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Introduction: Next-generation sequencing (NGS) technologies have been widely
used in clinical genomic testing for drug response phenotypes. However, the
inherent limitations of short reads make accurate inference of diplotypes still
challenging, which may reduce the effectiveness of genotype-guided drug therapy.

Methods: An automated Pharmacogenomics Annotation tool (PAnno) was
implemented, which reports prescribing recommendations and phenotypes by
parsing the germline variant call format (VCF) file from NGS and the population
to which the individual belongs.

Results: A rankingmodel dedicated to inferring diplotypes, developed based on the
allele (haplotype) definition and population allele frequency, was introduced in
PAnno. The predictive performance was validated in comparison with four similar
tools using the consensus diplotype data of the Genetic Testing Reference
Materials Coordination Program (GeT-RM) as ground truth. An annotation
method was proposed to summarize prescribing recommendations and classify
drugs into avoid use, use with caution, and routine use, following the
recommendations of the Clinical Pharmacogenetics Implementation
Consortium (CPIC), etc. It further predicts phenotypes of specific drugs in terms
of toxicity, dosage, efficacy, and metabolism by integrating the high-confidence
clinical annotations in the Pharmacogenomics Knowledgebase (PharmGKB).
PAnno is available at https://github.com/PreMedKB/PAnno.

Discussion: PAnno provides an end-to-end clinical pharmacogenomics decision
support solution by resolving, annotating, and reporting germline variants.
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1 Introduction

Next generation sequencing (NGS) based clinical genomic testing has become a powerful
strategy in precision therapeutics (Ji et al., 2018; Malone et al., 2020; Tafazoli et al., 2021a). In
the area of pharmacogenomics (PGx), it is reflected explicitly in the identification and
annotation of germline genetic variants functioning in the absorption, distribution,
metabolism, and elimination (ADME) of drugs (Goldstein et al., 2003; Klein et al., 2019).
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These variants largely contribute to the inter-individual differences in
pharmacokinetics or drug response phenotypes (Rodrigues et al.,
2019). Based on the genotype-phenotype association, the efficacy
and toxicity of drugs can be revealed with a view to tailoring
effective and safe drugs, as well as providing sensible advice on the
dosage (Ashley, 2016; Roden et al., 2019).

A pharmacogenetic allele (*allele, star allele) or haplotype is
composed of one or more genetic variants on the same
chromosome, and a diplotype is formed by a pair of haplotypes of
the same gene on homologous chromosomes (Robarge et al., 2007;
Lingjun et al., 2014). In addition, genotype in this paper refers to
variants detected by sequencing platform that will be identified as
alleles (haplotypes) and then assigned as diplotypes. The diplotypes
bridge the transition from genotype to phenotype and are the basis for
precise drug administration. For instance, patients with a homozygous
UGT1A1*28 (*28/*28 diplotype) are poor metabolizers, which leads to
irreversible toxic effects when taking Belinostat, and require starting
with a lower dose (Peer et al., 2016).

Accurate inference of diplotypes is the basis for precise personal
genomic interpretation. However, the inability to distinguish parental
origin and short-read characteristics of NGS increase the difficulty of
the analysis (Browning and Browning, 2011; Snyder et al., 2015; Jin
et al., 2018; van der Lee et al., 2020). This is due to the fact that
diplotypes often require a joint judgment based on the multiple
variants on the maternal and paternal chromosomes. Given the
complexity of diplotype phasing, computational tools have been
developed, e.g., Astrolabe (Twist et al., 2016), Cyrius (Chen et al.,
2021), Aldy (Numanagić et al., 2018), Stargazer (Lee et al., 2019),
PharmCAT (Sangkuhl et al., 2020), StellarPGx (Twesigomwe et al.,
2021), and lmPGX (Klanderman et al., 2022). Nevertheless, there is
potential to further improve the accuracy of diplotypes inference for
NGS-derived variant call format (VCF) files, which are currently
widely used in clinical genomic testing.

Annotation of diplotypes for drug responses phenotypes is
another crucial aspect of the PGx clinical application. PharmCAT
and lmPGX focus on more than a dozen genes associated with drug
metabolizing enzymes and transporter proteins, and translate
diplotypes into metabolizer phenotypes on a gene-by-gene basis to
correlate dosing guidelines. However, sometimes more than one
diplotypes are concerned with a drug, and determining drug
dosage based on a single diplotype may be one-sided (Tasa et al.,
2019; Shugg et al., 2020). As more and more genotype-phenotype
associations have been identified, the number of PGx-related genes
and alleles has expanded. For example, the number of genes in the
Clinical Pharmacogenetics Implementation Consortium (CPIC) with
high-confidence evidence (level A and B) has grown to 33 (CPIC,
2022). In this context, there is a growing need to develop
computational tools to more comprehensively report the alleles
that may affect drug response.

To address the above issues, we built the Pharmacogenomics
Annotation tool (PAnno), an end-to-end automated tool for
clinical genomic testing oriented to providing prescribing
recommendations and predicting drug response phenotypes.
PAnno takes a standard germline VCF file as input to identify
PGx-relevant diplotypes. To achieve a more accurate inference, we
developed a ranking model considering the differences in allele
frequency between populations. In addition, we proposed an
annotation method for potential phenotypes that takes into
account the one-to-many relationship between drugs and

diplotypes by integrating the clinical annotations of the
Pharmacogenomics Knowledgebase (PharmGKB). Finally, PAnno
provides a summay of the above results in an HTML report.

2 Materials and methods

2.1 The architecture of PAnno

PAnno consists of two components, diplotype inference, and
clinical annotation. By parsing the germline VCF file from NGS
and the population to which the individual belongs, PAnno will
output the prescribing recommendation, detail of inferred
diplotypes, and drug response phenotypes in the form of an
HTML report (Figure 1).

2.1.1 Diplotype inference
This component aims to identify PGx alleles on each chromosome

and infer the diplotypes from the user-submitted VCF file. PAnno first
extracts all allele-related variants from the VCF file based on the pre-
collected GRCh38 genomic coordinates of PGx alleles. Next, PAnno
classifies the alleles into two categories: single-variant and multi-
variant. Single-variant alleles constitute diplotypes that do not
involve the judgment of multiple variants and the corresponding
genes generally have not yet been standardized by a nomenclature
committee, such as rs9923231 for VKORC1. Therefore, PAnno
obtains their diplotypes based on the genotype information of the
VCF file (e.g., the GT field), and reports according to the locations
measured. In addition, PAnno determines the presence and copy
number of HLA alleles if the relevant results are provided in the VCF.
Multi-variant alleles need to take into account more than one variant
on the same chromosome. The most likely diplotype of the gene of
interest is inferred by the PAnno ranking model.

2.1.2 Clinical annotation
This component aims to translate inferred diplotypes into

phenotypes to provide prescribing recommendations and predict
drug responses. The PAnno annotation method first annotates
diplotypes with dosing guidelines to determine drug availability.
For available drugs, clinical annotations of PharmGKB are
integrated to predict the possible changes in toxicity, dosage,
efficacy, and metabolism of a drug when a patient is routinely taking it.

2.2 Underlying data foundation

2.2.1 Allele definition and population allele
frequency

PAnno ranking model relied on the allele definition and
population frequency of diplotypes. The PharmGKB (Whirl-
Carrillo et al., 2012; Whirl-Carrillo et al., 2021), the Pharmacogene
Variation (PharmVar) Consortium (Gaedigk et al., 2021), and the
CPIC (Relling and Klein, 2011; Caudle et al., 2014; Relling et al., 2020)
are the primary data resource for PAnno to inference diplotypes.

Moreover, PAnno followed the standardized grouping system
applied by PharmGKB to divide the population into nine
biogeographic groups, namely African American/Afro-Caribbean
(AAC), American (AME), Central/South Asian (SAS), East Asian
(EAS), European (EUR), Latino (LAT), Near Eastern (NEA),
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Oceanian (OCE), and Sub-Saharan African (SSA) (Huddart et al.,
2019).

We first obtained the allele definitions and their population
frequencies from the PharmGKB website, which provided a further
integration of the frequencies compiled by PharmGKB and CPIC
based on the published literature reports (Nofziger et al., 2020; Botton
et al., 2021; Desta et al., 2021; Sangkuhl et al., 2021; PharmGKB, 2022e;
Ramsey et al., 2022; Rodriguez-Antona et al., 2022). For genes for
which PharmGKB did not provide population allele frequencies, we
estimated the allele frequencies using variant frequencies provided by
the 1000 Genomes Project (Siva, 2008). Specifically, we calculated the
population frequencies separately for all variants defining each
haplotype, and then used the lowest value to represent the
frequency for the haplotype. It is worth noting that a null value for
population frequency is more likely to result from insufficient data or
studies. In contrast, a frequency of zero indicates that the population is

essentially unlikely to have the haplotype. In this case, we assigned a
minimal value (epsilon = 1e-5) to the null value.

On this basis, we calculated diplotype-related data based on the
following two principles. First, the combination of any two haplotypes
of a gene gives all possible diplotypes. Second, the combination of all
variants involved in two haplotypes equals the definition of the
corresponding diplotype. Finally, we annotated the population
frequencies to each diplotype of each gene according to the Hardy-
Weinberg equilibrium (Hardy, 1908; Weinberg, 1908).

2.2.2 Prescribing recommendations and clinical
annotations

Reliable PGx knowledge is the foundation for effective annotation
and reporting. We collected the clinical guidelines integrated by
PharmGKB and manually reviewed the prescribing
recommendations. For given diplotypes, we annotated whether the

FIGURE 1
The architecture of PAnno. PAnno parses the user-submitted VCF with its affiliated population and outputs a pharmacogenomics (PGx) report. PAnno
classifies PGx alleles in the VCF into single-variant alleles andmulti-variant alleles. Diplotypes for the former can be derived directly, while the latter will call the
PAnno ranking model for inference. Based on the inferred diplotypes, the PAnno annotation method first determines the availability of drugs according to
clinical guidelines. Afterwards, it integrates the effects of multiple diplotypes on the same drug to predict drug response phenotypes in terms of toxicity,
dosage, efficacy, and metabolism.
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drug in question needs to be avoided, used with caution, or used
routinely according to the associated guidelines. The original
prescribing information was primarily published by CPIC (Clancy
et al., 2014; Martin et al., 2014; Muir et al., 2014; Relling et al., 2014;
Birdwell et al., 2015; Hicks et al., 2015; Gammal et al., 2016; Saito et al.,
2016; Bell et al., 2017; Hicks et al., 2017; Johnson et al., 2017; Amstutz
et al., 2018; Goetz et al., 2018; Phillips et al., 2018; Brown et al., 2019;
Desta et al., 2019; Gonsalves et al., 2019; Relling et al., 2019; Theken
et al., 2020; Crews et al., 2021; Karnes et al., 2021; Lima et al., 2021;
Cooper-DeHoff et al., 2022; Lee et al., 2022; McDermott et al., 2022),
the Dutch Pharmacogenetics Working Group (DPWG) (Lunenburg
et al., 2020; Brouwer et al., 2021; Matic et al., 2021; DPWG, 2022a;
DPWG, 2022b), the Canadian Pharmacogenomics Network for Drug
Safety (CPNDS) (Amstutz et al., 2014; Shaw et al., 2015; Aminkeng
et al., 2016; Lee et al., 2016; Drögemöller et al., 2019), and the French

National Network for Pharmacogenetics (RNPGx) (Lamoureux and
Duflot, 2017; Picard et al., 2017; Quaranta et al., 2017; Quaranta and
Thomas, 2017; Woillard et al., 2017).

In addition, we collected the clinical annotations from PharmGKB
which summarize the published evidence for the association between a
genetic variant and a drug. Each clinical annotation is assigned a level
of evidence including 1A, 1B, 2A, 2B, 3, and 4, from high to low
confidence (PharmGKB, 2022d). The variant-drug associations
described by 1A, 1B, 2A, and 2B have been demonstrated in
multiple trials and even incorporated into dosing guidelines. To
improve interpretation reliability and clinical usability, PAnno only
included the annotations from these four levels.

A PharmGKB clinical annotation generally corresponds to a drug-
genotype pair, which describes in paragraph form what phenotypic
response a person would have if they had a certain genotype. We

FIGURE 2
PAnno rankingmodel for diplotype inference. PAnno rankingmodel integrates a two-step ranking to determine the priority of diplotypes. In the first step,
the consistency of the input alleles with the definition of candidate diplotypes is calculated. Diplotypes with the highest concordance are selected and ranked
in the second step based on frequency in a given population.
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determined the drug response reflected in the annotation paragraph by
regular expressions with manual curation. Inspired by the CIPC
standardization project, each annotation was classified into three
phenotype terms, namely decreased function, normal function, and
increased function (Caudle et al., 2017). For a given clinical
description, such as the annotation of rs121434568 GG in https://
www.pharmgkb.org/clinicalAnnotation/981420042. Our annotated
result was that patients taking gefitinib with rs121434568 GG were
marked with “increased” in terms of efficacy. To better integrate
multiple annotations in practice, these phenotypes were
numerically coded as 0.5 (decreased), 1 (normal), and 2
(increased), respectively.

2.3 PAnno ranking model for diplotype
inference

PAnno ranking model takes as input genotypes of the positions at
which alleles are defined. Candidate diplotypes for each gene will be
prioritized by a two-step ranking as described below (Figure 2).

The definitions of alleles that form diplotypes are manually
curated by experts. In general, an allele will have variants that are
included in the definition of specific positions, which we refer to as
“declared.” Loci not included in a haplotype definition are
“undeclared.” We presume that the sequences of these undeclared
loci are consistent with the wild type.

PAnno first compares the input genotypes with the definition of
alleles, and assigns values based on their concordance and whether these
loci are declared to be mutated. At declared loci, consistent is marked as
“0” and inconsistent as “×”. At undeclared loci, consistent is marked as “0”
and inconsistent as “−1.” According to this principle, comparison values
will be assigned on all variants of all possible diplotypes.

Next, PAnno excludes diplotypes containing “×”, and calculates
the sum of the values of all variants for each diplotype. The higher the
total score, i.e., the closer to zero, the more consistent the patient
mutation is with the diplotype definition.

Finally, PAnno performs two consecutive steps of ranking. The
first ranking is based on the total consistency score. The highest
ranked candidates are further ranked according to their frequency in
the given population. The diplotypes with the highest rank are the final
result of the PAnno ranking model.

2.4 PAnno annotation method for predicting
drug response phenotypes

The PAnno annotation method interprets the inferred diplotypes
with the associated drugs based on the clinical guidelines of CPIC,
DPWG, CPNDS, and RNPGx. Drugs will be classified into three
categories: 1) Avoid use. Avoidance of a drug is clearly stated in the
prescribing recommendations for the given diplotype. 2) Use with
caution. Prescribing changes are recommended for the given
diplotype, e.g., dose adjustment and alternative medication. In
addition, prescribing recommendations that differ in specific
populations or require consideration of multiple diplotypes are
included in this category. 3) Routine use. There is no
recommended prescribing change for the given diplotype.

For a single drug, there may be multiple associated genotypes,
i.e., multiple PharmGKB clinical annotations. To integrate the impact

of multiple genotypes, PAnno calculates the mean of the annotation
scores for all associated diplotypes for each clinically available drug. The
integrated drug response phenotypes are indicated as decreased (<1),
normal (=1), and increased (>1). Notably, drugs judged to be “avoid use”
in the guideline-based annotation will not be included in the further
interpretation.

Drug response phenotypes predicted by PAnno are further
extrapolations beyond metabolizer phenotypes. It is necessary to
interpret the PAnno phenotype concerning the corresponding four
categories, i.e., toxicity, dosage, efficacy, and metabolism. For example,
weak metabolizers tend to obtain higher toxicity after taking the drug
at a regular dose, which the PAnno phenotype would be predicted as
“decreased metabolism” and “increased toxicity.”

2.5 Test data for GeT-RM samples

The CDC Genetic Testing Reference Materials Coordination
Program (GeT-RM) has previously conducted several
pharmacogenetic studies to create publicly available genomic DNA
reference materials for the field (Pratt et al., 2010; Pratt et al., 2016;
Gaedigk et al., 2019; Gaedigk et al., 2022; Pratt et al., 2022). GeT-RM
worked with members of the pharmacogenetic testing community to
characterize the DNA materials using various techniques such as
microarray and sequencing. Consensus diplotypes for a total of
29 PGx genes were developed and used as a reference dataset to
assess the quality of PGx analysis. With the development of
technology, GeT-RM has updated the results of these samples in
earlier studies. Therefore, our evaluation will be based on the latest
version of the consensus diplotypes obtained from https://www.cdc.
gov/labquality/GeT-RM/inherited-genetic-diseases-pharmacogenetics/
pharmacogenetics.html.

Among these GeT-RM studies, 137 samples had the most
comprehensive PGx genetic assay results. The VCF files for 88 of
these samples are freely available from the 1000 Genomes Project at
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000G_
2504_high_coverage/working/20190425_NYGC_GATK/raw_calls_
updated/. The germline variant data were re-sequenced and analyzed
by the New York Genome Center at 30x coverage (Byrska-Bishop et al.
, 2021). These samples are from four biogeographic groups, including
African American/Afro-Caribbean, East Asian, European, and Latino.
The VCF files along with the corresponding population will be used as
input to PAnno.

3 Results

3.1 Overview of PAnno

PAnno resolves and annotates PGx alleles based on the patient
germline VCF file and the population information to provide
prescribing recommendations and predict drug response
phenotypes (Figure 1). To facilitate user access, PAnno has been
developed as a Python package and a Conda package. The source code,
the documentation, and the example reports are available at https://
github.com/PreMedKB/PAnno.

In the current version, PAnno supports the parsing of diplotypes
for 52 genes and the clinical annotation of 100 drugs (Supplementary
Table S1). There are 13 genes involving multi-variant defined alleles
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with the PAnno ranking model applied, including CYP2B6, CYP2C19,
CYP2C8, CYP2C9, CYP2D6, CYP3A4, CYP3A5, CYP4F2, DPYD,
NUDT15, SLCO1B1, TPMT, and UGT1A1. It should be noted that
alleles defined on copy number variants (CNV) and structural variants
(SV) are not included in PAnno, because CNV and SV variations are
not included in typical VCF files. Unincorporated alleles include
CYP2B6*29, CYP2B6*30, CYP2C19*36, CYP2C19*37, CYP2D6*5,
CYP2D6*13, CYP2D6*61, CYP2D6*63, CYP2D6*68, SLCO1B1*48,
and SLCO1B1*49. Additionally, PAnno also includes the assignment
of 17 HLA alleles of HLA-A, HLA-B, HLA-C, HLA-DPB1, and HLA-
DRB1. The other alleles refer to the single-variant alleles, such as
ABCG2, CACNA1S, IFNL3, VKORC1, RYR1, CFTR, etc., which are
basically SNVs/Indels.

For clinical annotation, PAnno includes a total of 53 CPIC,
60 DPWG, six CPNDS, and eight RNPGx dosing guidelines,
covering 28 genes and 100 drugs. PAnno further collected
325 PharmGKB clinical annotations, of which 282 were at level 1A,
14 at level 1B, 20 at level 2A, and nine at level 2B. These clinical
annotations intersected with dosing guidelines for a total of 86 drugs,
associated with 32 genes, 243 variants, and 1168 alleles (Figure 3A).

3.2 One-to-many clinical associations for a
given drug

One drug was observed with multiple genetic associations in the
PharmGKB clinical annotation used by PAnno, even when distinguishing
phenotypic categories (Figure 3B). In terms of toxicity, dosage, efficacy,
and metabolism, the average number of genes associated with one drug
was approximately 1.31, 1.64, 1.28, 1.18, and the average number of
variants associated was 9.90, 5.91, 6.28, 6.88, respectively. For a drug-gene
pair or a drug-variant pair, there may be more than one clinical

annotation. For example, PharmGKB provides two clinical annotations
(PharmGKB ID 1449269910 and 1447673005) to describe the toxicity of
warfarin in patients with different genotypes of VKORC1 rs9923231
(PharmGKB, 2022b; PharmGKB, 2022c). The results showed that a
significant increase in the average number of gene-annotation
combinations occurred for a specific drug, with 8.02, 2.55, 4.5, and
1.39 for toxicity, dosage, efficacy, and metabolism, respectively.
Meanwhile, the increase in the number of variant-annotation
combinations was not significant, at 10.2, 6.27, 7.06, and 6.96,
respectively. The phenomenon of one-to-many associations with a
given drug reinforces the importance of the drug-centric nature of the
PAnno annotation method.

3.3 Prioritization of indistinguishable
diplotypes based on population frequency

3.3.1 Indistinguishable diplotypes for NGS-derived
variants

NGS-derived clinical genomics testing data cannot determine
exactly which chromosome the variant is located. When two
haplotypes are combined, as occurs in a VCF, haplotypes can be
inferred based on the allele definitions. When focusing only on the
alleles, there may be cases where different diplotypes have the same
mutation pattern, and we labeled them as “indistinguishable
diplotypes.” We counted the number of haplotypes, diplotypes, and
indistinguishable diplotypes for NGS for the 13 genes analyzed by
PAnno (Table 1). There were eight genes (CYP2B6, CYP2C9,
CYP2C19, CYP2D6, NUDT15, SLCO1B1, TMPT, and UGT1A1)
containing indistinguishable diplotypes, which is one of the
important reasons for PAnno to set up a further ranking step. The
details are included in Supplementary Table S2.

FIGURE 3
One-to-many clinical association for a given drug. (A) The PharmGKB clinical annotations used by PAnno covered 86 drugs, 32 genes, 243 variants, and
1168 alleles. The blue circle represents drugs covered in the prescribing recommendations of CPIC, DPWG, CPNDS, and RNPGx guidelines. The pink circle
represented drugs involved in clinical annotations with evidence levels of 1A, 1B, 2A, and 2B in PharmGKB. (B) Average number of associations for a given drug
in relation to genes (light red), combinations of genes and annotations (dark red), variants (light blue), and combinations of variants and annotations (dark
blue). Error bars represent ±standard error of mean. The x-axis indicates the different phenotype categories, including toxicity, dosage, efficacy, and
metabolism.
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TABLE 1 Number of indistinguishable diplotypes for NGS-derived variants.

Gene Number of haplotypes Number of diplotypes Number of indistinguishable diplotypes

CYP2B6 35 630 20

CYP2C8 18 171 0

CYP2C9 75 2,850 2

CYP2C19 34 595 10

CYP2D6 136 9,316 56

CYP3A4 34 595 0

CYP3A5 6 21 0

CYP4F2 3 6 0

DPYD 83 3,486 0

NUDT15 20 210 2

SLCO1B1 42 903 47

TPMT 46 1,081 2

UGT1A1 10 55 6

FIGURE 4
Differences in diplotype frequencies across populations. (A) Box plots showed the differences in the frequencies of diplotypes in 13 genes across the nine
biogeographic groups, which are characterized by coefficients of variation (CV). (B) Scatter plot showed the haplotype frequencies of CYP4F2 and the
diplotype frequencies calculated according to Hardy-Weinberg equilibrium. Jittering was applied to avoid overlapping.
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3.3.2 Differences in diplotype frequencies across
populations

The frequencies of the vast majority of diplotypes in the nine
populations had significant differences. For each gene, the average
coefficient of variation (CV) of the frequencies in different populations
ranged from 0.53 to 2.24. Among them, CYP2C19, CYP3A4, and
DPYD had mean CVs greater than 2, indicating that diplotypes of
these genes are extremely unlikely to occur in different populations. In
addition, we found that CYP2C8 and CYP3A4, which were inferred
from the lowest allele frequency based on the 1000 Genomes Project,
performed similarly to other genes (Figure 4A).

Even for CYP4F2 with the smallest variability, its haplotypes and
diplotypes reflected significant population differences. The population
frequency of diplotype obtained by random combinations would be
jointly influenced by the two haplotypes (Figure 4B). PAnno takes
advantage of the above features to prioritize candidate diplotypes that
are indistinguishable based on NGS variants.

3.4 Performance of PAnno in diplotype
inference

3.4.1 Concordance between PAnno results andGeT-
RM consensus

To evaluate the performance of PAnno in diplotype inference, we
applied the ranking model to germline variant data from 88 test samples
and calculated the concordance of diplotypes for 14 genes shared in
PAnno andGeT-RM (Table 2). Notably, there are differences between the
haplotypes included in GeT-RM and PAnno, i.e., CYP2C19*38 is not in
GeT-RM, while is considered a wild-type haplotype in PAnno. A detailed
comparison of the differences in the allele definition can be found in
Supplementary Table S3. Therefore, if the output haplotypes were not
included by both GeT-RM and PAnno or did not have a clear conversion
relationship, the relevant samples were all excluded.

Overall, the diplotypes predicted by PAnno were highly
concordant with the ground truth of GeT-RM. The concordance

rates of diplotypes for CYP2C19, CYP2C8, CYP3A4, CYP3A5,
CYP4F2, DPYD, and TPMT were 100%, while for CYP2B6,
CYP2C9, CYP2D6, SLCO1B1, and UGT1A1 were 89.53%, 98.86%,
94.74%, 70.77%, and 56.25%, respectively. A detailed description of the
consistency concordance is in Supplementary Table S4. The reasons
for incomplete concordance can be summarized as two main aspects,
i.e., the iteration of the analysis pipeline leading to the VCF files
containing variants not found in GeT-RM and the linkage
disequilibrium (LD) among haplotypes.

For CYP2B6, one haplotype was inconsistent in seven samples due
to the detection of variants defining *4, *5, or *22 in the VCF files,
while GeT-RM considered these samples as *1. Two other samples
matched both *1/*7 and *5/*6, and due to the high frequency of *5/
*6 in the population to which the samples belonged, PAnno did not
output *1/*7 as advocated by GeT-RM.

For CYP2C9, an inconsistent sample HG01190 was judged as *2/
*61 in GeT-RM, while PAnno inferred it as *1/*61. Similar to the
reason for the inconsistency in the seven samples of CYP2B6, the
results in the VCF showed a C>T heterozygous transition at
rs1799853, which was not satisfying the requirement of *2/*61,
i.e., C>T homozygous transition at rs1799853.

For CYP2D6, the inconsistency in the three samples was also due to
inconsistent detection of germline variants. GeT-RM considered
HG00589 as *1/*21 while PAnno inferred *1/*2 owing to its VCF not
covering one of the mutated loci that defined *21 (G>GG at rs72549352).
The VCF file of NA18519 contained the variant associated with *106
(C>T at rs28371733) while GeT-RM did not, resulting in a PAnno-
inferred diplotype as *29/*106 and GeT-RM as *1/*29. For the diplotype
of NA19174, GeT-RM considered *4/*40 while PAnno inferred *4/*58.
The main difference between these two diplotypes is that the variant
sequence of *40 on rs72549358 is AAAGGGGCG(3) while *58 is
AAAGGGGCG(2). The 1000 Genome Project VCF for this sample
showed a variant on rs72549358 as AAAGGGGCG(2), which led to
the inconsistency.

For SLCO1B1, PAnno inferred the diplotypes of the three
inconsistent samples as *1/*14 because the heterozygous variants

TABLE 2 Performance of PAnno and similar tools in diplotype inference.

Gene % PAnno % PharmCAT % lmPGX % Adly % StellarPGx

CYP2B6 89.53 (77/86) 66.22

CYP2C8 100.00 (88/88) 100.00 100.00

CYP2C9 98.86 (87/88) 100.00 95.70 99.27 100.00

CYP2C19 100.00 (88/88) 100.00 95.70 93.43 97.30

CYP2D6 94.74 (54/57) 94.30 99.08 78.10

CYP3A4 100.00 (40/40) 95.62 100.00

CYP3A5 100.00 (88/88) 100.00 100.00 100.00 100.00

CYP4F2 100.00 (64/64) 80.00 80.30 92.70 95.52

DPYD 100.00 (42/42) 94.92 98.30 57.66

NUDT15 100.00 (3/3)

SLCO1B1 70.77 (46/65) 8.47 62.90

TPMT 100.00 (86/86) 98.31 98.60 98.54

UGT1A1 56.25 (36/64) 53.33
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defining *14 (A>G at rs2306283 and C>A at rs11045819) were
identified. However, GeT-RM considered that no variant occurred
and thus judged them as *1/*1. Going back to the original data of GeT-
RM, we found that there was a platform where *14 was also inferred,
while GeT-RM did not use the results of this platform. The rest of
discordance was also since PAnno inferred that the 16 samples carried
*37 (A>G at rs2306283) while GeT-RM did not. Fundamentally, it still
lies in the difference in variant detection between the GeT-RM project
and the VCF files of the 1000 Genomes Project used by PAnno.

ForUGT1A1, *60with *28, *80with *28, and *80with *37 have a very
high probability of LD (Innocenti et al., 2002; Chen et al., 2014; Gammal
et al., 2016). Thus, PAnno extrapolated 12 samples that were labeled *1/
*28 in GeT-RM as *60/*80+*28, six samples labeled *28/*28 as *80+*28/
*80+*28, eight samples labeled *28/*60 as *28/*80, one sample labeled
*28/(*37) as *80+*28/*80+*37, and one sample labeled *27/*28 as (*27;
*60)/*80+*28. This phenomenon was also found in PharmCAT and was
shown to be largely unaffected by the differences in diplotypes with GeT-
RM caused by LD on the determination of drug response.

3.4.2 Comparison with other similar tools
We compared the performance of PAnno with four other

diplotype phasing tools, including PharmCAT, lmPGX, Adly, and
StellarPGx (Table 2). The accuracy of the above tools was derived from
their respective publications, implying potential differences in how
accuracy is judged. The empty cells in the table do not exactly mean
that the software does not support the inference of the corresponding
gene, but only that the comparison results with GeT-RM for the tool
are not available. For example, PharmCAT supports genes such as
CYP2B6 and NUDT15 in subsequent updates. In comparison, PAnno
performed excellently in terms of both the number of PGx genes and
the accuracy assessed based on GeT-RM consensus. This
demonstrates the comparable performance of the PAnno ranking
model compared to other excellent algorithms.

Although PAnno’s diplotype inference method was developed based
on the allele definition, it not only performed exact matching as in
PharmCAT and lmPGX but also incorporated population allele
frequencies. This allows multiple filtering and ranking of candidate
diplotypes. When an exact match to the diplotype is impossible,
PAnno will output results that match the allele definition and have a
higher probability of occurring in the population. Some variants associated
with the haplotype definition were in complex formats or not covered by
the current sequencing data. Therefore, they were not resolved successfully
in the exact match reflected by the null “symbol.exact”, but PAnno still
obtained highly consistent results with the GeT-RM consensus. This
implies that PAnno may be somewhat tolerant of potential artifacts in
variant calling, misfitting of the input format of VCF, etc. Supplementary
Table S5 showed the analysis results for 13 genes from 88 test samples at
different steps, including diplotypes that matched the definition exactly,
diplotypes with the highest concordance with the definition (the first step
ranking), diplotypes with the highest population frequency on this basis
(the second step ranking).

3.5 PAnno report

PAnno summarizes the analysis results in an HTML report for better
understanding by the user. A snapshot of the PAnno report of the
1000 Genomes Project VCF file for NA10859 is used here as an example
(Figure 5). The report contains five core sections: 1) Summary

(Figure 5A). Drugs are reported in three categories, namely, avoid use,
use with caution, and routine use. This is based on whether clinical
guidelines recommend a prescribing change for the given diplotypes.
Although the current version of PAnno covers 100 drugs, the report
shows only those drugs that the patient’s genotype is associated with.
Hyperlinks provide direct access to the detailed recommendations in the
next section. 2) Prescribing info (Figure 5B). This section is drug-centric
and presents all drug-specific genes detected from the patient’s genetic
profile, along with their corresponding PAnno-inferred diplotypes, CPIC
phenotypes, and recommendations in CPIC, DPWG, CPNDS, and
RNPGx. 3) Diplotype detail (Figure 5C). The inferred diplotypes for
the 13 PGx genes are presented in this section. The detailed information
includes the genomic coordinates, the defined and called variants at each
position, and potential protein changes. In addition, the genotypes of the
single-variant alleles are summarized in a table. 4) Phenotype prediction
(Figure 5D). This section summarizes the predicted drug response
phenotypes of the PAnno annotation method in terms of toxicity,
dosage, efficacy, and metabolism, after integrating the multiple
diplotypes associated with a clinically available drug. The predicted
phenotypes are indicated as decreased, normal, and increased. 5)
Clinical annotation (Figure 5E). The original PharmGKB clinical
annotations on which the predicted phenotypes in the previous
section are based are listed in a table. In addition, basic information
such as sample name, reporting time, biogeographic group, and
supplementary notes, will be presented at the beginning and end.
PAnno reports of four samples from different populations are
available in Supplementary Material S6. Reports for the 88 tested
samples are accessible at https://github.com/PreMedKB/PAnno-analysis.

4 Discussion

PAnno is an interpretation tool for resolving individual germline
genotypes to infer diplotypes and annotate pharmacogenomic knowledge.
The frequency of PGx alleles varies across populations, which leads to
differences in drug metabolism, transport, etc. (Gaedigk et al., 2017; Zhou
et al., 2017; Ahsan et al., 2020; Jithesh et al., 2022). PAnno applied this
feature to the PAnno ranking model built for the inference of multi-
variant alleles, which facilitated the prioritization of indistinguishable
diplotypes from NGS germline variant calling. The validity of PAnno for
inferring diplotypes was demonstrated in comparison with the GeT-RM
dataset and four similar tools. After resolving PGx-associated diplotypes, a
PAnno annotation method was designed to associate clinical dosing
guidelines based on the patient’s diplotypes and furthermore to
integrate the effects of multiple diplotypes associated with a specific drug.

PAnno performs comparably to similar tools in terms of diplotype
inference, but the accuracy is still insufficient for some genes involved
in complex genomic regions, such as UGT1A1. This is mainly due to
the limitation of NGS itself in identifying repetitive sequences, etc.,
which affects the final haplotype resolution (Mantere et al., 2019; Garg,
2021). However, the detection of CNVs and SVs is critical for the
determination of some phenotypes, such as CYP2D6 ultrarapid
metabolizers. Since PAnno directly analyzes VCF files, it cannot
address the identification of the exact number of CNVs as well as
the SVs of large segments. In the current version, some PGx alleles in
CYP2B6, CYP2C19, CYP2D6, and SLCO1B1 cannot be analyzed by
PAnno. Reviewing the 88 samples in GeT-RM for the above four
genes, the diplotypes of CYP2D6 were involved in alleles not
contained by PAnno. Specifically, 14 samples involved SVs (*5, *13,
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FIGURE 5
PAnno report sections for the 1000 Genomes Project VCF file of NA10859. PAnno report consists of five sections. (A) Summary. Drugs are classed into
three categories based on whether clinical guidelines recommend a prescribing change for the given diplotypes, i.e., avoid use, use with caution, and routine
use. (B) Prescribing info. For each drug, this section lists the associated gene, diplotype, phenotype, and recommendations in CPIC, DPWG, CPNDS, and
RNPGx. (C)Diplotype detail. The table contains the detection of loci associated with the definition of diplotypes. (D) Phenotype prediction. The effects of
multiple diplotypes for each clinically available drug in terms of toxicity, dosage, efficacy, and metabolism are described. (E) Clinical annotation. The original
annotations for the predicted phenotypes in the previous section are presented in the table. Full HTML report of NA10859 is available in Supplementary
Material S6.
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*68), six samples involved tandem arrangements, and eight samples
involved CNVs. In total, they account for 35.23% of the overall tested
samples, which is a non-negligible proportion (Supplementary Table
S4). In this respect, PAnno is deficient compared to Aldy and
StellarPGx because they do not rely only on VCF files for the
inference of diplotypes. Currently, we have disclosed the non-
coverable alleles of CYP2B6, CYP2C19, CYP2D6, and SLCO1B1 in
the “diplotype detail” section of the PAnno report, and the
compatibility of CNVs and SVs would be considered in the future.

The performance of PAnno is closely related to the quality of the
VCF files. Quality here does not only refer to the rigorous filtering of
VCFs, but refers broadly to the operational performance throughout
the process of data generation and analysis. In this paper, PAnno’s
predicted diplotypes using the VCF files of the 1000 Genomes Project
have a small number of inconsistencies with the diplotype consensus
of GeT-RM. After manual checking, we found many variants that
clearly did not match the diplotypes proposed by GeT-RM even in the
VCF files. In this case, we are unable to assert the reason for the
discrepancies. Therefore, if the germline variants are detected
inaccurately, it may raise the risk of inaccurate diplotype inference
and even inappropriate clinical recommendations.

Finally, during the clinical annotation step, PAnno does not take
into account the effect of disease type. PAnno annotation method only
seeks relevant annotations around a specific drug on a specific
phenotype category (e.g., toxicity), assigns scores, and integrates
them. At this point, some annotations may only be relevant for a
specific disease, which may affect the predicted drug response
phenotype after integration. In addition, there is a significant
amount of manual curation work that limits more precise
development. For example, in the annotation of PharmGKB ID
1446846513, neoplasm is not caused by the drug but is the
indication for taking anthracyclines (PharmGKB, 2022a). For such
clinical annotations specifying indications, complementary disease
information contributes to a more accurate pharmacogenomic
interpretation. However, this requires laborious manual curation to
distinguish indications from adverse effects after drug administration.

Overall, we developed PAnno to provide researchers and clinicians
with informative recommendations to aid drug treatment decisions by
linking genotypes and drug response phenotypes. The tool has shown
great promise in the accuracy and broadness of the analysis of PGx alleles.
Furthermore, PGx genes have progressively gone beyond the long-
studied range of drug-metabolizing enzymes and transporters. Clinical
evidence for nuclear receptors, transcription regulators, and genes
potentially related to ADME, etc., is increasing (Arbitrio et al., 2021;
Tafazoli et al., 2021b; Lanillos et al., 2022). As the accumulation of
associations between different genotypes and drug responses, the
integrative strategy for genotype resolution and clinical annotation
advocated by PAnno would become more valuable. We believe that
the comprehensive interpretation properties of PAnnomake it possible to
complement the PGx clinical genomic testing.
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