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Introduction: Cyclocarya paliurus (Batal.) Iljinsk., a subtropical tree belonging to the
family Juglandaceae, is rich in polysaccharides, flavonoids, and terpenoids. It has
important pharmacological effects such as lowering blood lipids, blood sugar, and
blood pressure. However, little has been discerned regarding anti tumor effects and
their potential mechanisms.

Method: In vitro cell culture experiments were used to test the effect of C. paliurus
total flavonoids (CTFs) extract on apoptosis mechanisms in HepG2 cells. Network
pharmacology was applied to further explore the effects of CTFs on liver cancer as
well as the mechanisms through which these effects might be achieved. Both 3
hydroxyflavone and luteolin were randomly selected to verify the effect on inducing
apoptosis and inhibiting the proliferation of HepG2 cells.

Results and Discussion: Network pharmacological analysis was applied to these 62
compounds and their targets, and 13 flavonoids were further screened for their
potential anti liver cancer activity. These 13 flavonoids included: tangeretin, baicalein,
7,3′-dihydroxyflavone, velutin, 3-hydroxyflavone, chrysin, kumatakenin, tricin,
luteolin, chrysoeriol, apigenin, pinocembrin, and butin. Together, these flavonoids
were predicted to interact with AKT1, MAPK3, PIK3CA, EGFR, MAP2K1, SRC, IGF1R,
IKBKB, MET, andMAPK14. It was predicted that the inhibitory effect on hepatocellular
carcinoma would be accomplished by regulation of core proteins relating to such
KEGG pathways as cancer, PI3K-Akt, proteoglycans in cancer, microRNAs in cancer,
and endocrine resistance via core target proteins. Both 3-hydroxyflavone and
luteolin were demonstrated to induce apoptosis and inhibit the proliferation of
HepG2 cells. Our study provides scientific evidence supporting the use of CTFs
for the treatment of liver cancer.
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1 Introduction

Liver cancer represents a major public health concern, with the
fifth highest incidence rate and the second highest fatality rate globally
across all cancer types (Sun et al., 2017; Zhou et al., 2018; Liu et al.,
2020). Traditional Chinese medicine (TCM) has been used to treat
disease in China for over two thousand years (Tang et al., 2008), and
clinical studies have provided evidence that TCM can provide positive
therapeutic effects in the prevention and treatment of liver cancer
(Chen et al., 2016; Tang et al., 2020). For example, the extract of Brucea
javanica seeds was shown to eliminate sphere formation in cancer
stem cells and inhibit tumor-initiating behavior in hepatocellular
carcinoma cells (Ren et al., 2011; Chen et al., 2016). Identifying
effective components from TCM to prevent and treat liver cancer
is becoming an urgent issue (Liu et al., 2020).

Network pharmacology, a new branch of pharmacology based on
systems and network biology, focuses on revealing the complex
network of relationships between drug, target, and disease,
systematically observing the intervention and influence of drugs on
the disease network and providing insight into the molecular
mechanism of drug therapies (Zhao and Iyengar, 2012; Kibble
et al., 2015). Recently, network pharmacology has generated a great
deal of interest for its potential in elucidating the mechanistic details
behind myriad TCM treatments for complex diseases such as cancer,
cardiovascular disorders, and diabetes (Duan et al., 2019; Wufuer
et al., 2022). A recent study by SunW. et al. (2021) predicated potential
signaling pathways and active ingredients of the TCM root tuber
Drynariae Rhizoma via network pharmacology, and found that
flavonoids in Rhizoma Drynariae improved the outcomes of large
bone defects in mice by activating the mitogen-activated protein
kinase (MAPK) signaling pathway. Another study by Liu et al.
(2020) used network pharmacology to explore the anti-tumor effect
of total flavonoids extracted from the TCM herbal formulation Pien-
Tze-Huang, on liver cancer, concluding that the mechanism
underlying their effect on liver cancer involved a synergy of effects
frommultiple components on multiple targets and multiple pathways.

Flavonoids, a group of metabolites characterized by a
diphenylpropane structure (C6-C3-C6), are widely distributed in
plants, including fruits and vegetables (López-Lázaro, 2009).
Flavonoids extracted from plants used in TCM have been shown to
exert obvious in vitro and in vivo anti-tumor activities in such contexts
as acute myeloid leukemia (Hirano et al., 1994), lung cancer (Yang
et al., 2000), melanoma (Caltagirone et al., 2000), and others. A few
studies showed that flavonoid monomers and their derivate flavonoids
also have significant inhibitory effects on liver cancers (Eaton et al.,
1996; Chen et al., 2009; Quan et al., 2013; Kasala et al., 2015). For
example, the derivates of chrysin extracted from Passiflora caerulea
can inhibit the migration, invasion, proliferation, self-renewal, and
stemness of liver cancer stem cells (Tang et al., 2020). Recently, several
studies have even applied network pharmacology to predict the
potential inhibitory effects of plant flavonoids on liver cancer (Liu
et al., 2020; Sun W. et al., 2021).

Cyclocarya paliurus (Batal.) Iljinsk. is endemic to China. The
leaves of C. paliurus have long been used in traditional Chinese
medicine for their anti-diabetic, anti-bacterial, and anti-cancer
properties (Xie et al., 2016; Wu et al., 2017). The polysaccharide
from C. paliurus has been shown in modern studies to exert
antiproliferative effects on various tumor cell lines (Luo et al.,
2015; Shinbo et al., 2015; He et al., 2018). Flavonoids are the most

common compounds in the leaves of C. paliurus (Liu Y. et al., 2016),
with a recent study identifying a total of 188 different flavonoids in the
leaves of C. paliurus via LC-MS-MS (Sheng et al., 2021). C. paliurus
total flavonoids (CTFs) have been shown to significantly lower blood
sugar, blood fat, and blood pressure, as well as to improve immunity
(Liu et al., 2018; Sun C. et al., 2021). Moreover, CTFs can effectively
reduce oxidative stress and protect mice from acute liver injury (Xie
et al., 2018). However, little has been known about the
pharmacological effect of CTFs on liver cancer. In this study, we
tested the effect of CTFs on apoptosis mechanisms in HepG2 cells. We
then applied network pharmacology to further explore the effects of
CTFs on liver cancer as well as the mechanisms through which these
effects might be achieved.

2 Materials and methods

2.1 Plant samples

Leaves of C. paliurus were collected from Zhuzhang Village,
Longquan City, Lishui City, Zhejiang Province, China
(E118°48′28″, N28°5′57″). A portion of leaves were frozen in liquid
nitrogen immediately after harvest and transferred to a −80°C freezer
until metabolomic analysis. The remaining leaves were dried at 70°C to
a constant weight and used for the extraction of total flavonoids.

2.2 Preparation of CTFs and determination of
the total flavonoids content

Dried leaves were ground and sieved through a 40-mesh sieve.
Powders were ultrasonic soaked in 70% ethanol (1:5, w/v) for 30 min
and filtered with filter paper. This process was repeated a total of
three times, and supernatants were combined and concentrated in a
vacuum rotary evaporator at 70°C. About 400 g extract was
suspended in 1 L H2O and the solution was extracted with
250 mL ethyl acetate for six times. The ethyl acetate extracts were
further subjected to polyamide macroporous adsorption resin and
the CFTs were collected for downstream in vitro experiments. The
total flavonoids content were determined by AlCl3 colorimetry
according to the method described by Sheng et al. (2021). Rutin
was used as a standard and the determinations were carried out for
three replicates.

2.3 In vitro experiments of CTFs

2.3.1 Cell culture
HepG2 cells were purchased from the National Collection of

Authenticated Cell Cultures, Shanghai, China and STR DNA
typing (Dirks and Drexler, 2011) was used to identify this cell line
(results were provided in (results were provided in Supplementary
Material S1). High-glucose DMEM medium supplemented with 10%
fetal bovine serum (FBS) (Universal Biotech Co., Ltd., Shanghai,
China) and 1% penicillin/streptomycin (Sangon Biotech Co., Ltd.,
Shanghai, China) was used to culture the cells in a humidified
atmosphere of 95% air and 5% CO2 at 37°C in a cell culture
incubator (Memmert GmbH + Co. KG, Schwabach, Germany).
Media was replaced at 2-day intervals.
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2.3.2 CTFs inhibit the proliferation of HEPG2 cell
Cellular proliferation was assessed using the MTT Cell

Proliferation and Cytotoxicity Assay Kit (Universal Biotech Co.,
Ltd., Shanghai, China). HepG2 cells were cultured in 96-well plates
for 24 h and treated with 0 mg/L, 1.51 mg/L, 3.02 mg/L, 7.55 mg/L,
15.1 mg/L, 30.2 mg/L, 45.3 mg/L, and 90.6 mg/L of CTFs (resolved in
DMSO) and incubated for another 48 h. All treatment concentrations,
including the control 0 mg/L, contained equal amounts of DMSO.
Media was then replaced with fresh media that had been mixed with
10% (V/V) MTT (5 mg/mL). Wells were incubated with formazan
solvent for an hour at 37°C before absorbance was detected at
OD570 and OD690 using a Multimode Microplate Reader
(TECAN Spark, Männedorf, Switzerland). Relative Cell Activity
and the Inhibition Rate of CTFs were calculated as follows.
Relative Cell Activity = (OD570s–OD690s)/(OD5700–OD6900) ×
100%, where OD570s and OD690s were absorbance of the tested
sample at 570 nm and 690 nm, respectively, and OD5700 and OD6900
were absorbance of the negative control at 570 nm and 690 nm,
respectively. Inhibition Rate = (1- Relative Cell Activity) × 100%.

2.3.3 CTFs promote apoptosis in HEPG2 cells
Cellular apoptosis was assessed using the Apoptotic and Necrotic

Detection Kit Triple Fluorescence Color (Sangon Biotech Co., Ltd.,
Shanghai, China). As for flow cytometric analysis (BD FACS Aria II,
New Jersey, America), HepG2 cells were cultured in 12-well plates for
48 h and then incubated with 0 mg/L, 7.55 mg/L, 15.1 mg/L, and
30.2 mg/L of CTFs (resolved in DMSO) for 24 h. Next, cells were
collected, centrifuged at 300 × g for 5 min, and washed twice with PBS
at room temperature. Cells were resuspended with 400 μL 1 × assay
buffer at the concentration of 1 × 106 cells/mL, and then incubated
with Apopxin Green (4 μL), 7-AAD (2 μL), and CytoCalcein Violet
450 (2 μL) at room temperature for 20 min in the dark, according to
the manufacture’s instructions. Events in the upper left corner of the
figures, marked Q1, represent dead cells and naked nuclei. Events in
the upper right corner, marked Q2, represent late-stage apoptotic and
necrotic cells. Events in the lower left corner, marked Q3, represent
normal cells. Events in the lower right corner, marked Q4, represent
early-stage apoptotic cells. Apoptotic rate was calculated by summing
the percentages of Q2 + Q4. As for Confocal Laser Scanning
Microscope (CLSM) analysis (IX83-FV3000, Olympus Corporation,
Tokyo, Japan), HepG2 cells were cultured in 4-well glass bottom plates
specially designed for CLSM applications (Xinyou Technology Co.,
Ltd., Hangzhou, China). Treatment with CTFs and cell staining with
the Apoptotic and Necrotic Detection Kit, which was performed as
described above.

2.4 Network pharmacology analysis of CTFs

2.4.1 Compound database construction
The flavonoids used for network pharmacology analysis in this

study were collected from our previous work (Sheng et al., 2021).
Briefly, the fresh leaves of C. paliurus were freeze-dried and extracted
for secondary metabolite analysis by HPLC/MS/MS and its
accompanying self-built database by Metware Biotechnology Co.,
Ltd. (Wuhan, China). Among 188 flaovnoids in the leaves of C.
paliurus, a total of 114 CTFs were verified to have clear chemical
structures which were obtained from Pubchem databases (https://
pubchem.ncbi.nlm.nih.gov/). If chemical structures could not be

found there, original research articles were reviewed and the
structures were drawn by ChemDraw 16.0 software (https://www.
chemdraw.com.cn/xiazai html).

2.4.2 Protein target database construction
CTF structures were saved in SMILES format and searched in

SwissADME database (http://www.swissadme.ch/) to screen compounds
used in the present work based on Lipinski’s Rule of Five. Targets of these
filtered compounds were then predicted using SwissTargetPrediction
(http://www.swisstargetprediction.ch/). Duplicates were deleted after
combining the targets of each component, and potential targets were
obtained through network topology analysis.

2.4.3 Anti-liver cancer target database construction
Relevant targets for the inhibition of liver cancer proliferation

were identified by searching the MalaCards database (https://www.
malacards.org/) with the following keywords: “Hepatocellular
Carcinoma.” The results were summarized and sorted according to
the gene names. Common targets between the disease database and the
compound database were indicated as potential targets of CTFs
responsible for their therapeutic effects in the context of liver cancer.

2.4.4 GO and KEGG pathway enrichment analysis
Potential targets were imported into the DAVID 6.8 database

(https://david.ncifcrf.gov/) to perform GO and KEGG pathway
enrichment analysis. “OFFICE_GENE_SYMBOL” and “Homo
sapiens” were selected. The top 10 enriched GO entries and top
30 enriched KEGG pathways that met the criteria of p < 0.01 were
selected and uploaded to the OmicShare (http://www.omicshare.com/
tools/) cloud platform for data visualization, where the size of the
bubble represents the number of genes in the pathway, and the color of
the bubble represents the significance of enrichment.

2.4.5 Construction of core component-target-
pathway network

The integrated network of component-target-pathway was
constructed using Cytoscape 3.9.0 to show the relationships among
the active ingredient compounds, the target proteins, and the
pathways. The topology characteristics of the network were evaluated.

2.5 Molecular docking of active ingredient-
key target

To further verify the reliability of the target prediction results, the
top 10 scoring targets in the “component-target-pathway” network
were selected for molecular docking analyses using Auto dock vina to
confirm their expected binding capabilities with their cognate CTF
ligands (Trott and Olson, 2010).

2.6 In vitro verification of predicted
compounds

3-hydroxyflavone and luteolin were purchased from DESITE
Biotechnology Co., Ltd., Chengdu City, Sichuan Province, China.
3-hydroxyflavone and luteolin were randomly selected and in vitro
experiments to explore the specific effects were performed according
to the methods described above for whole CTFs.
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FIGURE 1
Effects of Cyclocarya paliurus total flavonoids (CTFs) on HepG2 cells. (A) Relative cell activity, (B) Inhibition rate, and (C) Apoptotic rate. Data are
expressed as the mean ± SEM (n = 3). Different small letters indicate extremely significant differences between two treatments (p < 0.01). (D) Representative
FACS plots of cells treated with different concentrations of CTFs and stained with Apopxin Green and 7-AAD to identify apoptotic cells in the early and late
stages, respectively. From left to right, the concentration of CTFs was 0 μg/mL, 7.55 μg/mL, 15.1 μg/mL, and 30.2 μg/mL. Data are representative of four
independent experiments. (E) Representative CLSM images of HepG2 cells treated with different concentrations of CTFs and stained with CytoCalcein Violet
450 (in blue color, representing live cells), Apopxin Green (in green color), 7-AAD (in red color). From left to right, the concentration of CTFs was 0 μg/mL,
7.55 μg/mL, 15.1 μg/mL, and 30.2 μg/mL. Data are representative of four independent experiments.
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2.7 Statistical analysis

Statistical analysis was carried out using SPSS 19.0. One-way
analysis of variance (ANOVA) was applied to measure the
significance of comparisons between groups after homogeneity of
variance was confirmed. Tukey’s post hocHSD test was used in case of
significance of the ANOVA test. Differences were considered
statistically significant when the p-value was less than 0.05. All data
are shown as mean ± standard deviation.

3 Results

3.1 Effects of CTFs on HepG2 cells

The total flavonoids in CTFs was 81.82% ± 0.36%. The results of
the MTT experiment showed that the cell activity of HepG2 cells
decreased as CTFs concentration increased. When the concentration
of CTFs reached 90.6 mg/L, the cell activity of HepG2 cells was only
4.94% relative to the DMSO-only control (Figure 1A). The IC50 value
of the inhibitory effect of CTFs on HepG2 cells was 10.79 mg/L,
indicating an effective treatment concentration ranged from 0 to
30.2 mg/L in this context.

After 24, 48, and 72 h of treatment with CTFs, the inhibition rate
of 15.1 mg/L CTFs on HepG2 cells was 28.03%, 57.46%, and 93.46%,
respectively (Figure 1B), indicating that treatment with 48 h would
give a moderate effect. Therefore 48 h was selected for further study.

After 48 h of treatment with 0 mg/L, 7.55 mg/Ll, 15.1 mg/L, and
30.2 mg/L of CTFs, the apoptosis rate of HepG2 cells was 11.2% ±
1.4%, 26.1% ± 1.9%, 38.4% ± 3.5%, and 76.6% ± 2.8%, respectively,
indicating that CTFs could promote the apoptosis of HepG2 cells in a
dose-dependent manner (Figures 1C, D). Based on the CLSM analysis,
most of the cells in the 0 μM group were live cells stained with blue,

while only two or three cells were stained with green and/or red,
indicating that the apoptotic cells in either the early or the late stage
were very few (Figure 1E). In contrast, cells treated with 7.55 mg/L,
15.1 mg/L, and 30.2 mg/L CTFs were stained more and more weakly
with blue and instead showed darker green and/or red, indicating that
increased dosage of CTFs led to a corresponding increase of cells in the
early and late stages of apoptosis, respectively (Figure 1E). Together,
these results indicated that the inhibitory effect of CTFs on the growth
of HepG2 cells was likely accomplished via induction of cellular
apoptosis.

3.2 Screening of potential targets of C.
paliurus flavonoids

After screening, a total of 62 compounds met the Lipinski rules
(Supplementary Table S1), and a total of 354 target proteins were
predicted through the SwissTargetPrediction Database. Interaction
analyses of these two datasets yielded 64 common targets considered
as potential anti-liver cancer targets of CTFs (Supplementary Table S2;
Supplementary Figure S1).

3.3 GO and KEGG pathway enrichment of
target proteins

GO enrichment analysis of target proteins indicate that the
numbers of target proteins involved in the biological processes
(BP), molecular functions (MF) and cellular components (CC)
categories are 203 (74.09%), 49 (17.88%), and 22 (8.03%)
(Figure 2A). The top 10 subcategories in BP, MF, and CC are
shown in Figure 2B. In the BP category, target proteins were
mainly involved in negative regulation of apoptotic processes. The

FIGURE 2
GO enrichment analysis results. (A) The percentage of biological process (BP), cellular component (CC), and molecular function (MF) entries in total GO
entries (p < 0.05). (B) The top 10 entries of BP, CC and MF, included their gene number, ranked from left to right by −log10 (p-value).
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CC category revealed that these proteins were most associated
with the nucleus, and the MF category highlighted protein serine/
threonine/tyrosine kinase activity as the most affected molecular
function by CTFs. Together, these results provide a possible
window into the pathways and processes through which CTFs

are likely to exert their inhibitory effects on hepatocellular
carcinomas.

According to the results of enrichment analysis based on KEGG
pathway analysis (Supplementary Table S3), the top 30 pathways
related to those core targets are shown in Figure 3. The top five

FIGURE 3
KEGG pathway enrichment analysis. The color of the circles is displayed in a gradient from purple to black according to the adjusted p-value for each
KEGG pathway, with black indicating a more significant p-value. The size of the circles corresponds to the number of genes affected in KEGG each pathway.

TABLE 1 The top ten active ingredients, targets, and pathways that affect the entire network with high median values of betweenness centrality and closeness
centrality.

No. Compound Degree Target Degree Pathway Degree

1 Tangeretin (pme1550) 144 AKT1 113 hsa05200 89

2 Baicalein (pme1510) 141 MAPK3 96 hsa04151 78

3 7,4′-Dihydroxyflavone (pme3509) 140 PIK3CA 93 hsa05205 74

4 Velutin (pma6558) 139 EGFR 85 hsa05206 70

5 3-Hydroxyflavone (pme3134) 137 MAP2K1 77 hsa05163 69

6 Chrysin (pme0324) 136 SRC 68 hsa05165 69

7 Kumatakenin (pme1500) 135 IGF1R 62 hsa01522 68

8 Tricin (pmb2850), Luteolin (pme0088), Chrysoeriol (pme0363), Apigenin (pme0379),
Pinocembrin (pme2979), Butin (pme3473)

133 IKBKB 60 hsa05207 68

9 MET 56 hsa01521, hsa04010,
hsa05166

67

10 MAPK14 53
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pathways were identified as cancer (hsa05200, 54.69%), PI3K-Akt
signaling pathway (hsa04151, 37.5%), proteoglycans in cancer
(hsa05205, 32.81%), microRNAs in cancer (hsa05206, 29.69%),
and endocrine resistance (hsa01522, 25%). These results suggest
that CTFs may exert their inhibitory effects on hepatocellular
carcinoma by regulating the above mentioned pathways via core
target proteins.

3.4 The component-target-pathway network

The component-target-pathway network was constructed to
visualize all interactions between target proteins and anti-liver
cancer-related pathways. Based on the previous KEGG
enrichment analysis, a component-target-pathway network was
generated by connecting compounds, targets and pathways
(Supplementary Table S3; Supplementary Figure S2). This
network included 229 nodes (54 active compound nodes,
59 composite target protein nodes, and 116 pathway nodes) as
well as 7,258 edges.

The network analysis showed that the median value of
betweenness centrality and closeness centrality was greater than
the median with high degree for a total of 10 targets, including
AKT1, MAPK3, PIK3CA, EGFR, MAP2K1, SRC, IGF1R, IKBKB,
MET, and MAPK14 (Table 1). These target proteins can be
considered as core targets for the treatment of CTFs on liver
cancer (Figure 4). Among these KEGG pathways, those related to
cancer (hsa05200), PI3K-Akt signaling pathway (hsa04151),
proteoglycans in cancer (hsa05205), microRNAs in cancer

(hsa05206), human cytomegalovirus infection (hsa05163), human
papillomavirus infection (hsa05165), endocrine resistance
(hsa01522), chemical carcinogenesis—receptor activation
(hsa05207), EGFR tyrosine kinase inhibitor resistance (hsa01521),
MAPK signaling pathway (hsa04010), and human T-cell leukemia
virus 1 infection (hsa05166) have been shown to have clear links with
liver cancer occurrence. The structures of 13 potential active
compounds were shown in Figure 5. The degree values of these
compounds were very close and ranged from 133 to 144 due to the
similar chemical structures.

3.5 Molecular docking of active ingredient-
key target

Except for MAPK3, for which the corresponding protein
structure cannot be found, the remaining top 10 targets were
analyzed by molecular docking to assess their binding capabilities.
The docking results showed that all binding energies were lower
than −5 kcal/mol, indicating the top 10 active compounds have
reasonably good binding abilities to the key targets of liver cancer
(Table 2). The average affinity of EGFR to the top 10 active
compounds was −8.8 kcal/mol, which was the lowest among all
top 10 targets. Similarly, the average affinity of chrysin
(pme0324) to the top 10 targets was −8.1 kcal/mol, which was the
lowest among the top 10 active compounds.

Molecular docking results showed that there were six active
compounds with binding energies of lower than −9 kcal/mol to
one of the top targets. These included luteolin (pme0088)

FIGURE 4
The core of the component-target-pathway network. Nodes filled with brown, blue, and green represent the active ingredients, targets, and pathways,
respectively. The size of the node represents the degree value. Lines represent the relationships between the compounds, targets, and pathways.
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modeled with MAP2K1 and 3-hydroxyflavone (pme3134) modeled
with PIK3CA. Three amino acid residues—namely MET-146, ASP-
208 and LYS-97—in MAP2K1 were modeled to form hydrogen

bonds with luteolin (Figure 6A). Similarly, ARG-818 and SER-629
of PIK3CA were modeled to form hydrogen bonds with 3-
hydroxyflavone (Figure 6B).

FIGURE 5
Chemical structures of the potential flavonoids compounds of C. paliurus with anti-liver cancer effects screened by network pharmacology analysis.

TABLE 2 Molecular docking results of potential targets with the potential active compounds of Cyclocarya paliurus.

Compounds Affinity (kcal/mol)

SRC IGF1R MET AKT1 MAPK14 IKBKB MAP2K1 PIK3CA EGFR

Velutin (pma6558) −6.5 −7.8 −8.4 −6.2 −8.5 −6.2 −8.7 −8.8 −9

Tricin (pmb2850) −6.2 −8 −8.6 −6.4 −7.3 −6.5 −8.8 −9.1 −9.2

Luteolin (pme0088) −6.8 −8.1 −8.5 −6.4 −8.4 −6.7 −9.1 −8.8 −9

Chrysin (pme0324) −6.6 −8 −9.2 −6.7 −8.6 −6.6 −9 −9 −9.3

Chrysoeriol (pme0363) −6.6 −7.8 −8.5 −6.1 −8.6 −6.5 −9.1 −8.8 −8.9

Apigenin (pme0379) −6.6 −7.9 −8.7 −6.4 −8.3 −6.5 −8.9 −8.9 −8.8

Kumatakenin (pme1500) −6.2 −7.7 −8.3 −6.1 −7.5 −6 −8.7 −8.8 −8.9

Baicalein (pme1510) −6.6 −8.3 −8.6 −6.8 −8.4 −6.8 −8.8 −8.9 −8.8

Tangeretin (pme1550) −6 −7.2 −7.7 −5.9 −8.1 −5.9 −8 −7.7 −7.8

Pinocembrin (pme2979) −5.5 −7.3 −7 −6.5 −7.6 −6.4 −7.7 −7.7 −8.3

3-Hydroxyflavone (pme3134) −6.3 −7.7 −8.2 −6.2 −7.9 −6.1 −8.3 −9.2 −9

Butin (pme3473) −5.6 −7.6 −7.6 −6.2 −7.6 −6 −8.1 −8 −8.6

7,4′-Dihydroxyflavone (pme3509) −6.7 −7.8 −8.6 −6.5 −8.4 −6.4 −9.1 −8.8 −9
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3.6 In vitro verification of two predicted
compounds

To validate these results, both 3-hydroxyflavone and luteolin were
randomly selected from 13 flaovnoids (Table 1; Figure 5) to inhibit
proliferation and induce apoptosis of HepG2 cells in vitro. With
increasing concentration of both 3-hydroxyflavone and luteolin, the
inhibitory effect increased in a dose-dependent manner. When the
concentration reached 100 μM, the inhibition rate of 3-
hydroxyflavone and luteolin reached 46.71% and 81.49%,
respectively (Figures 7A, 8A).

After treatment with 0 μM, 25 μM, 50 μM, and 100 μM of 3-
hydroxyflavone for 48 h, the apoptosis rate of HepG2 cells was 5.6% ±
1.1%, 7.7% ± 1.3%, 55.7% ± 2.6%, and 63.5% ± 2.4%, respectively
(Figure 7B). After treatment with 0 μM, 25 μM, 50 μM, and 100 μM of
luteolin for 48 h, the apoptosis rate of HepG2 cells was 5.6% ± 1.1%,
15.1% ± 1.3%, 79.7% ± 2.3%, and 86% ± 4.9%, respectively (Figure 8B).
These indicated that both 3-hydroxyflavone and luteolin could
promote the apoptosis of HepG2 cells in a dose-dependent manner
(Figures 7C, 8C). Based on the CLSM analysis, cells treated with
25 μM, 50 μM, and 100 μM 3-hydroxyflavone or luteolin led to a
corresponding increase of cells in the early and late stages of apoptosis,
respectively (Figures 7D, 8D).

4 Discussion

In this study, we found that CTFs could significantly inhibit the
proliferation of HepG2 cells in vitro, and further that the induction of
apoptosis might be one of the main mechanisms for the antitumor
effect of CTFs. Among the total CTFs, 13 specific flavonoids were
identified by network pharmacology as the likely anti-liver cancer
compounds, including tangeretin, baicalein, 7,4′-Dihydroxyflavone,
velutin, 3-hydroxyflavone, chrysin, kumatakenin, tricin, luteolin,
chrysoeriol, apigenin, pinocembrin, and butin. The chemical
structures of flavonoids are very similar, with a common
diphenylpropane skeleton (C6-C3-C6). The degree of top 13 active
flavonoids were ranged from 133 to 144 in present work. Except for 3-
Hydroxyflavone (pme3134), the other top 12 active ingredients had
hydroxyl or methoxy on their seven position of the diphenylpropane

skeleton, indicating the diphenylpropane skeleton was the main active
group of flavonoids for anti-tumor effects were also influenced by
substituent groups on the diphenylpropane skeleton. Similar studies
focused on the anti-liver cancer effects of the flavonoids were
performed in traditional Chinese medicines, such as Peperomia
dindygulensis (Duan et al., 2019). He et al. (2018) also find that C.
paliurus polysaccharide may show anti-thyroid cancer effect. To the
best of our knowledge, this study is the first to report the potential anti-
liver cancer effects of CTFs, and indicate likely active ingredients
involved in these effects.

Three of these flavonoids—7,4′- dihydroxyflavone, velutin, and
butin—were reported for the first time to have anti-cancer activity.
Seven flavonoids of these flavonoids- tangeretin, kumatakenin,
luteolin, tricin, chrysoeriol, and pinocembrin—have been shown
previously to have multiple anti-cancer activity (Table 3), but were
shown for the first time here to exhibit specific anti-liver cancer
activity. For example, tricin was verified to have anit-tumor effect
on prostate cancer PC3 cells (Ghasemi et al., 2018), colorectal tumor
(Yue et al., 2020), and other cancer (Chen and Yao, 2013; Li et al.,
2021). Four of these flavonoids, i.e., 3-hydroxyflavone, baicalein,
chrysin, and apigenin, have been shown to inhibit the proliferation
of hepatoma cells as well as those from many other cancers (Table 3).
Baicalein, for example, has been shown to exert anti-cancer effects on
multiple tumor cell lines, including ovarian cancer cells (Chen J. C.
et al., 2013), colorectal cancer cells (Huang et al., 2012), bladder cancer
cells (Wu et al., 2013), and breast cancer cells (Liu H. et al., 2016), as
well as the liver cancer cell line used in the present study, HepG2 cells
(Chen et al., 2009).

Our analysis identified 10 core target proteins for CTFs in the
context of liver cancer, including AKT1, MAPK3, PIK3CA, EGFR,
MAP2K1, SRC, IGF1R, IKBKB, MET, and MAPK14. These proteins
can be divided into three groups. Proteins in the first group, including
AKT1, PIK3CA, MAPK3, MAPK2K1, and MAPK14, have been
verified to be involved in the apoptosis of hepatocellular carcinoma
cells. In agreement with the existing literature, the present study also
identified the PI3K/Akt (hsa04151) and MAPK (hsa04010) signaling
pathways as key mechanisms for the potential therapeutic effect of
CTFs on liver cancer. The PI3K/AKT/mTOR pathway, which has been
previously implicated in hepatocellular carcinoma carcinogenesis (Sun
E. J. et al., 2021). Inhibition of PI3K/Akt/mTOR signaling by apigenin

FIGURE 6
The three-dimensional cartoon display of interactions between active compounds and target receptors. (A) MAP2K1 protein with luteolin; (B) PIK3CA
protein with 3-hydroxyflavone. The amino acid residues which connected with the active compounds with hydron bond were shown in red.
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and chrysoeriol induces apoptosis and autophagy in hepatocellular
carcinoma cells (Yang et al., 2010; Yang et al., 2018). MAPKs also play
a key role in intracellular communication, and their activating

pathways have been conserved throughout evolution, from plants,
fungi, nematodes, and insects, to mammals. MAPK3 andMAPK14 are
protein kinases related with cell growth and have been identified

FIGURE 7
Effects of 3-hydroxyflavone on HepG2 cells. (A) Relative cell activity; (B) Apoptotic rate. Data are expressed as the mean ± SEM (n = 3). Different small
letters indicate extremely significant differences between two treatments (p < 0.01). (C) Representative FACS plots of cells treated with different
concentrations of CTFs and stained with Apopxin Green and 7-AAD to identify apoptotic cells in the early and late stages, respectively. From left to right, the
concentration of CTFs was 0 μM, 25 μM, 50 μM, and 100 μM. Data are representative of four independent experiments. (D) Representative CLSM images
of HepG2 cells treated with different concentrations of CTFs and stained with CytoCalcein Violet 450 (in blue color, representing live cells), Apopxin Green (in
green color), 7-AAD (in red color). Representative CLSM images of apoptotic HepG2 cells treated with different concentrations of CTFs, CytoCalcein Violet
450 (in blue color, representing live cells), Apopxin Green (in green color), 7-AAD (in red color) and all of three fluorescence stains (merge). From left to right,
the concentration of CTFs was 0 μM, 25 μM, 50 μM, and 100 μM. Data are representative of four independent experiments.
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previously in many carcinogenesis studies (Baba et al., 2010; Mesquita
et al., 2020). There is a strong correlation between MAPK3 and liver
cancer resistance (Gao et al., 2016).

The second group of these proteins, including EGFR, IGF1R and
MET, represent membrane receptors of various growth factors. EGFR
is a rational target for cancer therapy because it is commonly expressed

FIGURE 8
Effects of luteolin onHepG2 cells. (A) Relative cell activity; (B)Apoptotic rate. Data are expressed as themean ± SEM (n= 3). Different small letters indicate
extremely significant differences between two treatments (p < 0.01). (C) Representative FACS plots of cells treated with different concentrations of CTFs and
stained with Apopxin Green and 7-AAD to identify apoptotic cells in the early and late stages, respectively. From left to right, the concentration of CTFs was
0 μM, 25 μM, 50 μM, and 100 μM. Data are representative of four independent experiments. (D)Representative CLSM images of HepG2 cells treatedwith
different concentrations of CTFs and stained with CytoCalcein Violet 450 (in blue color, representing live cells), Apopxin Green (in green color), 7-AAD (in red
color). Representative CLSM images of apoptotic HepG2 cells treated with different concentrations of CTFs, CytoCalcein Violet 450 (in blue color,
representing live cells), Apopxin Green (in green color), 7-AAD (in red color) and all of three fluorescence stains (merge). From left to right, the concentration of
CTFs was 0 μM, 25 μM, 50 μM, and 100 μM. Data are representative of four independent experiments.
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at a high level in a variety of solid tumors and it has been implicated in
the control of cell survival, proliferation, metastasis, and angiogenesis
(Ciardiello and Tortora, 2003). A significant role for EGFR has been
demonstrated in liver regeneration following acute and chronic liver
damage, as well as in cirrhosis and hepatocellular carcinoma,
highlighting its importance in liver regeneration (Chen et al.,
2018). Therefore, blocking EGFR genes might be beneficial to liver
cancer treatment. Insulin-like growth factor I receptor (IGF1R) has
also been shown to play a critical role in cancer (Peiró et al., 2009), and
the inhibition of IGFR1 signaling could prevent prostate cancer cells
(Fang et al., 2007). MET, also known as hepatocyte growth factor
receptor, is related to biological functions as cell proliferation and
progression, apoptosis, metastasis, and morphological changes (Cao
et al., 2018). The mutation of MET genes was closely related with
multiple cancer, such as hepatocellular carcinomas (Park et al., 1999),
and lung cancer (Tsao et al., 1998).

The third group of these proteins, including SRC and IKBKB,
represent proteins related with kinases. SRC tyrosine kinases regulate
many important mechanisms in both normal and cancerous cells and
are overexpressed in a broad range of cancers (Lee and Gautschi, 2006;
Zhang and Wu, 2012). IKBKB is one of the most important catalytic
subunits of IKK complexes and plays an important regulatory role in
activation of NF-KB. The differential expression of IKBKB in human
lung adenocarcinoma cells would affect the apoptosis rate (Qi et al.,
2014).

In order to verify the accuracy of flavonoids predicted by network
pharmacology, we randomly selected two flavonoids to validate
in vitro with HepG2 cells. Both 3-hydroxyflavone and luteolin were
verified to inhibit the proliferation of HepG2 cells in a dose-dependent
manner. When the concentration reached 100 μM, the inhibition rate
of 3-hydroxyflavone and luteolin reached 46.71% and 81.49%,

respectively, while the apoptosis rate of HepG2 cells was 63.5 ±
2.4 and 86 ± 4.9, respectively. For the first time, both of these
compounds were shown here to possess anti-liver cancer activity.
Little is currently known about 3-hydroxyflavone, while Luteolin (2-
[3,4-fihydroxyphenyl]-5,7-dihydroxy-4- chromenone) is one of the
most common flavonoids present in edible plants and TCMs (López-
Lázaro, 2009). It has been shown to possess multitudinous antioxidant,
anti-inflammatory, antimicrobial, and anti-allergic activities (López-
Lázaro, 2009). It also possesses anti-cancer activities, such as
chemopreventive activity through reduction of DNA damage,
mutations, chromosomal aberrations, as well as chemotherapeutic
activity through the induction of apoptosis (López-Lázaro, 2009).
Fang et al. (2007) found that luteolin inhibits IGFR1 signaling in
prostate cancer cells. In this study, we found that the targets of 3-
hydroxyflavone and luteolin were MAP2K1 and MET, respectively,
while the pathways involved were hsa05163 and hsa01521,
respectively. However, the mechanisms underlying the effects of 3-
hydroxyflavone and luteolin remain unknown, and additional studies
focusing on molecular biology, such as western blotting analysis and
molecular interaction analysis, will be needed to more fully elucidate
the complex, multifaceted mechanisms by which these compounds
exert their anti-cancer effects.

5 Conclusion

CTFs have significant inhibitory effects on HepG2 in vitro cells
by inducing apoptosis. We applied network pharmacology to
identify potential key target proteins of CTFs in the context of
liver cancer by constructing a target interaction network, and used
molecular docking methods to validate the key findings. Our results

TABLE 3 Anti-cancer effect of 10 flavonoids.

Flavonoids Anti-cancer effect References

Tangeretin Breast, colon, urinary bladder, lymphoblastoid leukaemia, ovarian,
gastric, prostate cancer and leukaemia

Alhamad et al. (2021), Dong et al. (2014), Feng et al. (2016), Guo
J. J. et al. (2015), Hirano et al. (1995), Ishii et al. (2010), Lin et al. (2019),
Lust et al. (2010), Morley et al. (2007), Raza et al. (2020), Ting et al.
(2015), and Zhu et al., 2018

Kumatakenin Human ovarian cancer cells Woo et al. (2017)

Luteolin Prostate, gastric, lung, pancreatic, colon cancer and myeloid leukemia Imran et al. (2019), Lin et al. (2008), Wu et al. (2008), and Zhou et al.
(2009)

Tricin Prostate, lung, rectal cancer, colorectal tumor Chen and Yao (2013), Ghasemi et al. (2018), Li et al. (2021), and Yue
et al. (2020)

Chrysoeriol Multiple myeloma, breast cancer Takemura et al. (2010) and Yang et al. (2010)

Pinocembrin Prostate, colon cancer and melanoma Chen Z. et al. (2013), Kumar et al. (2010), and Zheng et al. (2018)

3-Hydroxyflavone Oral tumor, cervical cancer; adenocarcinoma, and hepatoma Sakagami et al. (2020) and Lang et al. (2010)

Baicalein Ovarian, cervical, colorectal, bladde, prostate, breast, ovarian, lung
cancer and hepatoma

Chen et al. (2009), Chen J. C. et al. (2013), Guo Z. et al. (2015), Huang
et al. (2012), Liu H. et al. (2016), Ma et al. (2016), Peng et al. (2015), Rui
et al. (2016), Wu et al. (2013), Yu et al. (2020), and Zheng et al. (2014)

Chrysin Cervical cancer, leukemia, esophageal squamous carcinoma, malignant
glioma, breast carcinoma and prostate cancer, hepatoma

Eaton et al. (1996), Kasala et al. (2015), and Khoo et al. (2010)

Apigenin Prostate colon, colorectal, gastric, breast, lung, bladder, pancreatic,
ovarian, cervical cancer, hepatoma

Eaton et al. (1996), Farah et al. (2003), Kasala et al. (2015), Hu and Cao
(2007), Meng et al. (2008), Pan et al. (2013), Ren et al. (2010), Shukla
and Gupta (2008), Shukla and Gupta (2010), Wei et al. (2011), Yao
(2010); Zhang et al. (2020), and Zhong et al. (2010)
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indicate that 13 flavonoid compounds from the leaves of C. paliurus
have potential anti-liver cancer activity, including tangeretin,
baicalein, 7,4′-dihydroxyflavone, velutin, 3-hydroxyflavone,
chrysin, kumatakenin, tricin, luteolin, chrysoeriol, apigenin,
pinocembrin, and butin. These flavonoids were predicted to
interact with AKT1, MAPK3, PIK3CA, EGFR, MAP2K1, SRC,
IGF1R, IKBKB, MET, and MAPK14. KEGG pathway enrichment
analysis revealed that C. paliurus may exert its inhibitory effect on
hepatocellular carcinoma by regulating pathways related to cancer
(hsa05200), PI3K-Akt signaling pathway (hsa04151),
proteoglycans in cancer pathway (hsa05205), microRNAs in
cancer pathway (hsa05206), and endocrine resistance pathway
(hsa01522) via core target proteins. Both 3-hydroxyflavone and
luteolin were verified to inhibit the proliferation of HepG2 cells
in vitro by inducing apoptosis. Although our results were obtained
by network pharmacology and more experiments should be
conducted to make it more confidence, our study provides
scientific evidence supporting the use of CTFs for the treatment
of liver cancer. Furthermore, we should realized that the low water-
solubility of the flavonoids might limit the application of flavonoids
in in-vivo cancer treatment, however, it may be overcome by
different pharmaceutical methods, such as self-nanoemulsion
drug delivery system and phospholipid complex.
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