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Cacumen Platycladi (CP) consists of the dried needles of Platycladus orientalis L.)
Franco. It was clinically demonstrated that it effectively regenerates hair, but the
underlying mechanism remains unknown. Thus, we employed shaved mice to
verify the hair growth-promoting capability of the water extract of Cacumen
Platycladi (WECP). The morphological and histological analyses revealed that
WECP application could significantly promote hair growth and hair follicles
(HFs) construction, in comparison to that of control group. Additionally, the
skin thickness and hair bulb diameter were significantly increased by the
application of WECP in a dose-dependent manner. Besides, the high dose of
WECP also showed an effect similar to that of finasteride. In an in vitro assay, WECP
stimulated dermal papilla cells (DPCs) proliferation and migration. Moreover, the
upregulation of cyclins (cyclin D1, cyclin-dependent kinase 2 (CDK2), and cyclin-
dependent kinase 4 (CDK4)) and downregulation of P21 in WECP-treated cell
assays have been evaluated. We identified the ingredients of WECP using ultra-
high-performance liquid chromatography-quadrupole time-of-flight mass
spectrometry (UPLC-Q/TOF-MS) and endeavored to predict their relevant
molecular mechanisms by network analysis. We found that the Akt (serine/
threonine protein kinase) signaling pathway might be a crucial target of WECP.
It has been demonstrated that WECP treatment activated the phosphorylation of
Akt and glycogen synthase kinase-3-beta (GSK3β), promoted β-Catenin and
Wnt10b accumulation, and upregulated the expression of lymphoid enhancer-
binding factor 1 (LEF1), vascular endothelial growth factor (VEGF), and insulin-like
growth factor 1 (IGF1). We also found that WECP significantly altered the
expression levels of apoptosis-related genes in mouse dorsal skin. The
enhancement capability of WECP on DPCs proliferation and migration could
be abrogated by the Akt-specific inhibitor MK-2206 2HCl. These results suggested
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that WECP might promote hair growth by modulating DPCs proliferation and
migration through the regulation of the Akt/GSK3β/β-Catenin signaling pathway.
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1 Introduction

Hair follicles (HFs) consist of multiple epithelial and dermal
papilla cells (DPCs). The latter, which is located at the base of HFs,
promotes hair growth and regulates the hair cycle. DPCs content is
an indicator of hair growth and dramatically increases during HFs
reconstruction (Zhang et al., 2019; Ki et al., 2020). DPCs secrete
signaling proteins, such as the wingless-INT (Wnt) family, that
promote the proliferation and differentiation of surrounding
stromal cells and induce HFs to enter new growth phases (Kim
et al., 2016).

The Wnt signaling pathway may regulate multiple processes
such as wound skin remodeling, HFs morphogenesis, hair shaft
growth, and hair cycle (Kishimoto et al., 2000; Huelsken et al., 2001;
Tsai et al., 2014; Sunkara et al., 2022). Wu et al. (2020) demonstrated
that Wnt10b overexpression could promote DPC proliferation.
Wnt10b and Wnt10a are upregulated in placodes during follicle
morphogenesis and postnatal HFs regeneration (Reddy et al., 2001).
Huelsken et al. (2001) found that β-Catenin knockdown prevents
the differentiation of stem cells into follicular keratinocytes and
impairs HFs regeneration. β-Catenin is a major factor in the Wnt
signaling pathway (Tsai et al., 2014). It may also regulate epithelial
cell differentiation into HFs that generate the hair shaft and inner
root sheath. β-Catenin might also enhance the transition from
telogen to anagen (Wu et al., 2020).

The Wnt/β-Catenin pathway is a complex signal transduction
process wherein phosphorylated GSK3β captures β-Catenin and
triggers its degradation. In the presence of Wnt, GSK3β was
inactivated and β-Catenin accumulated in the cytoplasm (Liu
et al., 2022). However, Akt, also known as protein kinase B,
catalyzes GSK3β inactivation as well. The Akt/GSK3β signaling
pathway mediates the formation of stabilized dephosphorylated
β-Catenin, which is then translocated to the nucleus, where it
regulates the transcriptional expression of its target genes (Ki
et al., 2020).

In recent years, the global incidence of hair loss and, therefore,
the administration of botanical drugs that stimulate DPCs
reproduction and activity has gradually increased. CP consists of
the dried needles of the evergreen conifer Platycladus orientalis (L.)
Franco. This tree species is widely distributed worldwide. CP extract
possesses antibacterial, anti-inflammatory, and hemostatic activity
(Chen et al., 2015; Huang et al., 2020; Zhang et al., 2022). The
efficacy of CP against alopecia has been recorded in various ancient
Chinese medicine books, such as the Compendium of Materia
Medica (Ben Cao Gang Mu in Chinese) and Rihuazi Materia
Medica (Ri Hua Zi Ben Cao in Chinese). Current
pharmacological studies have shown that CP promotes hair
growth and inhibits 5α-reductase activity in vitro (Zhang et al.,
2013; Zhang et al., 2016; Zhang et al., 2019). However, there have
been few published studies on the identity andmodes of action of the
individual ingredients of CP. In the present study, we evaluated the

ability of WECP on hair growth and identified the principal
ingredients. We then predicted the regulatory mechanisms of
these ingredients by network analysis methods and also
elucidated the underlying mechanisms through in vitro and in
vivo experiments.

2 Materials and methods

2.1 Reagents and biochemicals

MK-2206 2HCl and finasteride (Fin) were purchased from
Shanghai Selleck Chemicals Co., Ltd. Shanghai, China. Organic
reagents such as ethanol and acetonitrile were obtained from
Sinopharm Chemical Reagent Co. Ltd. Shanghai, China. Cell
Cycle Assay Kit was acquired from Dojindo, Kumamoto, Japan.
Primary antibodies included anti-β-Catenin, anti-GSK3β, anti-
phospho-GSK3β, anti-GAPDH, and anti-β-tubulin (Boster
Biological Technology, Pleasanton, CA, United States), anti-
Bcl2, anti-Bax, and anti-Cyclin D1 (Abcam plc, Cambridge,
United Kingdom), anti-Akt and anti-phospho-Akt (Cell
Signaling Technology, Danvers, MA, United Ststes), anti-
Wnt10b, anti-CDK2, anti-CDK4, and anti-P21 (ABclonal,
Wuhan, China), and anti-ki67 (Proteintech, Wuhan, China).
The chemiluminescence kit was obtained from Vazyme
Biotech, Nanjing, China. The terminal deoxynucleotidyl
transferase dUTP nick end labeling (TUNEL) detection kit
was acquired from Promega Corporation, Madison, WI,
United States.

2.2 Cell lines and cell growth

Immortalized DPCs were purchased from Applied Biological
Materials Inc. Richmond, BC, Canada, and cultured in Complete
Medium (Meisen CTCC, Zhejiang, China) in an incubator (3111;
Thermo Fisher Scientific, Waltham, MA, United States) at 37°C,
100% RH, and 5% CO2.

2.3 WECP preparation

CP was procured from the Chinese Herbal Pieces Factory of
Zhejiang Chinese Medical University, Hangzhou, China. We
used dried botanical drugs (100 g) for circumfluence
extraction, which was carried out twice in 1.5 L boiling
distilled water for 1 h each time. The supernatant was
collected and concentrated in a rotary vacuum evaporator (R-
100; BUCHI, Switzerland). The extract was lyophilized (100-9;
LaboGene, Lillerød, Denmark), and 15.287 g powder product was
stored at −20°C until further analysis.
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2.4 Analysis and identification of secondary
metabolites in WECP by UPLC-Q/TOF-MS

The UPLC-Q/TOF-MS system was used to measure the mass
of each secondary metabolites in the WECP. The dried WECP
powder was reconstituted in desalinated water to obtain 1 mg/mL
WECP aqueous solution. Then 2 μL was injected into a CORTECS
UPLC T3 column (2.1 mm × 100 mm; 1.6 μm) (Waters
Corp. Milford, MA, United States) fitted with the UPLC system
(Waters Corp.). The mobile phase was a mixture of acetonitrile (A)
and 0.1% (v/v) formic acid B). The elution program was set as
follows: 0–2.00 min, 5% A; 2.01–32.00 min, 5%–100% A; and
32.01–35.00 min, 5% A. The flow rate was set as 0.3 mL/min.
The mass of each ingredient was measured by SYNAPT G2-Si ion
mobility mass spectrometry (Waters Corp.). Electrospray
ionization mass spectrometry was performed in positive and
negative modes. The mass-to-charge ratio (m/z) scan range was
50–1,200. Finally, the results were comparatively analyzed using
SCIEX OS software.

2.5 Network analysis

The putative pharmacological activity of each ingredient
identified in WECP was predicted by network analysis.

2.5.1 Prediction of targets of secondary
metabolites in WECP

The ingredients in WECP were identified with UPLC-Q/
TOF-MS and compaired with those of CP, which were collected
from the Traditional Chinese Medicine Systems Pharmacology
Database (TCMSP, http://tcmspw.com). The ingredients were
finally select with parameters, oral bioavailability (OB) > 30%,
drug-likeness (DL) > 0.18. SDF files for the 3D structures of the
ingredients in WECP were downloaded from the PubChem
database (https://pubchem.ncbi.nlm.nih.gov/). Putative targets
of each ingredient were identified on the PharmMapper (http://
www.lilab-ecust.cn/pharmmapper/) platform. Duplicate items
were deleted.

2.5.2 Determination of potential hair loss targets
The DisGeNET (https://www.disgenet.org/) and GeneCards

(https://www.genecards.org/) databases were used to collect genes
associated with hair loss. The genes were collected with parameter:
score_gad ≥ 0.1 in DisGeNET and relevance score ≥ 10 in GeneCard.
Candidate gene targets of the ingredients in WECP were obtained
using the Venn 2.1.0 online platform (http://bioinformatics.psb.
ugent.be/webtools/Venn/) and visualized as a network with
Cytoscape v. 3.7.1 (https://nrnb-nexus.ucsd.edu/repository/
cytoscape_releases/).

2.5.3 Construction of the protein-protein
interaction (PPI) network

Complex interactions among potential targets were analyzed
with the STRING database (https://string-db.org/). The species was
set as “Homo sapiens,” and the PPI network was visualized with
Cytoscape v. 3.7.1.

2.5.4 Gene ontology (GO) and kyoto encyclopedia
of genes and genomes (KEGG) pathway
enrichment analyses

The putative roles of WECP in the molecular function, cell
component, and biological process domains as well as the implicated
signaling pathways, were annotated by GO and KEGG pathway
analyses in the DAVID database (https://david.ncifcrf.gov/).

2.6 Cell proliferation/cytotoxicity assays

Immortalized DPCs were seeded in 96-well plates at a density of
2 × 104/well, grown overnight, and subjected to 10–640 μg/mL
WECP for 24 h. DPC viability was then quantified by the CCK-8
method (Jiang et al., 2019). Ten percent CCK-8 (Dojindo,
Kumamoto, Japan) was pipetted into the DPC cultures, and the
suspensions were incubated in the dark at 37°C for 1 h. The mixtures
were then allowed to shake on an automatic rocker (MH-2; Kylin-
Bell Lab Instruments Co., Ltd. China) at room temperature for
3 min, and the absorbance of each well was read at 450 nm in a
FLUOstar® Omega microplate reader (BMG LABTECH, Offenburg,
Germany). In another assay, 5 µM MK-2206 2HCl (Akt inhibitor)
was applied to DPCs for 1 h before treatment with WECP. The cells
were then incubated for 24 h in fresh Complete Medium containing
160 μg/mLWECP. DPC viability was assessed by CCK-8 assay once
again.

2.7 Cell cycle analysis by flow cytometry

The DPCs cycle was detected by propidium iodide (PI) staining
and flow cytometry (Li et al., 2022). Briefly, DPCs were seeded in six-
well plates at a density of 1.5 × 105/well and treated with various
WECP concentrations for 24 h. The following day, the cells were
harvested, washed with phosphate-buffered saline (PBS), and
centrifuged (5425 R; Eppendorf, Germany). The cell pellets were
resuspended and fixed with 75% (v/v) pre-chilled ethanol at 4°C for
24 h. The fixed cells were harvested by centrifugation and stained
with 50 μg/mL PI in PBS plus 50 μg/mL RNase A at 37°C for 30 min.
Twenty thousand cells per well were processed in a BD Accuri
C6 flow cytometer (BD Biosciences, San Jose, CA, United States) and
analyzed by FlowJo v. 10.0.7r2 software (FlowJo LLC, Ashland, OR,
United States).

2.8 Wound healing assay

DPCs were seeded in six-well plates at a density of 1.5 × 105/well
and grown overnight to confluence. Wounds were gently induced on
the monolayer with a 1,000-μL pipette tip. Cell debris was eliminated.
Fresh medium containing 1% (v/v) fetal bovine serum plus various
WECP concentrations was added to the wells. The plates were stored
in a 5% CO2 incubator at 37°C overnight. The cells in each plate were
pretreated with MK-2206 2HCl for 1 h before the WECP treatments.
Identity fields were photographed at each time point, and the healed
areas were measured with ImageJ software (National Institutes of
Health, Bethesda, MD, United States).
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2.9 RNA extraction and real-time
quantitative polymerase chain reaction (RT-
qPCR)

Gene transcription was quantified by RT-qPCR. Briefly, total
RNA was prepared with Trizol reagent (Sangon Biotech Co., Ltd.
Shanghai, China) according to the manufacturer’s instructions. The
concentration and quality of the isolated RNA were determined by
NanoDrop spectrophotometry (Thermo Fisher Scientific). RT-
qPCR was performed with iQ-SYBR Green PCR Supermix (Bio-
Rad Laboratories, Hercules, CA, United States) and specific primes
pairs in a StepOnePlus RT-qPCR system (Thermo Fisher Scientific).
The primer sequences are listed in Table 1. Relative gene expression
was calculated by the 2−ΔΔCT method using GAPDH as the internal
reference gene (Schmittgen and Livak, 2008).

2.10 Western blot

Western blotting was performed according to a previously
reported method (Ma et al., 2019). Mouse dorsal skin tissue or
cultured DPCs were lysed in radioimmunoprecipitation assay
buffer containing protease and phosphatase inhibitors (CWBIO,
Jiangsu, China) to release the proteins. The latter were quantified
with a bicinchoninic acid assay kit (Beyotime Biotechnology Inc.
Shanghai, China) according to the manufacturer’s instructions.
Equal amounts of protein lysates were separated by 10% or 12%
sodium dodecyl sulfate-polyacrylamide gel electrophoresis gel
electrophoresis. For specific antibody hybridization detection,
the separated proteins were transferred to polyvinylidene
difluoride membranes (EMD Millipore Corporation, Billerica,
MA, Unites States) which were then blocked with 5% (v/v) non-
fat milk for 1 h and incubated with primary antibodies at 4°C
overnight. The following day, the membranes were washed thrice

with 0.1% (v/v) Tris-buffered saline with Tween-20. The
membranes were then separately incubated with the
corresponding secondary antibodies, subjected to an enhanced
chemiluminescence kit, and observed under ChemiScope
6000 Series Chemiluminescence Imaging System (Clinx
Science Instrument Co. Ltd. Shanghai, China) according to the
manufacturer’s instructions.

2.11 Hair loss mouse model establishment
and trial grouping

The anesthetized C57BL/6 mice (male, age 7 weeks, 20 ± 2 g)
were then shaved with a clipper (Codos; Shenzhen, China), denuded
with depilatory cream (Reckitt Benckiser, Hubei, China), and
randomly divided into four groups (n = 6), namely, saline
control (intragastrically administered 200 μL saline); low-dose
WECP group (WECPL; intragastrically administered 160 mg/kg
WECP in 200 μL saline); high dose WECP (WECPH;
intragastrically administered 320 mg/kg WECP in 200 μL saline);
and Fin (intragastrically administered 10 mg/kg Fin in 200 μL
saline). All mice were administered their respective treatments
daily for 20 days. They were also anesthetized and photographed
on days 0, 10, and 20. After the experiment, all mice were sacrificed
to obtain skin tissue samples for subsequent analysis. All animal
experimentation was approved by the Animal Experimental Ethics
Committee of Zhejiang Chinese Medical University under approval
No. IACUC-20220214–21.

2.12 Morphological and histological study

Mouse dorsal skin tissues were fixed in 4% (v/v)
formaldehyde, embedded in paraffin, sliced into 5-µm sections

TABLE 1 The primer pairs.

Gene Forward (5′−3′) Reverse (5′−3′)

Wnt5a-M CAACTGGCAGGACTTTCTCAA CCTTCTCCAATGTACTGCATGTG

Wnt10b-M GCGGGTCTCCTGTTCTTGG CCGGGAAGTTTAAGGCCCAG

β-catenin-M ATGGAGCCGGACAGAAAAGC CTTGCCACTCAGGGAAGGA

Bcl2-M GTCGCTACCGTCGTGACTTC CAGACATGCACCTACCCAGC

Bax-M TGAAGACAGGGGCCTTTTTG AATTCGCCGGAGACACTCG

LEF1-M TGTTTATCCCATCACGGGTGG CATGGAAGTGTCGCCTGACAG

VEGFA-M CTGCCGTCCGATTGAGACC CCCCTCCTTGTACCACTGTC

IGF1-M CTGGACCAGAGACCCTTTGC GGACGGGGACTTCTGAGTCTT

GAPDH-M AGGTCGGTGTGAACGGATTTG TGTAGACCATGTAGTTGAGGTCA

LEF1-H AGAACACCCCGATGACGGA GGCATCATTATGTACCCGGAAT

VEGF-H AGGGCAGAATCATCACGAAGT AGGGTCTCGATTGGATGGCA

IGF-1-H GCTCTTCAGTTCGTGTGTGGA GCCTCCTTAGATCACAGCTCC

GAPDH-H CTGGGCTACACTGAGCACC AAGTGGTCGTTGAGGGCAATG
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(HistoCoreBIOCUT; Leica Camera AG, Germany), and
subjected to hematoxylin and eosin (H&E) staining (Liu et al.,
2022). Skin thickness and dermal papilla diameters were
measured with Slideviewer software (NDP view2; Beijing,
China). A TUNEL assay and ki67 immunofluorescence
detection were used to evaluate HFs apoptosis and
proliferation. For the TUNEL assay, the slides were dewaxed,
rehydrated, deproteinized, washed, incubated in TUNEL solution
at 37°C for 1 h, and visualized with horseradish peroxidase-
conjugated secondary antibody solution. The cell nuclei were
stained with hematoxylin. All sections were observed and imaged
with a digital pathology scanner (VS120-S6-W; Olympus, Tokyo,
Japan). For the ki67 immunofluorescence detection, the
rehydrated slides were heated and subjected to the
ki67 antigen retrieval solution in the kit. The slides were

blocked using a blocking buffer to avoid non-specific
hybridization. The ki67 was then hybridized with a specific
antibody and detected using a fluorescent reagent. The nuclei
were stained with 4′,6-diamidino-2-phenylindole and imaged by
fluorescence microscopy (ECLIPSE C1; Nikon Corporation,
Tokyo, Japan).

2.13 Statistical analyses

All data are represented as means ± standard deviation (SD) of ≥
3 independent biological experiments and three replicates of each
experiment. Statistical analyses were performed in SPSS v. 16.0 (IBM
Corp. Armonk, NY, United States). Pairwise differences between
treatments were analyzed by one-way ANOVA, and a post hoc

FIGURE 1
WECP promotes hair regrowth in vivo. (A) Back skin of 7-week-old C57BL/6 mice was shaved. WECP (160 mg/kg and 320 mg/kg) and finasteride
(10 mg/kg) were administered daily by gavage for 20 days. (B) Photographs of dorsal skin on days 10 and 20 after depilation. (C) Depilated mouse skin
tissue sections were prepared and histologically examined using H & E staining. Images were captured using a digital pathology scanner. (D, E) Skin
thickness and hair bulb diameter were measured. N = 6. Scale bars = 1 mm. WECPL, WECPH, and Fin represent low-dose WECP, high-dose WECP,
and finasteride treatment, respectively. *p < 0.05, **p < 0.01 vs. control group.
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FIGURE 2
WECP increased DPC proliferation and migration. (A) Cell proliferation was measured using the CCK-8 assay. DPCs were treated with various
concentrations of WECP (10, 20, 40, 80, 160, 320 and 640 μg/mL). Data were means of three independent experiments. Error bars represent standard
deviation (SD). *p < 0.05, and **p < 0.01 vs. vehicle-treated control. DPCs were treated with WECP (40, 80, and 160 μg/mL) for 24 h. (B) Distribution of
DPCs in G1, S, and G2 after WECP treatment detected using flow cytometry and (C) quantitatively analyzed using FlowJo v. 10.0.7r2. (D) Expression
of cell cycle-related proteins was determined by western blotting after WECP treatment. (E) Effects of 24 h WECP treatment on DPC migration were
observed and quantified. Data were means ± SD of three independent experiments. *p < 0.05, **p or ##p < 0.01 and ***p < 0.001 vs. control. NS, not
significant.
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Fisher’s least significant difference test was used. Differences between
treatments were considered statistically significant if p < 0.05.

3 Result

3.1 WECP promoted hair growth and HFs
reconstruction in mice

We used 7 weeks old male C57BL/6 mice to evaluate the
ability of WECP to stimulate hair growth. The HFs were in the
telogen phase (Figure 1A). We observed rapid hair growth in the
WECP and Fin groups compared with that in the denuded
control (Figure 1B). The HFs and dermis were observed under
a microscope after H&E staining to explore the effect of WECP.
Compared with the control, there were significantly more HFs,
and the hair shafts had grown through the dermis and epidermis
in the WECP and Fin groups (Figure 1C). The hair bulb size and
dermis and epidermis thickness were significantly increased in
the WECP and Fin groups than those in the control (Figures 1D,
E). Moreover, the quantitative analysis indicated that WECP

stimulated hair growth in a dose-dependent manner. To our
surprise, the high dose WECP showed similar efficacy to Fin.

3.2 WECP stimulated DPCs proliferation

DPCs occur in HFs and play important roles in the hair growth
cycle. Previous studies suggested that DPC proliferation influences
HFs reconstruction and the hair growth cycle (Yoon et al., 2014; Cao
et al., 2021). We evaluated the effects of various WECP
concentrations on the DPCs viability and cell cycle. DPCs
proliferated significantly faster after WECP treatment and
especially at 160 μg/mL. However, WECP was cytotoxic to DPCs
at 640 μg/mL (Figure 2A).

3.3 WECP accelerated the DPCs cell cycle

Mice were sacrificed after the experiment and their back skin
was subjected to histopathological analysis to explore the effects of
WECP on HFs and the dermis. The number of HFs had significantly

FIGURE 3
Network analysis of WECP. (A) Venn diagram showing 59 predicted WECP targets in hair loss and ingredients-targets-disease network of WECP. (B)
PPI network of 59 predicted targets visualized with Cytoscape v. 3.7.1. Target size and color are based on degree values. Functional enrichment analysis of
WECP. (C) GO enrichment analysis of 59 predicted targets. (D) KEGG enrichment analyses of 59 predicted targets. Horizontal axis represents the
proportion of enriched genes in terms. Vertical axis represents each term. Dot size and color represent the number of enrichment targets and
p-values, respectively.
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increased, and the HF structure was significantly completed after
WECP and Fin treatment (Figure 1C). The cell cycle distribution of
the DPCs was assessed by flow cytometry to determine whether
WECP causes DPCs proliferation through cell cycle progression.
There were significantly fewer cells in G0/G1 phase after 24 h of
WECP treatment than there were in the control. Moreover, the
number of cells in S phase had significantly increased after WECP
treatment in a dose-dependent manner. Hence, the WECP
treatment promoted cell cycle progression (Figures 2B, C). The
proteins, Cyclin A, CDK2, CDK4, and P21, regulate cell cycle
progression from G0/G1 to S (Li et al., 2022). We then
quantified these cell cycle-related proteins by western blotting to
verify the foregoing results. WECP significantly upregulated cyclin
D1, CKD2, and CDK4 proteins and significantly downregulated
P21 protein. Thus, WECP promoted cell cycle progression
(Figure 2D). The preceding results suggested that WECP
accelerates cell cycle progression, thereby promoting DPCs
proliferation and hair growth.

3.4 WECP promoted DPCs migration

Cell migration is critical in HFs development (Ridley et al.,
2003). WECP significantly improved wound healing in a dose-
dependent manner (Figure 2E).

3.5 Compositional analysis of WECP

We obtained 15.287 g WECP powder by the circumfluence
extraction method (Hong et al., 2022). The chemical compounds
of WECP were identified by UPLC-Q/TOF-MS in positive and
negative ion modes. We obtained 14 and 6 components at the two
modes, respectively. Rutin, myricetin, quercetin, and isoquercitrin
were observed in both models. The 16 compounds are listed in
Supplementary Figure S1; Supplementary Table S1.

3.6 Prediction of the possiblemechanisms of
WECP in alopecia treatment via network
analysis

We collected nine ingredients in WECP with OB > 30% and
DL > 0.18 (Supplementary Table S2). A total of 398 targets for the
corresponding nine ingredients in WECP and 1,060 genes
(Supplementary Table S3) involved in the hair loss process via
database screening (Figure 3A). Of these, 59 genes were candidate
targets of WECP involved in hair loss prevention. They were then
uploaded to the STRING database (https://cn.string-db.org), and
those with a confidence value > 0.4 were selected. Complex
interactions among these proteins and their associated regulators
were illustrated in a PPI network containing 56 nodes and 426 edges

FIGURE 4
WECP activated Akt/GSK3β/β-Catenin signaling pathway in DPCs. DPCs were incubated with WECP (40, 80 and 160 μg/mL) in culture medium for
24 h. (A) Akt and GSK3β phosphorylation levels were detected in DPCs after WECP treatment. (B) Effects of WECP treatment on β-Catenin and Wnt10b
protein expression levels in DPCs. (C) Transcriptional expression of LEF1, IGF1, and VEGF in DPCs detected using RT-PCR. Data are presented asmeans ±
SD of three independent replicates. *p < 0.05, **p < 0.01 vs. control group.
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(Figure 3B). EGFR, Akt1, ALB, HRAS and IGF1 had the highest
node degree values and edge densities.

GO and KEGG analyses of the 59 aforementioned candidate
targets indicated that the biological process (BP) terms of the
target genes were mainly involved in the positive regulation of
cell proliferation (GO:0008284), protein phosphorylation (GO:
0006468), positive regulation of cell migration (GO:0030335),
and negative regulation of apoptosis (GO:0043066). The cellular
component (CC) terms of the target genes were enriched in the
cytoplasm (GO:0005737), nucleus (GO:0005634), and cytosol
(GO:0005829). The molecular function (MF) terms of the
target genes were associated with protein binding (GO:
0005515), identical protein binding (GO:0042802), and ATP
binding (GO:0005524). The top 10 BP terms and the top 5 CC
and MF terms are illustrated in bubble charts, in which the
pathway with the more involved genes was shown in the
larger bubble (Figure 3C). The top 20 pathways ranked by the
gene enrichment are also visualized (Figure 3D). The cancer-
related and PI3K/Akt signaling pathways were the most highly
enriched.

The PI3K/Akt signaling pathway has been thoroughly studied
and plays a vital role in cell proliferation and survival.
Phosphorylated Akt can, in turn, phosphorylate its downstream
target proteins, such as the GSK-3β and FoxO3a transcription
factors (Jiang et al., 2019; Lin et al., 2021). Bae et al. (2022)

reported that activated Akt promotes the growth of hair follicle
mesenchymal stem cells (HFMSCs) by inhibiting GSK3β, stabilizing
β-Catenin, promoting the translocation of the latter into the nucleus,
and inducing DPC proliferation. Based on the results of network
analysis and the literature review, we hypothesized that WECP
promotes hair growth by activating the Akt/GSK3β/β-Catenin
signaling axis.

3.7 WECP promoted β-Catenin
accumulation by activating Akt/GSK3β
phosphorylation

To verify whether WECP promoted hair growth and DPCs
proliferation through the Akt/GSK3β/β-Catenin signaling axis,
we detected the phosphorylation levels of Akt and GSK3β by
western blotting. We found that the phosphorylation level of Akt
and GSK3β was upregulated in a dose-dependent manner after
WECP treatments (Figure 4A). Then, as we anticipated,
activation of Akt inhibited GSK3β activity, promoted β-
Catenin accumulation, and elevated protein expression levels
of Wnt10b (Figure 4B). Myung et al. (2013) showed that the
activation of β-Catenin could enhance the LEF1 transcription
factor and contribute to the secretion of VEGF and IGF1, as well
as to the growth cytokine enrichment. Therefore, we examined

FIGURE 5
WECP activated Akt/GSK3β/β-Catenin signaling pathway in denuded mouse skin. (A) Effects of WECP and finasteride treatments on Akt and GSK3β
protein phosphorylation inmouse skin. (B) Effects ofWECP and finasteride treatments on β-Catenin andWnt10 translational expression inmouse skin. (C)
Effects of WECP and finasteride treatments on transcriptional expression of β-Catenin, Wnt10b, Wnt5a, LEF1, VEGF, and IGF1 in mouse skin. Data are
means ± SD of three independent replicates. *p < 0.05, **p < 0.01, ***p < 0.001 vs. control group. WECPL, WECPH, and Fin represent low-dose
WECP, high-dose WECP, and finasteride treatment, respectively.
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the transcriptional expression of LEF1, VEGF, and IGF1. The
results showed that WECP promoted the mRNA expression of
these growth factors in DPCs in a dose-dependent manner
(Figure 4C).

To confirm the results at the cellular level, we also detected the
phosphorylation levels of Akt and GSK-3β in the back skin of each
group (Figure 5A), as well as the translational expression of β-
Catenin and Wnt10b (Figure 5B). Consistent with the in vitro
results, the phosphorylation levels of Akt and GSK3β and the
expressions of β-Catenin and Wnt10b in the dorsal skin of mice
were significantly increased after WECP treatments in a dose-
dependent manner. Simultaneously, we also detected the
transcriptional expression of some other factors in the Wnt/β-
Catenin signaling pathway. The results showed that the
expression of Wnt10b, Wnt5a, β-Catenin, LEF1, IGF1, and
VEGF, were significantly stimulated by WECP treatments
(Figure 5C). These results suggested that WECP promotes the
accumulation of β-Catenin and the expression of some
downstream factors to promote hair growth of DPCs by
activating Akt/GSK3β phosphorylation.

3.8 WECP reduced apoptosis and promoted
HF cells proliferation

We performed TUNEL staining and
ki67 immunofluorescence detection on mouse dorsal skin to
assess whether WECP reduced apoptosis and promoted HF
cells proliferation. There were significantly fewer apoptotic
cells (TUNEL staining) in the dorsal skin and especially the
hair bulbs of mice treated with WECP and Fin than there were in
the dorsal skin of the Control mice (Figure 6A). On the contrary,
a higher ki67 fluorescence intensity was observed in dorsal skin of
the WECP and Fin group compared to that of the control
(Figure 6B). Furthermore, we detected dermal Bcl2 and Bax
expression by western blotting and RT-qPCR. The Bax/
Bcl2 ratio was decreased to a greater extent in the mice
treated with high WECP doses compared to those treated with
low WECP doses (Figures 6C, D). These findings were consistent
with those of the TUNEL staining assay. Therefore, WECP may
reduce apoptosis and promote HF cells proliferation in mouse
dorsal skin.

FIGURE 6
WECP attenuates apoptosis and promoted HF cells proliferationin in denuded mouse skin. (A) Representative sections showing TUNEL staining of
hair follicles in mouse skin. Scale bars = 625 μm. (B) Representative sections showing Ki67 staining of hair follicles in mouse skin. Scale bars = 50 μm.
Effects of WECP and finasteride treatments on (C) translational and (D) transcriptional expression of Bcl2 and Bax in mouse skin. Data are presented as
means ± SD of three independent replicates. *p < 0.05, **p < 0.01, ***p < 0.001 vs. control group.
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Inhibition of Akt signaling abolished the proliferative and
migration-enhancing effects of WECP on DPCs.

We then used the Akt inhibitor MK-2206 2HCl to validate the
stimulatory effects of WECP on DPCs proliferation and migration.
MK-2206 2HCl counteracted WECP-mediated improvement of
DPCs proliferation (Figure 7A). Similar results were obtained for
the wound healing assays. WECP failed to promote DPCmigration
in the presence of MK-2206 2HCl (Figures 7B, C). We also found
that MK-2206 2HCl abolished the WECP-triggered transcriptional
expression of β-Catenin, IGF1, and VEGF (Figure 7D). The
preceding results demonstrated that WECP promotes DPCs
proliferation and migration by activating the Akt signaling
pathway.

4 Discussion

Hair loss may be induced by genetic factors, chemotherapy,
radiation therapy, hormone imbalances, certain infections, and
nutrient deficiencies. Although hair loss has no serious impact on
overall or general health, the demand for safe, efficacious hair
loss treatment non-etheless continues to grow. Minoxidil and

finasteride are widely prescribed clinical drugs approved by the
United States Food and Drug Administration. However, both
drugs are associated with side effects such as scalp dryness, skin
irritation, erectile dysfunction, and testicular pain
(Ruksiriwanich et al., 2022). Traditional Chinese medicine
effectively alleviates the symptoms of complex diseases in a
multi-target, multi-component manner. The Compendium of
Materia Medica (Ben Cao Gang mu in Chinese) reported that
Platycladus orientalis (L.) Franco needles could promote hair
growth. However, there are limited pharmacological or
phytochemical reports available based on this botanical drug.
Here, we observed that WECP could promote hair growth in
mice (Figure 1), stimulate DPCs proliferation and migration, and
accelerate the DPCs cell cycle in vitro (Figure 2). We elucidated
the phytochemical character of WECP (Supplementary Table
S1). We discovered that Akt might be the critical target of WECP
with network analysis (Figure 3). This result helped us designing
in vitro and in vivo experiments. At the molecular level, WECP
mediates β-Catenin accumulation by promoting Akt and GSK3β
phosphorylation (Figure 4). As a result of which, WECP
upregulated LEF1, VEGF, and IGF1 in the model mice and
DPCs (Figure 5). We also observed that WECP reduced

FIGURE 7
Abolition of the promoting effect of WECP on DPC proliferation andmigration through Akt inhibition. (A–D)DPCs were treated with WECP (160 μg/
mL) for 24 h. Akt inhibitor MK-2206 2HCl was added 1 h before WECP treatment. (A) Cell proliferation was measured by CCK-8 assay. (B) Microscopic
images of scratched areas were captured. Lines indicate migrating cell edges. (C)DPCmigration was quantitatively analyzed and shown as bar graph. (D)
Transcriptional expression of β-Catenin, IGF1, and VEGFwere detected in DPCs by RT-PCR. Data are presented asmeans ± SD of three independent
experiments. **p < 0.01 vs control; ##p < 0.01 vs WECP group. Note: NS, not significant.
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apoptosis and promoted HF cells proliferation (Figure 6). Hence,
WECP might have general anti-apoptotic efficacy. Finally, we
applied an Akt inhibitor, MK-2206 2HCl, to verify the regulative
activity of WECP. We found that MK-2206 2HCl could abolish
the proliferation and migration-promoting effects of WECP on
DPCs. As anticipated, MK-2206 2HCl also inhibited the
stimulatory effect of WECP on the expression of β-Catenin,
VEGF, and IGF1 (Figure 7).

DPCs play an important role in hair growth and might
regulate the hair cycle (Kim et al., 2020). Most individuals
with alopecia are deficient with DPCs. When the hair cycle
switches from telogen to anagen phase, a self-cell division
within the dermal papilla and cell influx from the dermal
sheath co-occur (Pantelireis and Higgins, 2018). As a result,
the number of DPCs in the dermal papilla is restored to the
same level as that of the prior growth phase. Therefore, DPCs
proliferation indicates the efficacy of hair growth treatments. Cell
proliferation is closely associated with cell cycle progression.
Cyclin D1 is a key protein in cell proliferation and initiates DNA
synthesis (Kang et al., 2018). Cyclin-dependent kinases such as
CDK2 and CDK4 are activated by cyclins and positively
coordinate cell cycle progression along with them. Our results
showed that WECP stimulated cell proliferation (Figure 2A) by
promoting the cell cycle (Figures 2B, C) and upregulating cyclin
D1, CDK2, and CDK4 (Figure 2D). WECP regulated apoptosis-
related gene activity in mouse dorsal skin (Figures 6B, C). Thus,
WECP might be implicated in DPC apoptosis. Notably, cell
migration is a key element in HF development. Moreover,

WECP could unambiguously promote DPC migration
(Figure 2E).

Network analysis is an emerging interdisciplinary approach
that integrates systems biology and bioinformatics. It holistically
and systematically shows the relationship among drugs, targets,
and diseases and visually represents drug-target interaction
networks (Zhao et al., 2019). Our study disclosed that Akt
might be a critical WECP target (Figure 3). It has been
reported that Akt regulates not only cell proliferation by
inhibiting apoptosis (Datta et al., 1997), but also cell
metabolism, proliferation, and reprogramming (Tang et al.,
2014). Bai et al. (2017) showed that increased Akt
phosphorylation inhibited P21, upregulated cyclin D1, and
promoted HFMSC transition from G1 to S. These published
results encouraged us to demonstrate the regulative capability
of WECP on Akt. Recent studies have shown that Akt kinase
inhibits GSK3β through phosphorylation and promotes cell cycle
progression (McCubrey et al., 2017; Kang et al., 2018). GSK3β
regulates the Wnt canonical signaling pathway, stabilizes β-
Catenin, and inhibits cyclin D1 degradation (Zheng et al.,
2017). The Wnt/β-Catenin signaling pathway plays crucial
roles in HFs development, including growth cycle restart and
maintenance and HF cells proliferation and differentiation (Ito
et al., 2007; Ouji et al., 2008). β-Catenin ablation prevented HFs
formation in the embryonic epidermis. Forced expression of
constitutively activated epidermal β-Catenin expanded HFs
fate during development (Enshell-Seijffers et al., 2010).
Stabilized β-Catenin interacted with TCF/LEF TFs and
transactivated cell growth factors associated with hair
regrowth (Akiyama, 2000). Moreover, some previous studies
reported that ingredients, such as rutin (Luo et al., 2022),
isoquercitrin (Zhu et al., 2016), and myricitrin (Zhang et al.,
2016) could regulate Akt. Additionally, rutin could also prevent
apoptosis of DPCs (Carelli et al., 2012). Prevention and treatment
of alopecia areata by quercetin has been studied using a C3H/HeJ
mouse model (Wikramanayake et al., 2012). Therefore, we
primarily focused on Akt/GSK3β/β-Catenin signaling pathway
in the following study.

We found that WECP inhibits GSK3β by promoting Akt
phosphorylation at the serine nine residue (Figure 4A). Our
results also demonstrated that WECP promoted the
transcription and translation of β-Catenin and Wnt10b,
induced DPCs growth, and upregulated Wnt5a and LEF1 in
mouse dorsal skin (Figures 4, 5). The Wnt/β-Catenin signaling
pathway may also mediate the secretion of various growth factors
in DPCs (Kim et al., 2020). IGF1 is a structural insulin homolog
expressed in the MSCs of the dermal papilla and dermis, which can
stimulate HFs development (Yu et al., 2020). VEGF induces
vascularization around the HFs to promote hair growth (Zhang
et al., 2020). Here, we found that WECP upregulated IGF1 and
VEGF. This suggested a critical role of the Wnt/β-Catenin
signaling pathway in WECP-mediated hair growth. To confirm
prior results, we treated DPCs with the Akt inhibitor MK-2206
2HCl before the WECP application. MK-2206 2HCl abolished the
proliferation- and migration-promoting effects of WECP and
restored β-Catenin, IGF1, and VEGF expression (Figure 7).
Interestingly, we found that the DPCs proliferation and
migration improving capability of WECP (having complex

FIGURE 8
WECP mediates β-Catenin accumulation and transcription by
promoting Akt and GSK3β phosphorylation. β-Catenin translocates to
the nucleus where it enhances LEF1 factor transactivation and
upregulates VEGF and IGF1.
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chemical components) could be inhibited with one chemical
molecule MK-2206 2HCl. This suggested that Akt is not only
acts as the key factor, and but also acts the initiator of the WHCP-
regulated pathway. However, this hypothesis still needs to be
verified using MK-2206 2HCl treated or gene-modified hair loss
model mice.

The results of the present study suggested that the hair growth
improvement capability of WECP in mice was mediated by DPCs
proliferation and migration. WECP attenuated GSK3β and
upregulated β-Catenin by activating Akt (Figure 8). Since the
mixture of the ingredients in WECP tend to be quite complex,
future research should focus on the effect of these ingredients in
WECP on hair growth and hair cell cycle regulation. As we
understand, novel therapies against hair loss are under
development. We hope to identify some beneficial compounds or
therapeutic combinations to combat hair loss.
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