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Introduction: A. truncatum Bunge (Sapindaceae or formerly Aceraceae) is a tall
deciduous tree native to China. Traditionally, the leaves of A. truncatum are
decocted and used by Chinese Mongolians, Koreans, and Tibetans to treat skin
itching, dry cracks, and other skin ailments, which indicates A. truncatum leaves
may have a potential inhibitory effect on various skin inflammations.

Methods: To examine the protective effect against skin inflammations of A.
truncatum leaf extract (ATLE), an in vitro dermatitis model was established
using sodium dodecyl sulfate (SLS)-induced HaCaT cells. The anti-
inflammatory effect of ATLE was evaluated by analyzing cell viability, apoptosis,
reactive oxygen species (ROS), interleukin 6 (IL-6), and prostaglandin E2 (PGE2)
levels.

Results: Orthogonal experiments showed that the pretreatment with ATLE can
reduce the IL-6 levels, PGE2 levels, and apoptosis increased in SLS-stimulated
HaCaT cells, which indicates that ATLE has positive efficacy for dermatitis.
Furthermore, three flavonoid compounds kaempferol-3-O-α-L-rhamnoside,
quercetin-3-O-α-L-rhamnopyranoside, kaempferol-3,7-di-O-α-L-rhamnoside,
and 1,2,3,4,6-Penta-O-galloyl-β-D-glucopyranose (PGG) were isolated and
identified. Among them, kaempferol-3,7-di-O-α-L-rhamnoside was isolated
from this plant for the first time. These compounds have been proven to have
an anti-inflammatory effect. Theymay contribute to the efficacy of A. truncatumin
treating skin inflammation.

Discussion: The results revealed that ATLE has the potential to be used as an
additive in various skin care products to prevent skin inflammations and may be
incorporated in formulations for topical application as a therapeutic approach
against dermatitis.
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1 Introduction

Dermatitis is a chronic skin inflammatory disease characterized
by severe itching with recurring and prolonged episodes (Wüthrich,
1999; Hoffjan and Epplen, 2005; Bussmann et al., 2007; Stemmler
and Hoffjan, 2016). Both internal and (or) external factors can cause
dermatitis by destroying the skin epidermis (Rowlands et al., 2006;
Fujii et al., 2015). Internal factors are usually genetic defects of
filaggrin FLG, chronic digestive system diseases, mental stress,
insomnia, excessive fatigue, emotional changes, endocrine
disorders, infections, metabolic disorders, etc. External factors
include sunlight, cold, dryness, heat, animal fur, plants,
cosmetics, soap, artificial fibers, food, and climate change (Barker
et al., 2007; Fuxench, 2020; Ruge et al., 2020). The pathogenesis of
dermatitis remains unclear at present. Abnormal immune system
function has been widely considered a primary cause (Klein et al.,
2008; Hidaka et al., 2016; Eigenmann, 2019).

As a relapsed and refractory disease without a thoroughly
investigated pathogenesis, dermatitis’s treatment can be toilsome.
Hormone drugs and antihistamines are commonly used to treat
dermatitis clinically (Meltzer et al., 2020; Tanei, 2020). However,
both have side effects and are unacceptable for some patients (Tan
et al., 2013; Mcgregor et al., 2015; Kim and Kim, 2016). Compared
with western medicine, various traditional medicinal systems such
as traditional Chinese medicine (TCM) system have the
characteristics of long-term practice, small side effects and
fundamentally conditioning and curing diseases (Wong et al.,
2006; Thorburn et al., 2013). Consequently, it has become a
research hotspot to find reliable drugs for treating atopic skin
diseases like dermatitis and acne from traditional medicines
(Kamei et al., 2021; Kildaci et al., 2021; Nakatsuji et al., 2021).

Keratinocytes account for about 95% of human epidermal cells.
After the skin is infected by bacteria and fungi, resulting in
inflammation, keratinocytes will respond and then manifest the
symptoms on the surface of the skin (Girolomoni and Pastore, 2001;
Miodovnik et al., 2012). Sodium Lauryl Sulfate (SLS), also known as
Sodium dodecyl sulfate (SDS), is a surfactant with a strong cleaning
ability and strong degreasing ability (Aguiar et al., 2011; Ade-
Browne et al., 2019). It is also one of the most irritating
surfactant components and is widely used in cleanser, shampoo,
and shower gel. However, due to its strong degreasing power, it is
easy to cause damage to sensitive skin (Wu and Hettiarachchy, 1998;
Gabard et al., 2010; Petersen et al., 2010; Stettler et al., 2021). SLS is
also a common positive control for human skin irritation model
patch tests.

SLS can destroy the barrier function of the stratum corneum. SLS
stimulation can induce epidermal inflammatory cell infiltration,
neutrophils migrate to the skin epidermis, and induce skin
inflammation (Wilhelm et al., 1994; Charbonnier et al., 2001; Kim
et al., 2015; Polat et al., 2015; Tavares et al., 2020).When the skin surface
is stimulated by chemical substances, the release of the pro-inflammatory
factor IL-6 in keratinocytes increases, and the increased expression of IL-
6 can promote the release of PGE2, and promote the expression of TNF
and cause a local inflammatory response, manifested as edema,
erythema, itching (Peritt et al., 1992; Fiebich et al., 2010; Hsu et al.,
2015). Recent studies have shown that keratinocytes can generate danger
signals under the stimulation of sensitizers and activate the autoimmune
system through the activation of TLR (Martin et al., 2011; Zhao et al.,

2016). When MAPK and NF-κB signaling pathways were activated
through signal transduction, the expression of pro-inflammatory
mediators would be induced (Mogensen, 2019). Further, the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database, which was used
to predict diseases that differentially expressed genes may cause, showed
that keratinocytes stimulated by SLS activated a series of expressions of
genes related to immunity and skin inflammation. The diseases thatmay
be incurred are atopic dermatitis and allergic and autoimmune diseases
(Zhao et al., 2016).

A. truncatum Bunge (Sapindaceae or formerly Aceraceae) is an
ethnomedicinal plant native to China. It is naturally distributed in
Inner Mongolia, Jilin, Liaoning, Gansu, and other areas in China
(Wu et al., 2010). According to previous ethnobotanical studies,
different linguistic groups, including Mongolians, Tibetan, Koreans,
and Han Chinese in northern China, have collected the leaves of A.
truncatum to treat itching, wounds, and other diseases for centuries.
For example, some Mongolian people in the Inner Mongolia
Autonomous Region of China will pick fresh A. truncatum leaves
in summer and autumn and make them into tea. Long-term
drinking the tea can prevent hypertension and hyperlipidemia.
Also, some Korean people in Changbai County, Baishan City,
Jilin Province, China will directly boil fresh A. truncatum leaves
and drink them or wash the wounds to eliminate internal heat and
inflammation (Gu, 2019).

Relevant literature about A. truncatum were searched in Google
Scholar, Sci Finder, Web of Science, Scopus, Springer Link, PubMed,
Wiley, China National Knowledge Infrastructure (CNKI), Baidu
Scholar, and China Science and Technology Journal Database to
made literature quality evaluation. The results showed that there
were 289 articles related to the traditional use, chemical
composition, pharmacological activity, and safety of A.
truncatum. The earliest available documents were published in
1949, while the latest one was published in February 2023.
However, through the summary of the research on A. truncatum,
we found that previous studies on this plant mainly focused on the
extraction and isolation of chemical components, and their
biological activities. No research attempted to explore the
potential of A. truncatum in the treatment of skin diseases or the
application in skin-caring (Gu et al., 2019a; Gu et al., 2019b; Fan
et al., 2021; Zhang et al., 2022).

The previous phytochemical studies showed that the main
chemical components of A. truncatum were polyphenols, organic
acids, or esters (Zhang et al., 2008; Tan et al., 2016; He et al., 2019;
Fan et al., 2021; Leoty-Okombi et al., 2021; Song et al., 2021). Our
group speculates that the A. truncatum leaf extract (ATLE) has a
therapeutic effect on skin inflammation caused by various external
stimuli, and this therapeutic effect may be related to its main
chemical components. Based on our hypothesis, we established a
skin inflammation model in HaCaT cells treated with SLS in this
study. To determine the role of ATLE in treating skin inflammation,
the PGE2 and IL-6 level properties of ATLE in the SLS-induced
HaCaT cells dermatitis model were evaluated. In addition, the main
chemical components in the ATLE to verify were extracted and
separated to enable a chemical characterization of the tested extract.
The aim of this study is to investigate the efficiency of extracts from
A. truncatum leaves through a skin inflammation model in
HaCaT cells treated with SLS, and to explore the potential to use
it for skin care in the future.
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2 Material and methods

2.1 Chemicals and instruments

SLS (catalog No: L4509), Fetal bovine serum (FBS, catalog No:
F8687), Phosphate Buffered Saline (PBS, catalog No: BSS-1006),
Dulbecco’s modified Eagle’s medium (DMEM, catalog No: D0819),
EDTA-trypsin (catalog No: 59428C), and Penicillin-Streptomycin
Solution (PSS No: TMS-AB2) were obtained from Sigma-Aldrich
(St. Louis, Missouri, the United States).

Analytical balance (AL204, Mettler Toledo Co., Ltd.,
Switzerland), ultrasonic cleaner (KQ-5200E, Shufeng
Enterprise Co., Ltd., China.), rotary evaporator (BUCHI R-
210, Buchi Co., Ltd., Switzerland), vacuum diaphragm pump
(LVS301zp, Ilmvac Co., Ltd., Germany), high-speed tissue
grinder (KZ-II, Wuhan Seville Biotechnology Co., Ltd.,
China), ultra-pure water system (milli-r012plus, Millipore Co.,
Ltd., the United States), Nuclear magnetic resonance
spectrometer (Bruker Avance 500 MHz, Bruker Co., Ltd.,
German), high performance liquid chromatograph (Waters
2695, Waters Co., Ltd., the United States), circulating
preparation high performance liquid chromatograph (LC-
9110NEXT, JAI Co., Ltd., Japan), high-speed counter-current
chromatography (TBE-20A; TBE-300B, Shanghai Tongtian Co.,
Ltd., China), mass spectrometer (Ltq Orbitrap Discovery,
Thermo Fisher Scientific Co., Ltd., the United States), Flex
PCR instrument (Quant StudioTM 6, Thermo Scientific
Technology Co., Ltd., the United States), microscope (leica
DM4B, Leica Instruments Co., Ltd., Germany), constant
temperature incubator (WH-05, Wiggens Co., Ltd., Germany),
centrifuge (Corning, Sigma-Aldrich Co., Ltd., the United States),
cellometer (K2, Nexcelom Co., Ltd., the United States),
multifunctional microplate reader (Envision, PerkinElmer Co.,
Ltd., United States), and flow cytometer (EXFLOW-206, Dakowi
Co., Ltd., China) were used in the experiment.

2.2 Preparation of ATLE

The A. truncatum leaves were collected from Fenghuangling
Mountain in Beijing, identified by Professor Chunlin Long at the
Minzu University of China. The voucher specimens were deposited
in the Herbarium of Minzu University of China.

1.2 kg of air-dried A. truncatum leaves were crushed and passed
through a 40-mesh sieve. The sieved powder was extracted with 12 L
95% ethanol at room temperature, 2 days per time, stirring 10 min
for every 5 h. The extraction was repeated three times. The extract
was filtered and combined. The combined filtrate was concentrated
under reduced pressure with a rotary evaporator and dried at 40°C to
obtain 425 g of the total extract.

2.3 Cell culture

Human immortalized keratinocytes cells (HaCaT cells) were
used to evaluate the anti-inflammatory activity of ATLE. Such cells
can form a barrier on human skin to prevent damage caused by heat,
ultraviolet radiation, water loss, pathogenic bacteria, fungi, parasites,

and viruses. When the skin is stimulated by adverse factors from the
outside, they are the first to respond.

HaCaT cells provided by the Cell Bank of the Chinese Academy
of Sciences, were cultured in a 25 cm2 cell culture flask (catalog No:
CLS430372, Sigma-Aldrich, the United States) in a constant
temperature incubator (37°C, 5% CO2) for 24 h, with DMEM
containing 1% PSS and 10% FBS as the culture medium. The
culture medium was replaced after 24 h to remove non-adherent
cells and was changed every 1 to 2 days until the cells grew and
converged. When the cell adhesion reached 70% to 80%, the cells
were digested with 0.25% EDTA-trypsin digestion solution and
passaged.

2.4 Viability assay

After counting with a cell meter, HaCaT cells (8 × 103 cells/well)
were seeded in 96-well plates (catalog No: CLS3922, Sigma-Aldrich,
the United States) with DMEM containing 10% FBS and 1% PSS at
37°C in a humid 5% CO2 atmosphere and treated with 10, 4, 2, 1.5, 1,
0.5, 0.1 mg/mL ATLE for 24 h. DMEM blank medium was used as
the blank control group.

ATLE was dissolved with DMEM blank medium and assisted by
ultrasonic cleaner (the frequency was 20–50 kHz, the power was
50–500 W, and the temperature should not exceed 40°C), an
appropriate proportion of dimethyl sulfoxide (DMSO) was used
to help dissolve. After dissolution, use polytetrafluoroethylene
membrane (pore diameter is 0.45/0.22 μm) filter the solution to
remove impurities. The same method was used to prepare SLS
solution.

After 24 h, 10 μL of Cell Counting Kit-8 (CCK-8, catalog No:
96992, Sigma-Aldrich, the United States) CCK8 solution added to
each well and place it in an incubator for 2 h. A multifunctional
microplate reader was used to detect the optical density (OD) at
450 nm wavelength to calculate the cell survival rate. The formula is
survival rate = (OD Drug—OD Blank)/(OD Control—OD Blank) ×
100%, the concentration of the model when screening LD50. The
same method was used to determine the concentration of the
stimulus SLS.

2.5 Model establishment

SLS can destroy the barrier function of the stratum corneum and
is a positive substance commonly used in skin irritation evaluation.
Studies have shown that SLS stimulation mainly conducts signal
transduction through the TNF signaling pathway, which can cause
the expression of factors including IL-6, PGE2, TNF, CCL5, CCL20,
CXCL8, CXCL3, CSF2, CSF1, TNFAIP3, and NLRC in HaCaT cells,
thereby triggering dermatitis and activating the immune system
(Zhao et al., 2016).

The HaCaT cells were taken in the logarithmic growth phase,
inoculated evenly in a 96-well plate according to the amount of
8 000 cells per well, and cultured in a 37°C, 5% CO2 incubator for
24 h. Then, the SLS powder and ATLE was dissolved with blank
DMEM, appropriate concentration SLS (0.1 mg/mL) and ATLE
(0.5 mg/mL) were used to treat HaCaT cells for 24 h after the
cells adhered to the wall.
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According to the order of adding stimulator SLS and drug ALTE,
we tested different experimental models. The protective model was
pre-processing, which involved adding drug ATLE first to protect
HaCaT cells, and then stimulated the cells with SLS. The
synchronous model was simultaneous processing, this model
required add ATLE and SLS in HaCaT cells simultaneously. The
therapeutic model was post-processing, that is, HaCaT cells were
stimulated with SLS and then treated with ATLE. The HaCaT cells
viability was detected and the appropriate experimental model was
determined.

2.6 Cellular ROS detection and apoptosis
analysis

Total ROS production in HaCaT cells was determined by the
2′,7′-dichlorodi-hydrofluorescein diacetate (DCFH-DA)
fluorescence method (catalog No: MAK143-1KT, Sigma-Aldrich,
the United States). DCFH-DA was diluted at 1:1000 with a serum-
free medium to a final concentration of 10 μM/L. After the cells were
collected, they were suspended in diluted DCFH-DA and incubated
in a 37°C cell incubator for 20 min Invert and mix every 3 to 5 min to
ensure adequate contact between the probe and the cells. Cells were
washed three times with a serum-free cell culture medium to
sufficiently remove DCFH-DA that did not enter the cells. The
fluorescence intensity, before and after stimulation, was detected
under the wavelengths 488 and 525 nm, respectively. SLS-induced
HaCaT cell apoptosis was analyzed by flow cytometer.
Appropriately treated HaCaT cells were harvested and washed in
cold PBS, centrifuged, and re-suspended in an annexin-binding
solution to which a working solution of FITC-annexin V and PI was
added. After 15 min incubation at 25°C, the samples were
immediately analyzed under single laser emitting excitation by a
flow cytometer.

2.7 Anti-inflammatory mechanism of ATLE

SDS stimulates HaCaT cells to cause overexpression of pro-
inflammatory factor TNF, activates inflammatory cytokines and
immune-related chemokines through the TNF signal pathway,
triggers the inflammatory response, and activates and recruits
leukocytes to inflammatory sites to play an immune function.
Finally, it regulates cell proliferation, differentiation, and
apoptosis. In this process, inflammatory cytokines IL-6 and
PGE2 play a key role.

To reveal the anti-inflammatory mechanism of ATLE,
HaCaT cells were pretreated with or without 0.5 mg/mL ATLE
and then treated with serum-free medium containing 0.2, 0.1,
0.08, 0.06, and 0.04 mg/mL SLS for 24 h. Meanwhile, the
HaCaT cells were stimulated by 0.1 mg/mL SLS after pretreated
with or without serum-free medium containing 10, 4, 2, 1.5, 1, 0.5,
and 0.1 mg/mL ATLE for 24 h as a control. The supernatant
medium was collected from each well and centrifuged at 1000 r/
min for 5 min to remove cell debris. The IL-6 and PGE2 levels of it
were detected by the ELISA kit (catalog No: RAB0313, Sigma-
Aldrich, the United States; catalog No: E4637-100, BioVision, the
United States).

2.8 Separation and purification of chemical
components of ATLE

In order to determine the main chemical constituents of A.
truncatum leaves, 420 g ATLE was dissolved in water. Ethanol was
added as little as possible per time during the stirring and dissolving
process to increase the solubility, and the final concentration of
ethanol was less than 10%. The sample solution was added to the
pre-activated D101 macroporous resin column with 1 g sample: 10 g
macroporous resin (catalog No: S14161-500g, Shanghai Yuanye
Biotechnology Co., Ltd, China), and then the gradient elution
was carried out with pure water, 20%, 40%, 60%, 80% and 95%
ethanol solution in sequence. Six fractions A-F were obtained. The
sample of faction C was separated with a polyamide column
(200–300 mesh), and the gradient elution was carried out with
methanol-water solution (v/v l:1; 2:1; 4:1) to obtain Cl-C3

components.
Faction C2 was further separated and eluted by gel Sephadex LH-

20 (methanol: water 1:1) to obtain fractions FrC2-1—FrC2-20. Frc2-7
was prepared by thin-layer silica gel plate scraper, and then purified
and washed by gel Sephadex LH-20 in solvent methanol. Then,
compound 1 and compound 2 were obtained, respectively. Faction
C1 was separated and eluted with a solvent (methanol: water 1:1)
using gel SephadexLH-20 to obtain fraction FrC1-1—FrC1-20. The
main point obtained after the separation of FrC1-2 by cyclic
preparation of high-performance liquid chromatography (HPLC)
(90% methanol) continued to be purified by the scraper to obtain
compound 3. In addition, the fraction C3 was separated and eluted
with gel Sephadex LH-20 (methanol: water 1:1) to obtain fractions
FrC3-1—FrC3-20. FrC3-6 was separated by cyclic preparation of
HPLC (80% methanol) to obtain compound 4. The workflow of
compound 1–4 is shown in Figure 1.

2.9 Statistical analysis

All experimental results have been repeatedly verified at least
three times. All statistical results are the mean value ± standard
deviation of the experimental results. SPSS software was used for the
one-way ANOVA test of experimental data. If p < 0.05, the results
were significantly different.

3 Results

3.1 SLS and ATLE on HaCaT cells

Cell viability was analyzed by Cell Counting Kit-8 (CCK-8). As
shown in Figure 2, The survival rate of HaCaT cells was 54.18%
under 0.1 mg/mL SLS for 24 h of incubation, which indicated that
0.1 mg/mL could be the threshold of HaCaT tolerance SLS.
Excessive SLS dose will lead to high cell mortality, and if the
dose is too small, the stimulation to cells will not be obvious
enough. The results of HaCaT cells treated with ATLE are shown
in Figure 2B.When cells were treated with 0.5 mg/mL ATLE, the cell
viability was 104.28%, which exceeded the viability of cells treated
with negative control DMEM, and the cell viability of HaCaT cells
increased in a dose-dependent manner.
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FIGURE 1
Schematic diagram of compound 1-4 isolation.

FIGURE 2
The effects of Sodium Lauryl Sulfate (SLS) and A. truncatum leaf extract (ATLE) on HaCaT cells. Cell viability was analyzed by Cell Counting Kit-8. (A)
The HaCaT cells were treated with 10–0.1 mg/mL ATLE for 24 h (B) HaCaT cells were treated with 0.2–0.04 mg/mL SLS for 24 h (C) HaCaT cells were
pre-treated with 0.5 mg/mL ATLE and 0.1 mg/mL SLS for 24 h with DMEM used as a negative control. *p < 0.05.
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0.5 mg/mL ATLE, and 0.1 mg/mL SLS were used for pre-
treatment cells for 24 h, and DMEM was used as a negative
control, then the cells were treated with 0.5 mg/mL ATLE,
0.1 mg/mL SLS and DMEM for 24 h successively, the results are
shown in Figure 2C, which points out that pretreatment with
0.5 mg/mL ATLE can more effectively increase the cell viability.

3.2 Effect of ATLE on ROS and survival rate

Inflammation leads to oxidative stress, which induces
apoptosis. In order to further explore the effect of ATLS on
ROS and apoptosis induced by SLS, the intracellular ROS was
detected by fluorescence quantitative method, and the apoptosis
rate was detected by flow cytometry, to evaluate the antioxidant
activity of ATLE. The results are shown in Figure 3. Green
fluorescence in HaCaT cells indicated intracellular ROS
localization. When HaCaT cells were treated with SLS, the
fluorescence intensity was higher than that in the control group
(Figure 3A), and the cell survival rate in specific areas was only
38.8% (Figure 3B), indicating that SLS led to HaCaT cells
inflammation. After pretreatment with ATLE, the survival rate
of HaCaT cells increased to 51.7%, which was close to 62% of
DMEM in the control group, indicating that ATLE has a certain
inhibitory effect on cell apoptosis induced by SLS (p < 0.05).

3.3 ATLE downregulates the expression of
PGE2 and IL-6

The role of Prostaglandin E2 (PGE2) in the field of inflammation
is very diverse. In the past few decades, studies using COX-2,
m-PGES1, and EP receptor gene knockout mice have made new
and important findings, proving that prostaglandins have both pro-
inflammatory and anti-inflammatory effects. These effects are
usually produced by targeted regulation of gene expression in
related tissues (Kvirkvelia et al., 2010; Yu et al., 2017). PGE2 is
usually an essential pro-inflammatory mediator. All the main signs
involved in inflammation are edema, redness, swelling, pain, and
itching. In addition, Interleukin 6 (IL-6) is an important indicator of
inflammation. The increase of IL-6 level indicates that there is
inflammation in the body. The more obvious the increase of IL-
6, the more serious the inflammation in the body (Neurath and
Finotto, 2011; Akar-Ghibril et al., 2020). Therefore, the expression
level of inflammatory cytokines PGE2 and IL-6 in supernatant of
SLS, 0.5 mg/mL ATLE-SLS, ATLE, and ATLE-0.1 mg/mL SLS
treated HaCaT cells was measured by an Elisa kit.

It can be found in Figure 4 that although there are fluctuations,
the expression levels of IL-6 and PGE2 in 0.5 mg/mL ATLE + SLS
group HaCaT cells were significantly lower than those in SLS
stimulated group. The expression levels of IL-6 and
PGE2 showed a concentration dependent relationship with SLS.

FIGURE 3
Inhibition of ATLE on ROS and apoptosis. (A) The intracellular ROS was detected with DCF-DA staining. (B) To investigate the effect of ATLE on cell
apoptosis, the survival rate of HaCaT cells was analyzed by flow cytometry. *p < 0.05.
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With the decrease of SLS concentration, the expression levels of IL-6
and PGE2 also showed a downward trend, but the level of
PGE2 decreased more significantly than that of IL-6, indicating
that PGE2 plays a vital role in HaCaT cells inflammation caused by
SLS (Figures 4A, B). Meanwhile, the levels of IL-6 and PGE2 in
ATLE-0.1 mg/mL SLS group were generally lower than those in
ATLE group. The levels of IL-6 and PGE2 basically decreased with
the decrease of ATLE concentration (Figures 4C, D). The results
above are consistent with the detection results of CCK-8
(Figures 2A, B).

The research results shows that ATLE pretreatment could
inhibit the inflammation caused by SLS stimulating HaCaT cells.
By down regulating the expression of inflammatory cytokines
PGE2 and IL-6, ATLE reduces the adverse stimulation of
HaCaT cells from SLS and plays a protective role on HaCaT cells.

3.4 Structure identification of compounds
isolated from ATLE

Using conventional column chromatography such as
D101 macroporous resin, silica gel, Sephadex LH-20 gel, and
polyamide resin, combined with the preparation of thin-layer
chromatography and cyclic preparation of HPLC, four
compounds were isolated from A. truncatum leaves. The

structures were identified by nuclear magnetic resonance and
high-resolution mass spectroscopical data, through comparing to
those data reported in the literature. Results showed that these
compounds were identified as Compound 1: kaempferol-3-O-α-L-
rhamnoside (Figure 5A), Compound 2: quercetin-3-O-α-L-
rhamnopyranoside (Figure 5B), Compound 3: kaempferol-3,7-di-
O-α-L-rhamnoside (Figure 5C), and Compound 4: 1,2,3,4,6-penta-
O-galloyl-β-D-glucopyranose (Figure 5D). The amount of the four
compounds is 12, 4.8, 5.3, and 8.2 mg. Their yields are 10.91%,
4.36%, 6.63%, and 7.32%, respectively.

3.4.1 Compound 1
Yellow powder, HR-ESI-MS: m/z 433.2154 [M + H]+, the

molecular formula is C21H20O10.
1H NMR spectrum showed

12 aromatic carbons, suggesting that the compound contains two
benzene rings. According to the coupling constants of these
aromatic hydrogens, they are a tetrasubstituted benzene ring δ

6.26 (d, J = 2.0 Hz, 1H), 6.11 (d, J = 2.0 Hz, 1H), and an AABB
disubstituted benzene ring δ 7.75 (d, J = 8.7 Hz, 2H), 6.93 (d, J =
8.8 Hz, 2H), respectively. An anomeric proton at δ 5.37 (d, J =
1.7 Hz, 1H) and methyl at δ 0.93 (m, 3H) indicated the presence of a
rhamnose moiety in 1. In the 13C NMR spectrum, δ 179.97 suggested
a carbonyl group, and δ 17.80 suggested the presence of a methyl
group. In addition, δ 131.94 and 116.74 both showed strong
resonances, suggesting there are two pairs of overlapped

FIGURE 4
Interleukin 6 (IL-6) and prostaglandin E2 (PGE2) level in supernatant of SLS, 0.5 mg/mL ATLE-SLS, ATLE, and ATLE-0.1 mg/mL SLS treated
HaCaT cells. (A) The released IL-6 levels in only the SLS group and 0.5 mg/mL ATLE-SLS group were measured with IL-6 Elisa Kit. (B) The released
PGE2 levels in only the SLS group and 0.5 mg/mL ATLE-SLS group were measured with the PGE2 Assay Kit. (C) The released IL-6 levels in only the ATLE
group and ATLE-0.1 mg/mL SLS group were measured with IL-6 Elisa Kit. (D) The released PGE2 levels in only the ATLE group and ATLE-0.1 mg/mL
SLS group were measured with the PGE2 Assay Kit. *p < 0.05.
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resonances. Compared to the reported NMR data, compound 1 was
identified as kaempferol-3- O-α-L-rhamnoside (Fang and Ye, 2008).

3.4.2 Compound 2
Yellow powder, the protonated ion m/z 449.2314 [M + H]+ in

HR-ESI-MS spectrum indicated the molecular formula C22H24O10.
Five aromatic protons can be observed in the 1H NMR spectrum,
combined with the coupling constants of these aromatic
hydrogens. It can be found that there are two benzene rings
in compound 2, which are a trisubstituted benzene ring δ 7.33 (d,
J = 2.0 Hz, 1H), 7.29 (dd, J = 8.2, 2.0 Hz, 1H), 6.91 (d, J = 8.2 Hz,
1H) and a tetra-substituted benzene ring δ 6.36 (d, J = 2.0 Hz,
1H), 6.19 (d, J = 1.7 Hz, 1H). Additionally, an anomeric proton
at δ 5.35 (d, J = 1.5 Hz, 1H) and a methyl at δ 0.94 (d, J = 5.9 Hz,
3H) suggest the presence of a rhamnose group in this compound.
In the 13C NMR spectrum, δ 179.74 suggested a carbonyl group,
and δ 17.78 suggested the presence of a methyl group. By
comparing with the NMR data in the literature, compound
2 was identified as quercetin-3-O-α-L-rhamnopyranoside
(Fossen et al., 1999).

3.4.3 Compound 3
Yellow powder. The molecular formula of C27H30O14 was

predicted by the molecular ion m/z 579.338 [M + H]+ in the
HR-ESI-MS spectrum. Similarly, there are six aromatic protons
in the 1H NMR spectrum. Combined with the molecular formula
of the compound, it can be inferred that the structure has two
substituted benzene rings. Two anomeric protons at δ 5.56 (d, J =
3.4 Hz, 1H), 5.40 (d, J = 1.6 Hz, 1H), and two methyls at δ 1.26 and
0.94 suggested that there are also two rhamnoses in 3. In the 13C
NMR spectrum, δ 179.97 suggested a carbonyl group, 18.22 and

17.83 suggested the presence of two methyl groups. In addition,
there are two pairs of overlapped resonances at δ 132.16 and δ
116.87, suggesting that compound 3 is a di-glycoside of flavonoid.
The compound is identified as kaempferol-3,7-di-O-α-L-
rhamnoside by comparing with the reported 1H and 13C NMR
data (Wang et al., 2017).

3.4.4 Compound 4
White powder. The negative ion peak of the compound is m/z

939.0056 [M –H]–, suggesting that its molecular formula is C41H32O26.
In the 1H NMR spectrum, there are 10 singlet protons in the low-field
aromatic region. Their peak intensities appear as five sets of highly
overlapped aromatic hydrogens: δ 7.11 (2H, s), 7.05 (2H, s), 6 .98 (2H,
s), 6.95 (2H, s) and 6.90 (2H, s), it is speculated that there are five
tetrasubstituted benzene rings in this compound. A set of glucose at δ
93.96, 74.57, 74.25, 72.34, 69.95, and 63.26 were suggested in the 13C
NMR spectrum, combined with five ester carbonyl groups: [δ 168.07,
167.44, 167.16, 167.07, 166.37] and 30 overlapped aromatic carbons.
Presumably, there are five galloyl groups in this compound. Through a
comprehensive analysis of 1H and 13C NMR data and a comparison
with related literature, it is determined as 1,2,3,4,6-penta-O-galloyl-β-D-
glucopyranose (Cho et al., 2010).

4 Discussion

4.1 Development potential of daily chemical
products associated with A. truncatum

Sodium Lauryl Sulfate (SLS) is a surfactant that frequently
encountered in daily life. It is widely used in textiles, food,

FIGURE 5
Structures of four compounds isolated from A. truncatum leaves. (A) Kaempferol-3-O-α-L-rhamnoside. (B) Quercetin-3-O-α-L-
rhamnopyranoside. (C) Kaempferol-3,7- di -O-α-L-rhamnoside. (D) 1,2,3,4,6-Penta-O-galloyl-β-D-glucopyranose.
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medicine, cosmetics, and other fields. It is often functioned as a
foaming agent for facial cleanser, toothpaste gel, and shampoo
(Petersen et al., 2010; Stettler et al., 2021). However, excessive
use of SLS will also cause a series of side effects, especially skin
mucosal damage and allergic reactions, which are manifested as
severe itching, dry peeling, and redness of the skin. Therefore, it is
critical to find potential natural drugs to treat skin inflammation
caused by excessive use of daily chemicals containing SLS (Wang
et al., 2010; Tang et al., 2019; Liu et al., 2021). Many research
examples show that ethnomedicine and its related traditional
knowledge are vital clues and foundations for us to find new
drugs, which are significant for solving some serious diseases that
affect human wellbeing (Jin et al., 2021; Natella et al., 2021;
Chaachouay et al., 2022; Chen et al., 2022).

In the nomadic areas in northern China, A. truncatum
leaves are traditionally used to treat skin itching and
wounds. However, due to a lack of scientific verification and
improvement of medical conditions, this little-known
traditional medicinal practice is on the verge of
disappearing. To restore the traditional medicinal practice of
A. truncatum leaves, SLS was selected as a stimulator to
construct an inflammatory model of HaCaT cells. ATLE was
then used in anti-inflammation experiments. The result has
confirmed that ATLE can protect HaCaT cells from damage
caused by SLS stimulation and reduce cell apoptosis (Figure 3).
Our research shows that ATLE has an outstanding anti-
inflammatory effect, and the traditional medicinal use of A.
truncatum is of scientific significance.

IL-6 and PGE2 are proinflammatory factors and are directly
related to inflammation (Lin et al., 2010; Kawada et al., 2015; Tsai
et al., 2018; Ahsan et al., 2021). IL-6 is a multi-effect
inflammatory factor that affects the inflammatory reaction.
The increase of IL-6 usually indicates an inflammatory
reaction in the body. In the process of infection, trauma,
surgery, stress reaction, tumor generation, and other acute
inflammatory reactions, IL-6 will be rapidly generated. The
level of IL-6 is closely related to inflammation, viral infection,
and other autoimmune diseases. In the case of systemic infection,
the increase of IL-6 will be more obvious (Artaza-Irigaray et al.,
2019; Malashenkova et al., 2021; Prairie et al., 2021). PGE2 is the
primary inflammatory mediator of inflammatory diseases such as
rheumatoid arthritis, osteoarthritis, hormone dermatitis, and
allergic dermatitis. PGE2 can induce inflammation, promote
local vasodilation, increase capillary permeability, and cause
symptoms such as redness, swelling, pain, and heat. In
addition, PGE2 has been shown to inhibit Th1 differentiation,
B cell function, T cell activation, and allergic reaction. When
inflammation occurs, the expression of PGE2 in natural immune
cells such as neutrophils, monocytes, and natural killer cells will
be significantly increased to play its anti-inflammatory role
(Sreeramkumar et al., 2012; Nasrallah et al., 2016; Elwakeel
et al., 2019; Stojanovska et al., 2022). By comparing the
expression levels of IL-6 and PGE2 in HaCaT cells, we found
that the levels of IL-6 and PGE2 produced by SLS stimulation in
HaCaT cells were decreased by ATLE, which indicates that A.
truncatum leaves have a therapeutic effect on skin inflammation

FIGURE 6
Underlying potential mechanism of the anti-inflammatory effect of A. truncatum leaves. The anti-inflammatory effect of A. truncatum leaves might
be associated with downregulation of IL-6 and PGE2. Four flavonoids from A. truncatum leaves may contribute to its anti-inflammatory activity.
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caused by SLS (Figure 6). This research is the first to reveal that A.
truncatum has significant anti-inflammatory activity, which
provides strong evidence for the traditional use of A.
truncatum leaves to treat itchy skin and heal skin wounds.
This is also a clue for the development of a daily skincare
product based on A. truncatum leaves extract. Future research
can focus on the possibility of A. truncatum leaves extract in daily
chemical products, such as common face creams, repair lotions,
body milk, toner, etc.

4.2 Scientific exposition of A. truncatum
related traditional knowledge

Flavonoids exist widely in plants and are one of the most
important metabolic components for plants to resist external
environmental pressure. Due to their broad-spectrum biological
activities, they have also been widely used in human healthcare
(Gu, 2019; Gu et al., 2019b; Fan et al., 2021). In this study, the
chemical constituents of A. truncatum leaves were extracted and
separated by a variety of chromatographic techniques. The
structures of the isolated compounds were identified by nuclear
magnetic resonance spectroscopy, high-resolution mass
spectrometry, and literature data. Four compounds were
preliminarily isolated and identified from A. truncatum leaves,
namely, kaempferol-3-O-α-L-rhamnoside, quercetin-3-O-α-L-
rhamnopyranoside, kaempferol-3,7-di-O-α-L-rhamnoside,
1,2,3,4,6-penta-O-galloyl-β-D-glucopyranose (PGG). Compounds
1, 2, and 4 have been reported in A. truncatum leaves,
compound 3 has been reported in this genus, but it is the first
report in A. truncatum leaves.

It has been reported that compound 1 could significantly
reduce the elevated inflammatory cell numbers in the
bronchoalveolar lavage fluid (BALF) and lung tissues and
inhibit the increase in Th2 cytokines in the lung and BALF,
thus fully maintaining its anti-inflammatory and anti-asthmatic
effects (Chung et al., 2015). As quercetin’s derivatives, compound
2 has been shown to have anti-inflammatory and anti-oxidant
effects. For example, compound 2 could inhibit the TNF-alpha-
stimulated production of cytokines and chemokines in
HaCaT cells and attenuate the TNF-alpha-induced formation
of inflammatory mediators and activation of the NF-kappa B and
ERIC (Lee et al., 2013). In addition, compounds 1 and 2 also
showed certain fatty acid synthase inhibitory activity, with
IC50 of 45 and 50 μg/mL, respectively (Zhang et al., 2003). In
the carrageenan-induced hind paw edema mice model,
compound 3 also exhibited significant anti-inflammatory
effects. At 50 mg/kg dose, compound 3 was shown to possess
potent antinociceptive and anti-inflammatory activity without
inducing any apparent acute toxicity as well as gastric damage
(Toker et al., 2004). One of the polyphenolic compounds with
strong anti-inflammatory, antioxidant, and anti-bacterial
activities is compound 4. It showed anti-inflammatory
potential in monocytes via the modulation of cell activity and
has been proved to have a broad-spectrum growth inhibitory
effect on Gram-negative bacteria and Gram-positive bacteria.
The MIC is between 16 and 32 μg/mL (Cho et al., 2010;
Bobrowska et al., 2018). In addition, compound 4 is one of

the main active components of A. truncatum leaves, which
plays a key role in the FAS inhibitory activity and the growth
inhibitory activity of various cancer cells (Zhao et al., 2014). To
sum up, the compounds in A. truncatum leaves show various
activities such as anti-inflammatory, anti-bacterial, anti-oxidant,
hypoglycemic, and antitumor. The activities of these compounds
can support the traditional usage of A. truncatum leaves, which is
of great significance for the development and utilization of A.
truncatum leaves (Figure 6).

4.3 Sustainable uses of A. truncatum
resources

A.r truncatum is a tree species native to China and has a broad
application prospect in the fields of oil production, gardening and
environmental uses, ecological restoration, as well as new food and
medicine development. The existing research has confirmed that A.
truncatum has rich nutritional ingredients and medicinal values.
Especially it has great potential in the treatment of Alzheimer’s
disease and other ailments related to human wellbeing (Gu et al.,
2019b). At present, however, the application of basic research and
industrialization development of A. truncatum is not systematic and
comprehensive, which greatly limits the development of relevant
industries and the sustainable use of resources.

On one hand, the research on the extraction of active
substances from A. truncatum and the processing of A.
truncatum products are still in the laboratory stage, the
development and factory survival of A. truncatum products
need to be further promoted. On the other hand, the laboratory
research of A. truncatum mainly focused on A. truncatum seed
oil and flavonoids. The research work on other active
ingredients is weak and less concerned. For example, the
anti-inflammatory effect of A. truncatum leaves has not been
reported before. This hinders people’s comprehensive
understanding of this resource and limits the enthusiasm for
industrial development. In addition, there are many seedling
enterprises and individuals planting A. truncatum. But they
lack scientific and standardized breeding techniques, which
also influences the sustainable use of the A. truncatum
resources.

Given the existing problems in the basic research and
industrial development of A. truncatum, the high-quality A.
truncatum varieties should be developed in the future, so as to
efficiently obtain active ingredients. Then it will be possible to
develop high-quality products, and realize the chain
development of planting experiment, selection of excellent
varieties and commodity development. Further studies will
cover several areas, including those to strengthen the basic
research on the application of A. truncatum, explore the
biosynthesis and accumulation rules of active ingredients of
A. truncatum through modern research technology. The result
will provide strong theoretical basis for the efficient production
of A. truncatum resources and the development of active
ingredients. For instance, based on the chemical properties
and pharmacological activities of A. truncatum, products of
A. truncatum for neurological diseases, anti-cancer and skin-
care will be developed and marketed.
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5 Conclusion

Ourworkvalidated thatATLEhasan inhibitoryeffect onSLS-induced
apoptosis. Pretreatment of HaCaT cells with ATLE can downregulate the
expression levels of inflammatory cytokines IL-6 and PGE2 in SLS-
stimulated HaCaT cells. Four compounds were isolated from A.
truncatum leaves, kaempferol-3-O-α-L-rhamnoside, quercetin-3-O-α-L-
rhamnopyranoside, kaempferol-3,7-di-O-α-L-rhamnoside, and 1,2,3,4,6-
Penta-O-galloyl-β-D-glucopyranose.Theseexistingcompoundshavebeen
provedtohavesignificantanti-inflammatoryactivity,whichmaycontribute
to the anti-inflammatory effect of ATLE. Results presented in this study
implied the protective effects of extracts fromA. truncatum leaves on SLS-
inducedHaCaTcells.Therefore,ourresearchmayfurnishscientificsupport
for the traditional uses of A. truncatum leaves for treating itching and
wounds fromananti-inflammationperspective.ATLEmaybepotential in
future development for skin care.
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