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Obesity is one of the most prevalent chronic metabolic diseases, and induction of
apoptosis in preadipocytes and adipocytes is a potential strategy to treat obesity.
Celastrol represents one of the most robust anti-obesity phytochemicals so far,
yet its direct binding target remains elusive. Here, we determined that celastrol
could induce apoptosis in preadipocytes via mitochondrial mediated pathway.
Further study clarified that celastrol inhibited the fusion of autophagosome and
lysosome to prohibit autophagy, leading to cell apoptosis. By conducting virtual
screening and genetic manipulation, we verified that overexpression of
VAMP7 and RAB7 could block the effects of celastrol on inhibiting autophagy
and inducing apoptosis. The Surface Plasmon Resonance study confirmed the
direct binding of celastrol with VAMP7 and RAB7. The functional study illustrated
the inhibition of RAB7 GTPase activity after celastrol treatment. Moreover,
celastrol induced comparable apoptosis in murine epididymal adipose tissue,
human preadipocytes and adipocytes, but not in human hepatocytes. An
inhibitory effect on differentiation of human primary visceral preadipocytes was
also observed. In conclusion, celastrol exhibited inhibitory effect of autophagy via
direct binding with VAMP7 and RAB7, leading to an increase in preadipocytes
apoptosis. These results advance our understanding in the potential application of
celastrol in treating obesity.
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1 Introduction

Obesity is one of the most prevalent chronic diseases among the world, and threatens
human health with tremendous social-economics cost (Ng et al., 2014). More than 1.9 billion
adults are overweight, and over 650 million are obese worldwide (https://www.who.int/
news-room/fact-sheets/detail/obesity-and-overweight). In obesity, adipose tissue exhibits
hypertrophy and pathological adipogenesis, which lead to insulin resistance and chronic
inflammation (Piche et al., 2020). In obesity, the proliferation and differentiation of
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preadipocytes to adipocytes are overrepresented, while the mature
adipocytes enlarge their volume to store the increased
triacylglycerols (Ali et al., 2013). Hence, decreasing fat mass with
activation of lipolysis, inhibition of adipogenesis or apoptosis of
preadipocytes and adipocytes, are considered as potential strategies
to treat obesity. In perspective of apoptosis in preadipocytes and
adipocytes, several phytochemicals were proven to induce apoptosis
of preadipocytes, which decreased the fat mass accumulation (Hsu
and Yen, 2006; Yang et al., 2007; Chen et al., 2012; Zhang and
Huang, 2012; Lone and Yun, 2017; Wu et al., 2019), suggesting them
as promising compounds in treating obesity.

Celastrol is a natural friedelane pentacyclic triterpenoid, which
can be extracted from some celastraceae plants such as Tripterygium
wilfordii and Celastrus orbiculatus. (Xu et al., 2021). It is also one of
the most robust anti-obesity phytochemicals that has been reported
so far, yet its direct target in this regard remains unknown. Liu et al.
had reported that up to 45% weight loss was observed in obese mice
treated with celastrol (Liu et al., 2015), which is even more potent
than 35%–40% weight loss in mice after bariatric surgery (Liou et al.,
2013; Mokadem et al., 2014; Ryan et al., 2014). Despite the strong
anti-obesity effect of celastrol, identification of its direct target
remains challenging. To date, only adenylyl cyclase-associated
protein 1 (Zhu et al., 2021) and nuclear receptor subfamily four
group A member 1 (Hu et al., 2017) were reported to be able to
directly bind with celastrol, yet neither was verified as the direct
target of its anti-obesity effect. Hence, identification of the target
would significantly advance its mechanistic investigation and
clinical translation.

Autophagy plays a pivotal role in preadipocytes differentiation
and fat accumulation. Autophagy is an essential mechanism for cells
to maintain physiological homeostasis, including turnover of the
protein and nutrients, and elimination of the potential hazards
(Doherty and Baehrecke, 2018). Studies showed that damage of
autophagic flux would inhibit preadipocytes differentiation and
subsequently induce apoptosis, indicating a vital role of
autophagy in adipogenesis (Baerga et al., 2009; Singh et al., 2009;
Zhang et al., 2009).

In our study, we demonstrated that celastrol could induce
apoptosis of preadipocytes and mature adipocytes. With
autophagic flux assay, gene manipulation and small molecule-
protein binding assay, we found that celastrol could directly bind
with vesicular transport related proteins, namely, VAMP7 and
RAB7, inhibit the fusion of autophagosome and lysosome,
leading to impaired autophagic flux and subsequent induction of
cell apoptosis in preadipocytes. This study determined a direct effect
of celastrol on preadipocytes and uncovered its direct binding target,
advancing the potential application of celastrol in treating obesity.

2 Materials and methods

2.1 Cell culture

The cell lines of murine 3T3-L1 preadipocytes and human
hepatocytes HL-7702 presented in this study were obtained from
the National Collection of Authenticated Cell Cultures of China
(Shanghai, China). The studies involving human primary visceral

preadipocytes and adipocytes of human participants were reviewed
and approved by the Institutional Review Board of The First
Affiliated Hospital of Sun Yat-sen University (Guangzhou,
China). The patients/participants provided their written informed
consent to participate in this study. Cells were cultured in normal
cell culture incubator. Murine 3T3-L1 preadipocytes and human
hepatocytes HL-7702 were cultured in Dulbecco’s modified Eagle’s
medium (DMEM, Gibco, United States) supplemented with 10%
fetal bovine serum (FBS, Gibco, United States), 100 U/mL of
penicillin and 100 μg/mL of streptomycin. The human primary
visceral preadipocytes and adipocytes were cultured in DMEM/
F12 medium without phenol red (Gibco, United States),
supplemented with 10% FBS, 100 U/mL of penicillin and 100 μg/
mL of streptomycin. For adipocytes differentiation, the classic
protocol of preadipocytes differentiation was followed (He et al.,
2021). In brief, 3T3-L1 preadipocytes were cultured 2 days in
DMEM medium (0.5 mmol/L IBMX, 1 μmol/L dexamethasone,
10 μg/mL insulin, and 10% FBS), and then 2 days in DMEM
medium (5 μg/mL insulin and 10% FBS), once reached full
confluence. Afterwards, the cells were maintained in DMEM
medium (10% FBS) for 4 days till full differentiation. DMEM/
F12 medium without phenol red was applied for human visceral
preadipocytes in this differentiation protocol.

2.2 Animals

Four-week-old male C57BL/6 mice were housed under normal
specific pathogen free (SPF) conditions with unrestricted access to
food and water and were fed with 60% high fat diet for 24 weeks to
induce diet-induced obesity. After induction, mice were randomly
divided into five groups, 1) chow diet + vehicle, 2) high fat diet +
vehicle, 3) high fat diet + celastrol, 4) pair-feeding + vehicle and 5)
pair-feeding + celastrol (n = 4). For 2 weeks intervention of celastrol
(100 μg/kg/day, i. p.), mice in two pair-feeding groups only received
equal amount diet comparing with high fat diet + celastrol treatment
group. After 6 h fasting, all mice were sacrificed with anesthesia to
harvest their epididymal adipose tissue. All animal studies were
approved by the Institutional Animal Care and Use Committees of
the First Affiliated Hospital of Sun Yat-sen University.

2.3 Cell treatment

For RFP-GFP-LC3 adeno-associated virus (Hanbio, China)
infection, 3T3-L1 preadipocytes in 12-well plate were transfected
according to the manufacturers’ instructions, celastrol were given
48 h after transfection, and harvested after 24 h for the following
experiments. For siRNA and plasmids transfection, Lipofectamine
2000 (Invitrogen, United States) was applied according to the
manufacturers’ instructions. Preadipocytes in 12-well plate were
transfected with each RAB7, VAMP7 or VTI1B plasmids for 48 h for
overexpression, and then subjected to celastrol for additional 24 h.
Ten nM of the RAB5C siRNA was applied for each well in 12-well
plate, added together with celastrol, and subjected to the following
experiments after 24 h. All control wells received the corresponding
blank plasmids or scramble siRNA.
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2.4 Apoptosis assay

Flow cytometry was applied for cell apoptosis assay. In brief,
preadipocytes after treatment were harvested, washed twice with
cold PBS and resuspended with buffer to reach 1 × 105 cells/mL.
Suspension was further incubated with dyes from Annexin V, FITC
Apoptosis Detection Kit (Dojindo, China). The percentages of
distribution of normal (Annexin V−/PI−), apoptotic (Annexin
V+/PI− and Annexin V +/PI+) and necrotic cells (Annexin V−/
PI+) were calculated.

2.5 Mitochondrial membrane potential assay

Mitochondrial membrane potential assay was applied using a
JC-10 based commercial kit (Biosharp, China). JC-10 exhibits
potential-dependent aggregate status in normal mitochondria
membrane (red), and monomer status in abnormal mitochondria
membrane (green). 3T3-L1 preadipocytes in 12-well plate were
administrated with celastrol for 24 h and then subjected to JC-10
dye loading solution at 37°C in a 5%CO2 incubator for 20 min, avoid
light. The plates were further observed with fluorescence microscope
(Leica DMi8, United States).

2.6 Terminal deoxynucleotidyl transferase
dUTP nick end-labelling (TUNEL) staining

For in vitro TUNEL assay, preadipocytes were treated with
celastrol for 24 h and dyed by One Step TUNEL Apoptosis Assay
kit (Beyotime Institute of Biotechnology, China) (Liu et al., 2019).
Preadipocytes were fixed with 4% paraformaldehyde at room
temperature for 30 min. Untreated cells were pre-incubated with
DNase I recombinant (5 μg/mL) for 10 min at room temperature to
serve as a positive control. Preadipocytes were further incubated
with TUNEL reaction mixture for 60 min at 37°C in dark. The
TUNEL-positive nuclei (green) was observed under a fluorescence
microscope (Leica DMI8, United States).

For in vivo TUNEL assay, In situ Cell Death Detection Kit
(Roche, Switzerland) was applied for epididymal adipose tissue.
The histological sections were incubated with TUNEL reaction
mixture for 60 min at 37°C in the dark, incubated with Converter-
POD antibody (1:500) for 30 min at 37°C, followed by DAB
substrate incubation for 10 min at room temperature, and
then mounted with PBS/glycerol. The number of TUNEL-
positive nuclei (brown) was calculated from six random fields
of each sections under a light microscope (Zeiss Axio Observer
Z1, German).

2.7 LysoTracker red staining

Preadipocytes were treated with celastrol, 40 μM chloroquine
or 200 nM bafilomycin A1 for 24 h and stained with LysoTracker
Red fluorescence probes (Solarbio, China). After compounds
treatment, cells were incubated with DMEM complete media
containing LysoTracker Red dye (25 nM) and Hoechst
33258 Staining Dye for 20 min at 37°C in dark. Cells were

further observed under a fluorescence microscope (Leica
DMI8, United States).

2.8 Immunofluorescence staining

Preadipocytes infected with RFP-GFP-LC3 adeno-associated
virus were treated with 1 μM celastrol, 40 μM chloroquine or
200 nM bafilomycin A1 for 24 h. Cells were fixed with 4%
paraformaldehyde and blocked with 5% BSA, then subjected to
primary antibody LAMP1 (Cell Signaling Technology,
United States, Cat #9091, RRID:AB_2687579, 1:100 dilution)
overnight, followed by incubation with Alexa Fluor 647-
conjugated goat anti-rabbit IgG antibody (Abcam, United States,
Cat # ab150079, RRID:AB_2722623, 1:500 dilution). Finally, the
autophagosomes were observed under a fluorescence microscope
(Leica DMI8, United States). Yellow against red puncta ratio was
determined by the exact puncta numbers in five random fields of one
slice obtained from YFP and RHOD channels separately. The
Pearson correlation coefficient (PCC) for the colocalization of
RFP-LC3 and Alexa Fluor 647-LAMP1 was calculated with the
Coloc2 module of ImageJ (National Institutes of Health,
United States, RRID:SCR_003070) (Elimam et al., 2019).

2.9 Electron microscopy

3T3-L1 preadipocytes were treated with 1 and 2 μM celastrol or
40 μM chloroquine for 12 h and were fixed with 2.5% glutaraldehyde
in sodium phosphate buffer (pH 7.4) for 30 min at room
temperature. The samples were then dehydrated in a series of
aqueous alcohol solutions, and finally 100% alcohol and
embedded in epoxy resin. Ultrathin sections cut in a Leica
ultramicrotome (Leica UC7, United States) were stained with
lead citrate and uranyl acetate and observed using a
HT7800 electron microscope (HITACHI, Japan).

2.10 Oil Red O staining

Oil Red O staining was performed as described (Huang et al.,
2021). During differentiation, 3T3-L1 preadipocytes were treated
with 200 nM–1,000 nM celastrol constantly. After full
differentiation, cells were stained with Oil red O dye (Sigma,
United States) at room temperature for 15 min, followed by de-
staining with 60% isopropyl alcohol for 5 s. Oil red O staining was
obtained with a light microscope, and the statistics was calculated by
ImageJ software (National Institutes of Health, United States, RRID:
SCR_003070).

2.11 Real-time quantitative PCR (RT-qPCR)

The 3T3-L1 preadipocytes were treated with 2 and 4 μM
celastrol for 16 h, then subjected to AG RNAex Pro Reagent
(Accurate Biotechnology, China) for total RNA extraction and
further reverse transcription. RT-PCR was performed using SYBR
staining (Accurate Biotechnology, China) in a LightCycle480 II
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thermal cycler (Roche, Switzerland). Relative gene expression was
normalized against Actin, with control group value set to 1. The
primer sequences are Bax-forward primer: AGGATGCGTCCA
CCAAGAAGCT, -reverse primer: TCCGTGTCCACGTCAGCA
ATCA; Bcl2-forward primer: CCTGTGGATGACTGAGTACCT
G, -reverse primer: AGCCAGGAGAAATCAAACAGAGG; Chop-
forward primer: GGAGGTCCTGTCCTCAGATGAA, -reverse
primer: GCTCCTCTGTCAGCCAAGCTAG; P62-forward primer:
GCTCTTCGGAAGTCAGCAAACC, -reverse primer: GCAGTT
TCCCGACTCCATCTGT; Lc3b-forward primer: GTCCTGGAC
AAGACCAAGTTCC, -reverse primer: CCATTCACCAGGAGG
AAGAAGG; Becn1-forward primer: CAGCCTCTGAAACTG
GACACGA, -reverse primer: CTCTCCTGAGTTAGCCTCTTCC;
Hif1a-forward primer: CCTGCACTGAATCAAGAGGTTGC,
-reverse primer: CCATCAGAAGGACTTGCTGGCT; Hif2a-
forward primer: GGACAGCAAGACTTTCCTGAGC, -reverse
primer: GGTAGAACTCATAGGCAGAGCG; Bnip3-forward
primer: GCTCCAAGAGTTCTCACTGTGAC, -reverse primer:
GTTTTTCTCGCCAAAGCTGTGGC; Vim-forward primer: CGG
AAAGTGGAATCCTTGCAGG, -reverse primer: AGCAGTGAG
GTCAGGCTTGGAA; Col3a-forward primer: GACCAAAAG
GTGATGCTGGACAG, -reverse primer: CAAGACCTCGTGCTC
CAGTTAG; Actin-forward primer: CATTGCTGACAGGATGCA
GAAGG, -reverse primer: TGCTGGAAGGTGGACAGTGAGG.

2.12 Western blotting

For whole cell protein extraction, preadipocytes and fat tissue
were lysed in RIPA buffer (50 mM Tris-HCl, pH 7.4, 150 mMNaCl,
1% NP-40, 0.1% SDS) with protease inhibitors and phosphatase
inhibitors. For cytoplasm protein extraction, cells were prepared in
RSB buffer (10 mmol/L Tris (pH 7.4), 10 mmol/L NaCl, 3 mmol/L
MgCl2, 0.5% NP40) with protease inhibitors and phosphatase
inhibitors. The bicinchoninic acid (BCA) (ComWin Biotech,
China) was used to measured protein concentration. For
RAB7 GTPase activity assay, 3T3-L1 preadipocytes were treated
using Rab7 Pull-Down Activation Assay Kit (NewEast Biosciences,
United States). After 1 and 2 μM celastrol treatment for 16 h, whole
cell proteins from preadipocytes were harvested using lysis buffer
from the kit, and a half extracts from the control group was
incubated with GDP for 30 min at 30°C to serve as negative
control. The extracts were further incubated with protein A/G
Agarose beads conjugating anti-Rab7-GTP antibody for 1 h at
4°C. The beads were washed and resuspended with SDS-PAGE
loading buffer. Equal amounts of protein were subjected to SDS-
PAGE and transferred to a PVDF membrane, then the membrane
was incubated in 5% milk in Tris-buffered saline for 1 h at room
temperature, followed by primary antibodies of Cytochrome C (Cell
Signaling Technology, United States, Cat # 11940, RRID:AB_
2637071, 1:1,000 dilution), cleaved-Caspase3 (Cell Signaling
Technology, United States, Cat #9664, RRID:AB_2070042, 1:
1,000 dilution), P62 (Sigma, United States, Cat #P0067, RRID:
AB_1841064, 1:1,000 dilution), LC3 I/II (Sigma, United States,
Cat #L7543, RRID:AB_796155, 1:1,000 dilution), LAMP1 (Cell
Signaling Technology, United States, Cat #9091, RRID:AB_
2687579, 1:1,000 dilution), RAB7 (Cell Signaling Technology,
United States, Cat #9367, RRID:AB_1904103, 1:1,000 dilution),

β-actin (Cell Signaling Technology, United States, Cat #4970,
RRID:AB_2223172, 1:1,000 dilution), GAPDH (Cell Signaling
Technology, United States, Cat #5174, RRID:AB_10622025, 1:
1,000 dilution) and Flag (Cell Signaling Technology,
United States, Cat #14793, RRID:AB_2572291, 1:1,000 dilution)
overnight at 4°C, and a secondary antibody (1:5,000 dilution)
conjugated with horseradish peroxidase (Cell Signaling
Technology, United States, Cat #7074, RRID:AB_2099233) for
1 h at room temperature. Membranes were developed with
chemiluminescent ECL reagents (Millipore, United States). The
relative expression of target protein to the control was
determined by ImageJ software (National Institutes of Health,
United States, RRID:SCR_003070).

2.13 Virtual docking

The crystal structure of the apo form of human VAMP7 (PDB:
2VX8), RAB5C (PDB: 1Z0D), RAB7 (PDB: 1VG1), VTI1B (PDB:
2V8D), VAMP8 (PDB: 3ZYM), SNP29 (PDB: 4WY4), PLEKHM1
(PDB: 5DPT) and SNARE-complex (PDB: 3RK2) were applied for
molecular docking. The AutoDockTools-1.5.7 was used for virtual
docking of abovementioned proteins and celastrol (Rogério et al.,
2022).

2.14 Surface Plasmon Resonance (SPR)

The SPR assays were performed to analyze the interactions
between the compounds and VAMP7, RAB7 proteins (Sino
Biological, China) by using a Biacore T100 machine with Sensor
Chip CM5 (GE Healthcare, United States) at 25°C. Two proteins
were immobilized onto CM5 chips, and sensorgrams were recorded
by injecting various concentrations of compounds. The binding
kinetics (Kd) was analyzed with the software BIA evaluation Version
4.1 (GE Healthcare, United States).

2.15 Statistical analysis

All data were shown as mean ± SEM. All results shown were
representative of at least three independent biological replicates of
experiments. Data were analyzed with SPSS version 24.0 software
(IBM Corp, United States, RRID:SCR_002865). One-way analysis of
variance (ANOVA) was performed for the comparison of multiple
groups. Bonferroni post-hoc testing was used following ANOVA for
analyzing all pairwise comparisons between groups. p < 0.05 was
considered a statistically significant difference.

3 Results

3.1 Celastrol induced 3T3-L1 preadipocytes
apoptosis via mitochondrial mediated
pathway

Induction of preadipocytes apoptosis represents a potential anti-
obesity treatment strategy, and our previous study of resveratrol and
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other studies showed several phytochemicals with this effect (Hsu
and Yen, 2006; Yang et al., 2007; Chen et al., 2012; Zhang and
Huang, 2012; Lone and Yun, 2017;Wu et al., 2019). In consideration
that celastrol was reported as one of the most robust anti-obesity
phytochemicals (Liu et al., 2015), we compared the induced
apoptosis effects of these compounds with celastrol. As shown in
Figure 1A, a rather lower concentration of celastrol illustrated the
strongest efficacy on preadipocytes apoptosis compared to other
compounds after 24 h treatment. Furthermore, 3T3-L1

preadipocytes were subjected to 1, 2 and 4 μM celastrol for 24 h,
and the pathomorphological alteration of apoptosis of preadipocytes
as verified with light microscope (Figure 1B), condensed nuclei
(Figure 1C) and fracture of genome DNA (Figure 1D) were
observed. A concentration dependent effect of celastrol on
preadipocytes apoptosis was also observed after 16 h treatment
(Figure 1E).

To determine the mechanism underlying celastrol-induced
apoptosis, we first observed enhanced green fluorescence after

FIGURE 1
Celastrol induced 3T3-L1 preadipocytes apoptosis viamitochondrial mediated pathway (A), Flow cytometry of apoptosis assay of 3T3-L1 preadipocytes
after 24 h treatment of celastrol (0, 0.5, 1 and 2 μM), curcumin (0, 10, 20 and 40 μM), honokiol (0, 10, 20 and 40 μM), quercetin (0, 12.5, 25 and 50 μM),
resveratrol (0, 20, 40 and 80 μM) or xanthohumol (0, 5, 10 and 20 μM) (n = 7–10) (B–D), 3T3-L1 preadipocytes after 24 h treatment of 0, 1, 2 and 4 μM
celastrol were subjected to light microscope imaging (B), Hoechst 33258 staining (C), Terminal deoxynucleotidyl transferase dUTP nick end labelling
(TUNEL) staining (D) (n = 4) (E), 3T3-L1 preadipocytes after 16 h treatment of 0, 1, 2 and 4 μM celastrol were subjected to flow cytometry analysis (n = 7) (F),
3T3-L1 preadipocytes after 24 h treatment of 1 μM celastrol were subjected to JC-10 dye staining (n = 4) (G), Western blotting of Cytochrome C (Cyt C) was
conducted with cytoplasm extracts of preadipocytes after 1, 2 μM celastrol and 100 μM resveratrol treatment for 24 h (n = 3), resveratrol treatment was
applied as a positive control (H), Western blotting of cleaved-Caspase 3was developed in preadipocytes after 1, 2 and 4 μMcelastrol treatment for 24 h (n=3)
(I–J), 3T3-L1 adipocytes were treated with 0, 1, 2 and 4 μM celastrol for 24 h, and subjected to flow cytometry analysis (I) (n = 6) and Western blotting of
cleaved-Caspase3 (J) (n = 3). Error bars represent SEM; *p < 0.05; **p < 0.01; ***p < 0.001. Veh, vehicle; Cas 3, Caspase 3.
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celastrol treatment with the JC-10 fluorescence probe, showing that
mitochondria membrane potential was impaired after celastrol
treatment (Figure 1F). Next, Western blotting illustrated a
concentration dependent release of Cytochrome C in cytoplasm
extracts (Figure 1G), and accumulation of cleaved-Caspase 3 in
whole cell extracts after celastrol treatment (Figure 1H). These

results indicated that celastrol activated the intrinsic apoptosis
via mitochondrial mediated pathway in preadipocytes. Lastly, the
effect of celastrol was also investigated in 3T3-L1 mature adipocytes.
As shown in flow cytometry (Figure 1I) and Western blotting
(Figure 1J), 24 h celastrol treatment exhibited similar apoptotic
effects on mature adipocytes.

FIGURE 2
Celastrol induced 3T3-L1 preadipocytes apoptosis through inhibition of autophagy (A), Real-time qPCR of genes were studied in 3T3-L1
preadipocytes after 0, 2 and 4 μM celastrol treatment for 16 h (n = 6) (B), Western blotting of P62 and LC3 I/II were developed in 3T3-L1 preadipocytes
after 0, 1 and 2 μM celastrol treatment for 24 h (n = 3) (C), Western blotting of P62 and LC3 I/II were developed in preadipocytes after 2 μM celastrol
treatment for 24 h with or without 15 μM rapamycin, 40 μM chloroquine or 200 nM bafilomycin A1 (n = 3) (D), Autophagosome degradation was
observed with RFP-GFP-LC3 adeno-associated virus, after 24 h treatment of 1 μM celastrol, 40 μM chloroquine or 15 μM rapamycin, respectively (n = 7).
Red fluorescence represented normal autophagosome degradation, while yellow represented halt of degradation (E–F), 3T3-L1 preadipocytes were
treated with 24 h of celastrol, 15 μM rapamycin, 40 μMchloroquine, 200 nM bafilomycin A1, celastrol + 15 μM rapamycin, celastrol + 40 μMchloroquine
or celastrol + 200 nM bafilomycin A1, respectively, and subjected to flow cytometry analysis (E) (n = 7) andWestern blotting of cleaved-Caspase3 (F) (n =
3). Protein expressionwas calculated relative to β-actin and depicted at the top of each blot. Error bars represent SEM; *p < 0.05; **p < 0.01; ***p < 0.001.
Veh, vehicle; Cela, celastrol; 1C, 1 μM celastrol; 2C, 2 μM celastrol; BafA1, bafilomycin A1; CQ, chloroquine; Rapa, rapamycin; Cas 3, Caspase 3.
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3.2 Celastrol induced 3T3-L1 preadipocytes
apoptosis through inhibition of autophagy

In consideration that autophagy (Gordy and He, 2012),
hypoxia (Sendoel and Hengartner, 2014) and fibrogenesis
(Mehal and Imaeda, 2010) pathways were reported intensively
interplay with apoptosis pathway to maintain cell viability, we
hypothesized that celastrol might induce apoptosis of
preadipocytes through regulation of these pathways. We first
applied Real-time qPCR to search the potential pathway. As
shown in Figure 2A, after celastrol treatment, the pro-apoptotic
genes: Bax and Chop were significantly upregulated and the anti-
apoptotic gene Bcl2 was significantly downregulated. The
autophagy-related genes: P62 and Lc3b showed significantly
upregulation, while Becn1 showed a mere alteration. However,
no significant changes were observed in the hypoxia-related genes:
Hif1a, Hif2a and Bnip3. The fibrogenesis-related genes: Vim and
Col3a showed downregulation. Therefore, we believed celastrol
induced apoptosis of preadipocytes through regulation of
autophagy. Furthermore, the inhibition of autophagic flux was
also verified with accumulation of P62 and LC3 II after celastrol
treatment, usingWestern blotting (Figure 2B). Autophagy involves
three main steps: 1) the formation of double membrane-bound
vesicles called autophagosomes, 2) the fusion of autophagosomes
and lysosomes, and 3) the acidification of autophagolysosomes
(Mauvezin et al., 2015). The abrogation of each step would lead to
the halt of the whole autophagic flux. To further verify the exact
autophagy step in which celastrol regulates, rapamycin, an
activator of autophagy initiation and autophagosome formation,
was firstly applied in addition to celastrol. If celastrol inhibits the
formation of autophagosome, it is plausible that rapamycin can
block the inhibitory effect of celastrol on autophagy. Conversely,
we observed increased accumulation of P62 and LC3 II after this
treatment, indicating that celastrol probably targets the
downstream of autophagic flux (Figure 2C). Furthermore,
chloroquine, an inhibitor only targeting step 2 (the fusion of
autophagosomes and lysosomes) (Mauthe et al., 2018), and
bafilomycin A1, an inhibitor targeting step 2 and step 3 (the
acidification of autophagolysosomes) (Mauvezin et al., 2015),
were applied in addition to celastrol. We observed that only
celastrol + bafilomycin A1 group, but not celastrol +
chloroquine group, showed increased accumulation of P62 and
LC3II comparing to the celastrol group (Figure 2C). Therefore, we
deduced that celastrol might have a similar effect with the
chloroquine and only inhibit the fusion of autophagosomes and
lysosomes.

To further verify celastrol’s effect on autophagy, RFP-GFP-
LC3 adeno-associated virus was applied to monitor
autophagosome degradation. The number of autophagic
vacuoles and vesicles containing RFP-GFP-LC3 was markedly
increased after celastrol treatment, indicating the impairment
of autophagosome degradation. Similar phenomenon was
observed after chloroquine treatment, while rapamycin
treatment exhibited normal red fluorescence (Figure 2D).
Last, the combination effects of celastrol and these three
compounds on apoptosis were studied. As observed by flow
cytometry (Figure 2E) and cleavage of Caspase3 (Figure 2F),
celastrol + chloroquine group and celastrol + rapamycin group

exhibited comparable apoptotic effect again celastrol group,
whereas celastrol + bafilomycin A1 group showed higher
apoptotic effect. We speculated that celastrol might share
similar mechanism with chloroquine, targeting the inhibition
of autophagosomes and lysosomes fusion, since their
combination did not show superimposed effect.

3.3 Celastrol inhibited the fusion of
autophagosome and lysosome

To further validate our hypothesis that celastrol mainly
inhibits the autophagosome and lysosome fusion, we first
tested the lysosome acidification after intervention. As shown
in Figure 3A, no decrease of red puncta was observed in celastrol
and chloroquine group, indicating no effect on lysosome
acidification. Bafilomycin A1, however, exhibited significant
decrease of red puncta, indicating an abrogation of lysosome
acidification. Furthermore, the colocalization of
autophagosome marked with RFP-GFP-LC3 and lysosome
marked with its membrane protein LAMP1 was studied.
Decreased colocalization was observed in celastrol,
chloroquine and bafilomycin A1 groups (Figure 3B), whereas
LAMP1 protein was not altered after celastrol treatment
(Figure 3C). The accumulation of autophagosomes after
celastrol and chloroquine treatment was also directly
observed via electron microscopy (Figure 3D). These data
indicated the inhibition of autophagosome and lysosome
fusion after celastrol treatment. Considering the vital role of
autophagy in adipogenesis (Baerga et al., 2009; Zhang et al.,
2009), we also observed a significant inhibition of
differentiation of human primary visceral preadipocytes with
low doses of celastrol (200 nM–800 nM) (Supplementary Figure
S1). Moreover, the inhibition of autophagic flux upon celastrol
treatment was also confirmed on 3T3-L1 mature adipocytes as
determined by the Western blotting of P62 and LC3 II
(Figure 3E).

3.4 Celastrol bond with VAMP7 and RAB7 to
inhibit autophagy and subsequently induce
apoptosis

In light of the abovementioned results, we hypothesized that
celastrol might directly bind with certain proteins during the fusion
of autophagosome and lysosome, and subsequently inhibit the
autophagic flux. To determine the direct binding protein of
celastrol, the components mediating autophagosome and
lysosome fusion were applied for virtual docking with celastrol
(Supplementary Figure S2). Notably, VAMP7, RAB5C, RAB7 and
VTI1B were the top four candidate proteins with the strongest
binding potential with celastrol. Therefore, the genic manipulation
studies of VAMP7, RAB5C, RAB7 and VTI1B were applied.
Importantly, overexpression of VAMP7 or RAB7 significantly
inhibited celastrol induced apoptosis in 3T3-L1 preadipocytes
(Figures 4A,B, Supplementary Figure S2), whereas no effect was
observed with overexpression of VTI1B (Figures 4A, C,
Supplementary Figure S2) or knockdown of RAB5C
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(Supplementary Figure S2) in the combination with celastrol. Next,
these manipulations on celastrol induced autophagic flux inhibition
was also investigated. As shown in Figure 4D, overexpression of
VAMP7 or RAB7 significantly reversed the accumulation of P62 and
LC3II after celastrol treatment in 3T3-L1 preadipocytes, while
overexpression of VTI1B showed no effect. Likewise, knockdown
of RAB5C exhibited no effect on autophagy after celastrol treatment
(Supplementary Figure S2). Taken together, these data suggested
that VAMP7 and RAB7, not VTI1B or RAB5C, intervened the effect
of celastrol on autophagy and apoptosis, which might be the direct
target of celastrol.

To further verify the direct binding target, we purified
VAMP7 and RAB7 (Supplementary Figure S2) and performed
Surface Plasmon Resonance study. The results showed a direct
binding of celastrol with VAMP7 (Kd = 3.24 μM, Figure 4E), as
well as celastrol with RAB7 (Kd = 7.58 μM, Figure 4G). Meanwhile,
hesperidin, another phytochemical, showed no binding with
VAMP7 (Figure 4F) or RAB7 (Figure 4H). We further studied
RAB7 GTPase activity with a RAB7-GTP pull-down assay. As the
initial switch of these interactions and the following membrane

fusion, RAB7 GTPase activity was significantly reduced after
celastrol treatment, as indicated by the decrease of RAB7-GTP
against total RAB7 (Figure 4I). These data confirmed that
VAMP7 and RAB7 were the direct binding targets of celastrol,
and celastrol inhibited the GTPase activity of RAB7 via direct
binding.

3.5 Celastrol induced apoptosis and
inhibited autophagy in murine epididymal
adipose tissue and human primary visceral
preadipocytes.

To validate celastrol’s effect in murine fat tissue, we further
performed in vivo study using diet-induced obese mice treated
with celastrol. Given that Liu et al. firstly reported up to 79%
food intake reduction after celastrol administration in mice (Liu
et al., 2015), we applied the pair-feeding group given equal
amount diet (about 21%) per day, as a control to exclude the
potential side-effects due to food reduction. Diet-induced obese

FIGURE 3
Celastrol inhibited the fusion of autophagosome and lysosome (A–B), 3T3-L1 preadipocytes were treated with 24 h of 1 μM celastrol, 40 μM
chloroquine or 200 nM bafilomycin A1, and subjected to LysoTracker red staining (A) (n = 3) and immunofluorescence staining of LAMP1 and LC3 (B). The
representative images were shown on the left, and the Pearson correlation coefficient (PCC) for the colocalization of RFP-LC3 and Alexa Fluor 647-
LAMP1were presented on the upper right (n = 3) (C), 3T3-L1 preadipocytes were treated with 1 and 2 μMcelastrol for 24 h and subjected toWestern
blotting of LAMP1 (n = 3) (D), 3T3-L1 preadipocytes were treated with 1, 2 μM celastrol and 40 μM chloroquine for 12 h and subjected to electron
microscopy (n = 5) (E), 3T3-L1 adipocytes were treated with 1 and 2 μM celastrol for 24 h and subjected to Western blotting of P62 and LC3 I/II (n = 3).
Protein expression was calculated relative to β-actin or GAPDH and depicted at the top of each blot. Error bars represent SEM. Veh, vehicle; Cela,
celastrol; CQ, chloroquine; BafA1, bafilomycin A1; AP, autophagosome.
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mice were randomly divided into five groups including 1) chow
diet + vehicle (CD + Veh), 2) high fat diet + vehicle (HFD +
Veh), 3) high fat diet + celastrol (HFD + Cela), 4) pair-feeding +
vehicle (PF + Veh) and 5) pair-feeding + celastrol (PF + Cela).
After 2 weeks intervention of celastrol, significant decrease of
body weight was observed in HFD + Cela group versus HFD +
Veh group, whereas pair feeding groups showed similar
decrease of body weight comparing with HFD + Cela

group. No significant body weight change was observed in PF
+ Veh group and PF + Cela group (Figure 5A). We further
harvested murine epididymal adipose tissue from these five
groups for apoptosis and autophagy study. The TUNEL
staining of epididymal adipose tissue showed a slight
increase of apoptosis in celastrol treatment groups
comparing with the corresponding vehicle groups
(Figure 5B). Using Western blotting of P62 and LC3 I/II, we

FIGURE 4
Celastrol bond with Vamp7 and Rab7 to inhibit autophagy and subsequently induce apoptosis (A–D), 3T3-L1 preadipocytes were transfected with
blank, Vamp7, Rab7 and Vti1b plasmids for 48 h, and then treated with 0, 1 and 2 μM celastrol for 24 h and subjected to phase contrast light microscope
imaging (A) (n = 4), flow cytometry analysis (B, C) (n = 4), andWestern blotting of P62 and LC3 I/II (D) (n= 4) (E–H), Surface Plasmon Resonance studies of
VAMP7 with celastrol (E) and hesperidin (F), RAB7 with celastrol (G) and hesperidin (H)were shown. (I) RAB7-GTP pull-down assay was performed in
preadipocytes after 1 and 2 μM celastrol treatment for 16 h and shown by Western blotting of RAB7-GTP and total RAB7 (n = 3). Protein expression was
calculated relative to β-actin and depicted at the top of each blot. Error bars represent SEM; ns, no significance; ***p < 0.001. Veh, vehicle; CON, control;
Cela, C, celastrol; 1C, 1 μM celastrol; 2C, 2 μM celastrol; NC, negative control.
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found that significant accumulation of both P62 and LC3 II in
celastrol treatment groups comparing with the corresponding
vehicle groups (Figure 5C). These in vivo findings were in

consistence with our in vitro results, showing direct
inhibitory effect on autophagy and pro-apoptosis effect of
celastrol on visceral fat tissue, apart from its anorexia effect.

FIGURE 5
Celastrol induced apoptosis and inhibited autophagy in murine epididymal adipose tissue and human primary visceral preadipocytes (A–C), 4-
week-old male C57BL/6 mice were fed with 60% high fat diet for 24 weeks to induce diet-induced obesity. Mice were randomly divided into five groups,
1) chow diet + vehicle, 2) high fat diet + vehicle, 3) high fat diet + celastrol, 4) pair-feeding + vehicle and 5) pair-feeding + celastrol (n = 4). For 2 weeks
intervention of celastrol, mice in pair-feeding group only received equal amount diet comparing with celastrol treatment group to mimic the
anorexia effect of celastrol. Body weight change were shown in (A). Themurine epididymal adipose tissue was further harvested and subjected to TUNEL
staining (B), andWestern blotting of P62 and LC3 I/II (C), the representative images were shown on the left, quantification of P62 and LC3 I/II were shown
on the right) (D–F), Human primary visceral preadipocytes were treated with 0, 1 and 2 μM celastrol and subjected to light microscope imaging and
Hoechst 33258 staining (D), flow cytometry analysis (E) (n = 4) and Western blotting of P62 and LC3 I/II (F) (n = 3) (G–H), Human primary visceral
adipocytes were treated with 0, 1 and 2 μM celastrol for 24 h and subjected to flow cytometry analysis (G) (n = 6) and Western blotting of cleaved-
Caspase3 (H) (n = 3) (I–J), Human hepatocytes HL-7702 were treated with 0, 1, 2 and 4 μM celastrol for 24 h and subjected to flow cytometry analysis (I)
(n=6) andWestern blotting of P62, LC3 I/II and cleaved-Caspase3 (J) (n= 3). Protein expressionwas calculated relative to β-actin or GAPDH and depicted
at the top of each blot. Error bars represent SEM; *p < 0.05; ***p < 0.001. Veh, vehicle; Cela, celastrol; Cas 3, Caspase 3; CD + Veh, chow diet + vehicle;
HFD + Veh, high fat diet + vehicle; HFD + Cela, high fat diet + celastrol; PF + Veh, pair-feeding + vehicle; PF + Cela, pair-feeding + celastrol.
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The induced apoptosis of celastrol might present a potential
treatment strategy for obesity, however, efficacy of this compound
in human remained unknown. Therefore, a direct induction of
apoptosis of celastrol on human primary preadipocytes was
observed as determined by morphological alteration of cells
(Figure 5D). Furthermore, flow cytometry exhibited a dose-
dependent apoptotic effect of celastrol (Figure 5E).
Additionally, the accumulation of P62 and LC3 II was
observed after celastrol treatment, confirming an inhibition of
autophagic flux (Figure 5F). The induced apoptosis of celastrol
was observed in human primary visceral mature adipocytes after
24 h treatment, as indicated by the flow cytometry (Figure 5G)
and Western blotting of cleaved-Caspase3 (Figure 5H). Finally, to
verify its potential safety in human, we applied the same dosage of
celastrol on human hepatocytes HL-7702 for 24 h. No induction
of apoptosis (Figure 5I) and inhibition of autophagy were
observed (Figure 5J), suggesting a potential selectivity of
celastrol on regulation of apoptosis and autophagy in human
primary cells.

4 Discussion

Celastrol was reported as one of the most robust anti-obesity
phytochemicals, yet its direct target remained unclear. In this study,
we identified VAMP7 and RAB7 as the direct binding targets of
celastrol, which mediate the regulatory effects of celastrol on cellular
apoptosis and autophagy in preadipocytes. These findings clarified
the direct effect of celastrol on preadipocytes and its underlying
mechanism, which would broaden our understanding of the anti-
obesity effect of celastrol.

In our study, celastrol demonstrated an effect of inhibiting
the fusion of autophagosomes and lysosomes in preadipocytes,
and we further found that VAMP7 and RAB7 were the direct
targets of celastrol mediating its regulation on autophagy.
During autophagosomes and lysosomes fusion, the soluble
N-ethylmaleimide-sensitive fusion protein-attachment
protein receptor (SNARE) complexes and Rab-GTPases
participated in the trafficking between autophagosome and
lysosomes (Dingjan et al., 2018; Langemeyer et al., 2018).
VAMP7 was reported as one of the key components of the
SNARE complex. Previous studies illustrated that
overexpression of VAMP7 could increase
autophagolysosomes (Fader et al., 2009). Meanwhile,
RAB7 is a key member of Rab-GTPases and is required for
autophagic pathway. For the initiation of autophagosome and
lysosome fusion and degradation, RAB5C is the main
endosomal GTPase, which is replaced by RAB7 during
maturation of endosomes and lysosomes (Langemeyer et al.,
2018). Studies in yeast showed that the RAB7-like Ypt7p
mediated the anchoring of HOPS to the membrane (Hickey
et al., 2009), which subsequently recruited and retained the
VAMP7-like Vam7p (Ungermann et al., 2000). In light of these
studies, our study showed overexpression of VAMP7 or
RAB7 could reverse the inhibitory effect of celastrol on
autophagy, which subsequently block the apoptotic effect.
The Surface Plasmon Resonance study further confirmed the
direct binding of celastrol with VAMP7 and RAB7. Further

functional study illustrated the inhibition of RAB7 GTPase
activity after celastrol treatment. Taken together, we proposed
that celastrol directly bond with VAMP7 and RAB7 to inhibit
autophagy.

Despite that autophagy was first observed under starvation
and nutrients depleted status, recent studies illustrated an
important role of autophagy in regulation of obesity. The
crosstalk between autophagy and apoptosis is vital for cell
hemostasis (Gordy and He, 2012). Cells utilize autophagy for
recycling essential metabolites, such as lipids and amino acids
for fueling the bioenergetic machinery (Doherty and
Baehrecke, 2018). Therefore, when autophagy was blocked,
apoptosis was induced with mitochondrial outer membrane
permeabilization and subsequent a serial of caspases activation
(Boya et al., 2005; González-Polo et al., 2005). Moreover, the
inhibition of the fusion of autophagosomes and lysosomes
could result in accumulation of autophagosomes, which
would further sequestrate the essential nutrients required for
metabolism. The data in our study revealed that celastrol
inhibited the fusion of autophagosomes and lysosomes, and
subsequently induced apoptosis via mitochondrial mediated
pathway in preadipocytes. Moreover, the autophagy was
documented closely connected with preadipocyte
differentiation process. The inhibition of autophagy, by
knockout of autophagy-related gene 5 (atg5) and atg7, would
inhibit the adipogenesis both in vitro and in vivo (Baerga et al.,
2009; Zhang et al., 2009). In line with these findings, we also
observed a significant inhibition of preadipocyte
differentiation and decrease of lipid accumulation after low
concentration celastrol treatment, potentially due to the
inhibition of autophagy. In consistence with our in vitro
study, we observed comparable pro-apoptotic effect of
celastrol in both murine epididymal adipose tissue and
human mature adipocytes. Apart from our study, we must
point out that excessive induction of preadipocytes apoptosis
might abrogate the homeostasis of adipocyte metabolism, the
appropriate dosage of celastrol in clinical translation should be
further studied.

In conclusion, celastrol inhibits the fusion of
autophagosomes and lysosomes via a direct binding with
VAMP7 and RAB7, leading to accumulation of
autophagosomes. Abrogation of autophagy by celastrol further
induced apoptosis in preadipocytes and adipocytes, thus
reducing excessively fat mass accumulation. These effects
suggest a potential strategy of using celastrol for treating obesity.
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