced the Bax/Bcl-2 ratio and prevented
the release of Cyt-c and subsequent activation of caspase-3,
protecting the hippocampal region of the rat brain (Sharma
et al., 2016). Pretreatment with naringenin increased the
antiapoptotic protein Bcl-2 while decreasing the proapoptotic
protein Bax and inhibited the MG-triggered release of Cyt-c from
the mitochondria to the cytosol in SH-SY5Y cells. Meanwhile, it also
significantly attenuated proapoptotic enzyme caspase-3/9 activation
(de Oliveira et al., 2019). In addition, calycosin supplements alleviate
paraquat -induced neurodegeneration by suppressing JNK
phosphorylation and caspase-3 activation, which is responsible
for DA neuronal cell death in exposed organisms (Chaouhan
et al., 2022).

3.4.2 Phenols and polyphenols
Glutamate treatment induced a decrease in Bcl-2 and an increase

in Bax compared to control HT-22 cells. However, pretreatment
with oleuropein maintained Bax/Bcl-2 expression levels in HT-22
cells exposed to glutamate treatment (Kim et al., 2018). Mangiferin
prevented the increase in the expression of cytosolic Cyt-c and
caspase-3/9 observed in rotenone -treated SK-N-SH cells (Kavitha
et al., 2014). Green tea polyphenols increased the dysfunction of the
mitochondrial apoptosis-related protein Bcl-2 and decreased Bax
and caspase-3. When neurons were incubated with siBcl-2, the
neuroprotective effect was abrogated (Cong et al., 2016). In
rotenone-treated SH-SY5Y cells, the expression of Bax, Bad,
caspase-3, caspase-6, caspase-8, and caspase-9 in mitochondria
and Cyt-c in the cytosol was increased, whereas the distribution
of Bcl-2, Bcl-xL and Cyt-c in mitochondria was significantly
decreased. Pretreatment of cells with demethoxycurcumin
gradually restored the excessive expression of these proteins
(Ramkumar et al., 2017).

3.4.3 Terpenoids
Caspase 3 activity and Cyt-c release into the cytosol were found

to be decreased following dose-dependent treatment with mogroside
V, indicating that mogroside V inhibited mitochondrial apoptosis
(Luo et al., 2022).

3.4.4 Glycosides
Astragalus polysaccharide played a role in MPTP-induced PD

mice by increasing Bcl-2 and decreasing the expression of Bax,
Cyt-c, pro-caspase-3, and caspase-3 protein significantly
compared with the control group (Liu H. et al., 2018).

3.4.5 Alkaloids
MN9D cells exposed to the alkaloids piperine and

piperlonguminine prior to rotenone application had lower
cytosolic Cyt-c levels than cells treated with rotenone only, which

indicated that the apoptosis induced by rotenone was inhibited
(Wang et al., 2016).

3.4.6 Alkenes
Isolongifolene is a novel tricyclic sesquiterpene compound

isolated from the herbMurraya koenigii. The biochemical effects
of mitochondrial apoptosis in rotenone-treated rats were
mitigated by isolongifolene (10 mg/kg), which increased the
expression of anti-apoptotic Bcl-2, reduced the expression of
pro-apoptotic Bax, inhibited Cyt-c release from mitochondria,
and reduced the activation of caspases (Balakrishnan et al.,
2021).

3.4.6 Plant extracts
Plant extracts also have outstanding effects on hindering

mitochondrial apoptosis. Many natural product extracts regulated
apoptosis by inhibiting the activity of caspase-3/9, including the water
extract of the Edible bird’s nest (Yew et al., 2014), ethanol and hexane
extracts of C. grandifolia leaves (Kich et al., 2016), extracts of seaweeds (S.
muticum, C. tomentosum, Padina pavonica, U. compressa) (Silva et al.,
2018), and extracts of Echium amoenum petals (Sadeghi et al., 2018).
Ganoderma lucidum extract and Z. spinachristi fruit extract suppressed
the activation of caspase-3/9 and Cyt-c release from mitochondria into
the cytoplasm (Singh et al., 2018; Ren et al., 2019). In addition,many plant
extracts significantly upregulated the level of anti-apoptotic Bcl-2,
downregulated the level of pro-apoptotic Bax and caspase-3/9 and
blocked Cyt-c release into the cytosol, thereby alleviating neuronal
loss, including the root bark extract of Paeonia suffruticosa, stem bark
extract of E. ulmoides, and fruit extract of M. citrifolia (Kim et al., 2014;
Kwon et al., 2014; Kishore Kumar et al., 2017). Theobroma cocoa extract
increased the expression of the antiapoptotic protein Bcl-2
(Chidambaram et al., 2020). Additionally, pretreatment with the
methanol extract of Humulus japonicus (100 and 200 μg/mL)
significantly decreased the expression of cleaved PARP, cleaved
caspase-9 and cleaved caspase-3. Meanwhile, Cyt-c release from the
mitochondria to the cytosol was also significantly suppressed (Ryu et al.,
2017). The incubation of SH-SY5Y cells with 6-OHDA significantly
upregulated Bax and p53 proteins as well as downregulated Bcl-2 protein
and the activity of caspase-3, which were significantly counteracted by
preexposure to bergamot juice at both 0.5% and 1% concentrations
(Ferlazzo et al., 2020).

3.5 Other effects

As the study demonstrated, G. lucidum extract treatment could
regulate mitochondrial mobility by increasing and decreasing the
speed in the anterograde and retrograde directions, respectively
(Ren et al., 2019). Pretreatment of SK-N-SH cells with the alkaloids
piperine and piperlonguminine blocked the opening of the
mitochondrial permeability transition pore (Wang et al., 2016).

4 Toxicology studies of several natural
products

Previous in vitro and clinical studies have shown that most
natural compounds have no significant toxic effects within the
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concentration range of administration in PD (Kuang et al., 2017;
Ding et al., 2020; Ahmad et al., 2021). Baicalein is not mutagenic or
genotoxic and showed safety profile in preclinical and clinical
toxicity studies. In a Phase I, randomized, double-blind, single-
dose trial, baicalein was safe with no signs of toxicity at oral doses of
100–2,800 mg in healthy humans (Yarla et al., 2016). Silybin,
silydianin, and silychristin were not cytotoxic or genotoxic at a
concentration of 100 μM. Silymarin is safe in humans at therapeutic
doses and is well tolerated even at a high dose of 700 mg three times
a day for 24 weeks (Soleimani et al., 2019).

Natural components have high safety and serve neuroprotective roles
through multiple molecular pathways. However, for this reason, when
they are pharmacologically active, they exert nonspecific off-target effects
on normal tissues. The toxic effects of natural products vary with the
biological species and route of administration. Additionally, several
natural compounds may transform into toxic substances in the
process of metabolism. Therefore, side effects cannot be neglected
while achieving therapeutic efficacy. Quercetin is a flavonoid that can
form a semiquinone in the metabolic process, thus causing cytotoxicity
(MetodiewaDet al., 1999).When severalflavonoids such as naringin, and
quercetin were detected, quercetin showed mutagenicity, and mutagenic
activity could be detected (Bjeldanes and Chang., 1977). 945 mg/m2 was a
safe dose of quercetin, while some patients exhibited emesis,
hypertension, nephrotoxicity, and decreased serum potassium with its
higher dose (Ferry DR et al., 1996; Bai et al., 2023). It has been reported
that high dose curcumin induced apoptosis of normal human
lymphocytes and noncancer cell lines (Li W et al., 2017; Eguchi et al.,
2022). Nephrotoxic toxicity and gastrointestinal problems were detected
after administration of resveratrol (Talib et al., 2022). Ursolic acid may
cause liver injury at higher doses of 74, 98, and 130mg/m2 with some
patients exhibiting diarrhoea and elevated serum activity of aspartate
aminotransferase, alanine aminotransferase and c-glu-tamyltransferase
(Wang XH et al., 2013). In particular, piperine was related to decreased
serum protein and increased levels of aspartate aminotransferase and
alkaline phosphatase in rats, suggestive of the hepatotoxicity of piperine
(Bai et al., 2023). Oral administration of anthraquinones can cause
different side effects. It has been reported that a short-term toxicity of
6 weeks of 120mg/kg oral administration was observed in female rats
including disintegration, necrotic changes, and perinuclear vacuolation in
the liver and kidney, which were relieved after embelin discontinuance
(Poojari, 2014). When the animals received 5.44mg/kg body weight or
more of anthraquinone, acute and subchronic oral toxicity of
anthraquinones including anemia and hypothyroidism, was observed
in both the male and female rats (Qu et al., 2022).

5 Conclusion and outlook

Here, we presented studies of the neuroprotective effects ofmultiple
natural products by targeting PDmitochondrial dysfunction. Targeting
mitochondrial dysfunction is quite important for PD therapeutics, in
which various kinds of natural products can play a part. Not only can
pure natural products that cover diversiform structures ameliorate
mitochondrial damage, but plant extracts sustaining variant
components can also come into play; thus, the treatment and
improvement of PD disease by natural products can be realized. As
summarized above, the pharmacological mechanisms of natural
products mainly include regulating mitochondrial respiration,

dynamics, apoptosis, biogenesis and mitophagy. Most natural
products (such as varieties of flavonoids, polyphenols, terpenoids,
etc.) can regulate mitochondrial respiration through the production
of ATP, maintenance of MMP and so on. Furthermore, in apoptosis,
natural products also exert significant effects by regulating related
apoptotic proteins. However, on the sides of dynamics, biogenesis
and mitophagy, there are relatively few reports and in-depth
investigations. In addition, it is essential to emphasize that it is
difficult to illustrate the explicit structure-bioactivity relationship
between natural products with structural diversity and PD
established on different experimental models.

While many natural products have shown potential to treat PD,
there are currently some limitations and challenges. First, many
natural products can only be studied in vitro or in animal trials,
and more clinical trials are needed to demonstrate their efficacy and
safety in humans with Parkinson’s disease. In addition, the efficacy
and dosage of natural products are not stable, which brings some risks
to the treatment of PD. In order to overcome these limitations and
challenges, future research requiresmore basic experimental studies to
gain insight into the mechanism of action of natural products on
mitochondrial dysfunction. In addition, more clinical studies are
needed to evaluate the safety of natural products and their efficacy
in treating human PD. Some of the best natural products can be
synthesized and yield more stable, safe and controllable therapeutic
doses, which will be a priority for future research.

In conclusion, natural products have great potential to be
developed into new drugs for PD with exact effects on
mitochondrial dysfunction. Substances of natural origins seem to
be accepted more easily by patients since they are considered
healthier than fully synthetic drugs. It is necessary to conduct
further studies on the related mitochondrial dysfunction
mechanisms of PD and other preclinical and clinical studies.
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