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Sepsis is a common but critical illness in patients admitted to the intensive care unit
and is associated with high mortality. Although there are many treatments for
sepsis, specific and effective therapies are still lacking. For over 2,000 years,
traditional Chinese medicine (TCM) has played a vital role in the treatment of
infectious diseases in Eastern countries. Both anecdotal and scientific evidence
show that diverse TCM preparations alleviate organ dysfunction caused by sepsis
by inhibiting the inflammatory response, reducing oxidative stress, boosting
immunity, and maintaining cellular homeostasis. This review reports on the
efficacy and mechanism of action of various TCM compounds, herbal
monomer extracts, and acupuncture, on the treatment of sepsis and related
multi-organ injury. We hope that this information would be helpful to better
understand the theoretical basis and empirical support for TCM in the treatment
of sepsis.
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1 Introduction

Sepsis is one of the leading causes of death from critical diseases, affecting each year
more than 30 million people worldwide (Fleischmann et al., 2016). Sepsis is defined as a
life-threatening organ dysfunction caused by the host’s dysfunctional response to infection,
and is diagnosed based on a Sequential [Sepsis-related] Organ Failure Assessment (SOFA)
score ≥2 (Singer et al., 2016). This definition highlights the importance of the systemic
inflammatory response caused by immune disturbance. Pattern recognition receptors of
innate immune cells recognize highly conserved microbial pathogen-associated molecular
patterns (PAMPs), which activate signaling pathways, e.g., mitogen activated protein
kinase (MAPK) and nuclear factor-κB (NF-κB), thus triggering the production and
secretion of pro-inflammatory cytokines such as tumor necrosis factor alpha (TNF-α)
and interleukin 1 (IL-1), IL-2, IL-6, and IL-8. These cytokines promote the adhesion
between neutrophils and endothelial cells, which is followed by the activation of
complement and blood coagulation cascades, and eventually lead to disseminated
intravascular coagulation (Boyd et al., 2014; Huang et al., 2019). According to
conventional view, after this early hyperinflammatory state, a subsequent hypo-
inflammatory state partly from the release of anti-inflammatory cytokines such as IL-4
and IL-10, results in widely immune suppression. However, newer paradigms indicate a
phase at which the pro-inflammatory and immunosuppression may occur simultaneously,
and the complex interactions between host (genetics and comorbidities) and pathogen
(type, virulence, and burden) is the leading factor (Cecconi et al., 2018).
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Despite recent advances in anti-infective therapy and advanced life
support, the high mortality rate of sepsis remains an urgent clinical
challenge. High medical costs and possible sequela such as renal
insufficiency and cognitive impairment make sepsis a global public
health issue (Singer et al., 2016). In addition, one-sixth of survivors of
sepsis frequently suffer from long-term impairments such as physical,
cognitive, and organ function (Delano and Ward, 2016; Prescott and
Angus, 2018). Accelerated progression of preexisting chronic
conditions, residual organ damage, and impaired immune function
accounts for the deterioration of health after sepsis (Prescott and
Angus, 2018). Since a sustained, uncontrolled inflammatory response
is regarded as key factor promoting the onset of sepsis and multiple
organ damage, novel anti-inflammatory therapies are eagerly pursued
for sepsis treatment. However, clinical trials aimed at blocking
cytokine responses, such those testing TNF-α inhibitors and Toll-
like receptor 4 (TLR4)/myeloid differentiation factor 2 (MD2)
antagonists, failed to decrease the mortality rate of patients with
septic (Fisher et al., 1996; Opal et al., 2013). In view of the limited
treatment options, complementary and replacement therapies are
increasingly investigated to develop new therapeutic measures to
treat sepsis and related organ damage.

As an alternative and complementary therapy, TCM is
increasingly recognized for its efficacy and safety in the treatment
of diseases. For instance, in the last 2 years, TCM has been shown to
improve immunity and alleviate fever and other symptoms of
COVID-19 (Kang et al., 2022). Indeed, TCM offers unique
advantages in the treatment of inflammatory diseases such as sepsis
(classified as “exogenous fever disease” in TCM) (Li C et al., 2018; Lu
Z.B. et al., 2020). According to TCM tenets, the main principles of
sepsis treatment are clearing away heat and detoxifying, clearing the
internal organs and expelling heat, promoting blood circulation and
removing blood stasis, and strengthening the body and solidifying the
detoxification. Many studies, including some clinical trials, have
reported the effectiveness of TCM in suppressing inflammatory
pathways, regulating the immune response, and inhibiting oxidative
stress (Gao et al., 2019; Song Y et al., 2019; Xia et al., 2019; Shang et al.,
2020). Evidence supports as well the potential of TCM compounds,
herbal extracts, and electroacupuncture in the prevention and
treatment of heart-, brain-, lung-, and intestine-related diseases
(Kim et al., 2007; Liu et al., 2018; Nabavi et al., 2018; Pang et al.,
2018; Zhang W et al., 2019; Zhang X et al., 2019; Liu S et al., 2020).
Therefore, this review aims to summarize the efficacy and mechanism
of action of TCM compounds, herbal extracts, and
electroacupuncture, in the treatment of sepsis and sepsis-related
multiple organ damage.

2 TCM compounds

TCM compounds are prescriptions consisting of two or more
substances that provide multi-target synergistic effects (Sun et al.,
2017). Through mutual compatibility of different chemical
substances, components of TCM herbs react with each other,
thereby lowering toxicity and adverse side effects and enhancing
the therapeutic effects (Zhang R et al., 2019). Several TCM
compounds, such as Xuebijing injection, Shenfu injection,
Huanglian Jiedu decoction, Dachengqi decoction, and Xijiao
Dihuang decoction, demonstrated efficacy in the treatment of
sepsis-related organ injury.

2.1 Xuebijing injection

Xuebijing injection (XBJI) is an injectable prescription obtained
from a combination of carthami flos, paeoniae radix rubra, szechuan
lovage rhizome, angelicae sinensis radix, and salviae miltiorrhizae (Li
et al., 2021) that shows distinct anti-inflammatory activities in several
settings. XBJI decreased the expression of IL-6, TNF-α, IL-1β, and IL-
12 in mouse macrophages stimulated by Pam3CSK4 (a synthetic
tripalmitoylated lipopeptide mimicking bacterial lipoproteins) (Li T
et al., 2020). Its pharmacology targets are the NF-κB and MAPK
pathways, and its effects are manifested by inhibition of the
phosphorylation of IKKα/β, IκBα, p65 NF-κB, and JNK (Li T et al.,
2020). High-dose XBJI increased the number of T-regs, reduced the
number of Th-17 T cells, downregulated the expression of
inflammatory cytokines such as IL-6 and TNF-α, inhibited the
infiltration of neutrophils in lung and kidney tissues, and improved
survival in cecal ligation and puncture (CLP) model mice (Chen et al.,
2018). In another study addressing also the mouse CLP sepsis model,
XBJI administration significantly improved renal microvascular
perfusion and oxygenation and inhibited renal expression of IL-1β,
IL-6, TNF-α, and high mobility group box 1 (HMGB1) protein,
although without affecting the survival rate (Liu J et al., 2021).

2.2 Shenfu injection

Shenfu injection (SFI) is mainly composed of ginsenosides and
aconitine alkaloids (Liu et al., 2019). SFI was reported to exert
antioxidant, anti-inflammatory, anti-apoptotic, and
immunoregulatory effects in a rabbit model of lipopolysaccharide
(LPS)-induced septic shock. SFI decreased serum levels of lactate
dehydrogenase (LDH) and aminotransferase (AST), improved
myocardial metabolism, and protected tissue morphology in the
heart, liver, and kidney (Liu et al., 2019). SFI also suppressed
inflammatory markers, such as TNF-α and IL-1β, in serum and
heart of LPS-treated rats, and disrupted inflammatory signal
transduction mediated by the mitogen-activated protein kinase
repalmitoylated (MEK) and extracellular regulated protein kinase
(ERK) pathways by decreasing p-MEK and p-ERK expression in
LPS-stimulated H9C2 cells (Chen et al., 2020). Besides, SFI
upregulated the expression of B cell lymphoma-2 (Bcl-2) and
lowered the expression of Bid, t-Bid, and caspase-9, thus reducing
cardiomyocyte apoptosis and attenuating myocardial injury in septic
rats (Xu et al., 2020). In turn, beneficial effects of SFI on patients with
septic shock were manifested by increased CD4+ and CD8+ T cells in
peripheral blood, upregulated expression of human leukocyte antigen
DR (HLA-DR) in monocytes, and enhanced cellular immunity (Zhang
N et al., 2017). Importantly, clinical trials on patients with septic
showed that SFI combined with conventional treatment led to
significant improvement of clinical symptoms and prognosis,
without obvious adverse reactions (Wen-Ting et al., 2012; Mo
et al., 2014; Zhang Q et al., 2017; Wang X et al., 2019).

2.3 Shengmai injection

Shengmai injection (SMI), consisting of extracts from panax
ginseng, ophiopogon japonicas, and schisandra chinensis, is one of
the most widely used TCM prescriptions. According to the basic
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theory of TCM, simple tonic drugs like SMI cannot normally be used
to treat infectious disease. However, in animal models of cardiac
disease, marked improvement of myocardial metabolism was observed
after treatment with SMI (Li et al., 2019; Cao et al., 2020). Specifically,
SMI enhanced fatty acid and glucose oxidation, promoted
mitochondrial biogenesis, and inhibited apoptosis by activating the
AMPK signaling pathway in cardiomyocytes rendered hypertrophic
by exposure to angiotensin II (Li et al., 2019). Meanwhile, SMI
upregulated the expression of PTEN-induced kinase 1 (Pink1) and
Parkin RBR E3 ubiquitin-protein ligase (Parkin), therefore improving
myocardial mitophagy, in a mouse model of septic cardiomyopathy
(Cao et al., 2020). Furthermore, SMI was shown to improve immune
function and prolong survival in mice with CLP-induced peritonitis
(Yu et al., 2005).

2.4 Huanglian Jiedu decoction

Huanglian Jiedu decoction (HLJDD) consist of rhizoma coptidis,
radix scutellariae, cortex phellodendri, and fructus gardeniae and has
been widely used in the treatment of inflammatory diseases (Lu Z et al.,
2020). The beneficial regulatory role of HLJDD in lipid homeostasis
represents the key mechanism of its anti-inflammatory actions. Upon
LPS-induced inflammation in zebrafish, HLJDD ameliorated lipid

imbalance mainly through the glycerophospholipid metabolism
pathway. By normalizing the production of proinflammatory lipid
intermediates, this effect was proposed to underlie TLR4/myeloid
differentiation factor 88 (MyD88)/NF-κB pathway inhibition and
reduced secretion of IL-6, IL-1β, TNF-α, and IFN-γ (Zhou et al.,
2019). Notably, berberine, baicalin, and gardenin, the main
components of HLJDD, were shown to play a protective role
against sepsis-related multi-organ damage by binding to lipid A to
neutralize LPS activity. This resulted in inhibition of IL-6, TNF-α, and
IFN-γ secretion, as well as reduced synthesis of pathological lipid
markers (Chen G et al., 2017). In a rat model of LPS-induced gingivitis,
HLJDD administration suppressed serum inflammatory cytokines,
lowered malondialdehyde (MDA) and reactive oxygen species (ROS)
production, and upregulated total antioxidant capacity in
periodontitis lysates. These effects were correlated with inhibition
of AMPK and ERK1/2 expression (Zhang F et al., 2018).

2.5 Dachengqi decoction

Dachengqi decoction (DCQD) is composed of extracts from
rheum palmatum l, magnolia henryi dunn, citrus aurantium l, and
natrii sulfas. In a mouse model of LPS-induced acute lung injury
(ALI), DCQD treatment inhibited TLR4/NF-κB signaling and IL-6,

FIGURE 1
The potential applications of TCM in sepsis. TCM can protect sepsis through TLR4/NF-κB, PI3K/mTOR, NLRP3 inflammasome, MAPK and other signaling
pathways.
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TABLE 1 Characteristics of TCM compounds on sepsis.

Compound Efficacy Composition Animal/Cell model Dose/Concentration Targets Ref

Xuebijing Injection Regulating the balance of Tregs and
Th17 cells; Decreasing inflammatory
mediators and bacterial load

Honghua (Carthami tinctorii L.), Chishao
(Paeonia lactiflora Pall.), Chuanxiong
(Ligusticum chuanxiong Hort.), Danggui
[Angelica sinensis (Oliv.) Diels], and
Danshen (Salvia miltiorrhizae Bge.)

Mice: MRSA 7 × 108 CFU,
RAW264.7 cells: Pam3CSK4 100 ng/
mL (Li T et al., 2020); Mice: CLP (Chen
et al., 2018); Rats: CLP (Liu J et al.,
2021)

Mice: 5, 10 mL/kg, RAW264.7 cells: 3,
10, 30 μL/mL (Li T et al., 2020); Mice:
18 mL/kg (Chen et al., 2018); Rats:
4 mL/kg (Liu J et al., 2021)

NF-κB andMAPK↓; PI3K/Akt
phosphorylation ↓; HMGB1 ↓

Chen et al.
(2018); Li T et al.
(2020); Liu J
et al. (2021)

Shenfu injection Improving energy metabolism and
antioxidation; Attenuating the
inflammation and apoptosis

Ginsenosides and aconitine alkaloids Rabbits: LPS .6 mg/kg (Liu et al., 2019);
Rats: LPS 20 mg/kg, H9C2 cells: LPS
16 μg/mL (Chen et al., 2020); Mice: LPS
8 mg/kg (Xu et al., 2020)

Rabbits: 4.5, 6, 8 mL/kg (Liu et al., 2019);
Rats: 10 mL/kg, Cells: 80 μL/mL (Chen
et al., 2020); Mice: 3, 10 mL/kg (Xu et al.,
2020)

p-MEK ↓, p-ERK ↓; cleaved-
caspase 3 ↓, caspase 9↓, Bax↓;
Bid and t-Bid ↓; Bcl-2 ↑

Chen et al.
(2020); Liu et al.
(2019); Xu et al.
(2020)

Shengmai injection Promoting myocardial mitochondrial
autophagy and mitochondrial
membrane potential

Panax ginseng, Ophiopogon japonicas and
Schisandra chinensis

Mice: LPS 8 mg/kg, HL-1 cells: LPS
1 μg/mL

Mice: 10 mL/kg caspase-3/Beclin-1axis ↓ Cao et al. (2020)

Huanglian Jiedu
decoction

Anti-inflammatory Coptidis Rhizoma, Scutellariae Radix,
Phellodendri Chinensis Cortex, and
Gardeniae Fructus

Zebrafishes: LPS 10 mg/mL Zebrafishes: 50 μg/mL TLR4/MyD88 ↓ Zhou et al.
(2019)

Dachengqi
decoction

Alleviating the release of inflammatory
cytokines and regulating capillary
permeability

Da Huang, Houpu, Zhishi, and Mangxia Rats: LPS 10 mg/kg, HUVEC-5a cells:
LPS 100 ng/mL

Rats: .9 g/kg, HUVEC-5a cells:
100 μg/mL

TLR4 ↓; NF-κB ↓ Hu et al. (2019)

Xijiao Dihuang
decoction

Inhibiting aerobic glycolysis and
inflammatory cytokines

Rehmannia, Peony, Cortex Moudan and
Cornu Bubali

Rats: CLP, NR8383 cells: LPS 1 μg/mL
(Lu et al., 2020a; Lu et al., 2020b)

Rats: 12.5, 25 g/kg, NR8383 cells: 4 mg/
mL (Lu et al., 2020b); Rats: 25 g/kg,
NR8383 cells: 4 mg/mL (Lu et al., 2020a)

TLR4/HIF-1α/PKM2 ↓; NF-
κB ↓; HIF-1α ↓

Lu et al. (2020a);
Lu et al. (2020b)

Liang-Ge-San Inhibiting inflammatory response;
Reducing infiltration of inflammatory
cells; Decreasing recruitment of
macrophages and neutrophils

Fructus forsythiae (Lian Qiao), Rheum
officinale (Da Huang), Fructus Gardeniae
(Zhi Zi), Radix Scutellariae (Huang Qin),
Liquorice (Gan Cao), Mint (Bo He),
Mirabilite (Mang Xiao)

Zebrafishes larvae: LPS .5 mg/mL,
RAW264.7 cells: LPS 100 ng/mL

Zebrafish: 62.5, 125, 250 μg/mL,
RAW264.7 cells: 25, 50, 100 μg/mL

p-JNK ↓; p-Nur77 ↓ Zhou et al.
(2020)

Xuanbai Chengqi
decoction

Attenuating proinflammatory
cytokines release

Rheum palmatum rhizome and root
(Dahuang), Gypsum Fibrosum (Shigao),
Prunus armeniaca seed (Kuxingren), and
Trichosanthes kirilowii fruit (Gualou)

Rats: LPS 8 mg/kg Rats: 5, 20 g/kg PI3K/mTOR/HIF-1α/VEGF↓ Zhu et al. (2021)

Sini decoction Inhibiting inflammatory cell infiltration
and the production of inflammatory
cytokines; Antioxidant stress

Aconite, Liquorice and Ginger Rhizome Mice: LPS 8 mg/kg, HUVECs cells: LPS
1 μg/mL

Mice: 5 g/kg, HUVECs cells: 6, 12.5,
25 mg/mL

MAPK↓, ACE/AT1R↓; ACE2/
Ang1–7↑

Chen Q et al.
(2019)

Fangji Fuling
decoction

Inhibiting inflammatory reaction and
apoptosis

Stephania tetrandra S.Moore (Fangji),
Astragalus propinquus Schischkin
(Huangqi), Cinnamomum cassia (Nees &
T.Nees) J.Presl (Guizhi), Glycyrrhiza
uralensis Fisch. (Gancao), and Poria cocos
(Schwein.) F.A.Wolf (Fuling)

Mice: LPS 10 mg/kg, HK-2 cells: LPS
1 μg/mL

Mice: 25,50 mg/kg, HK-2 cells:
200 μg/mL

iNOS↓; NF-κB↓ Su et al. (2018)

Xuefu Zhuyu
decoction

Inhibiting apoptosis; antioxidation Prunus persica (L) Batch. (Tao Ren),
Angelicae sinensis (oliv.) Diels. (Dang
Gui), Ligusticumi chuangxiong Hort.
(Chuang Xiong), Carthamus tinctorius L.

Mice: LPS 10 mg/kg Mice: 3.9, 7.8, 15.6 g/kg SOD↑, Bcl-2↑; TNF-α ↓, IL-1β
↓, IL-6 ↓; MDA ↓, Bax ↓,
Caspase-3↓

Meng F et al.
(2018)
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IL-8, and TNF-α secretion in lung tissue, and reduced pulmonary
edema by upregulating aquaporin (AQP) 1/5 expression (Hu et al.,
2019). Another study showed that DQCD attenuated intestinal
vascular endothelial injury in rats with severe acute pancreatitis
(SAP) induced by cerulein and LPS, and decreased matrix
metalloproteinase 9 (MMP-9) and junctional adhesion molecule
C (JAM-C) expression, while increasing AQP-1 expression, in
TNF-α-treated vascular endothelial cells (Pan et al., 2017).
Further in vivo and in vitro research on the SAP rat model
indicated that DCQD inhibited the phosphatidylinositol 3-
kinase (PI3K)/protein kinase B (AKT) signaling pathway,
thereby inhibiting inflammation by decreasing production of IL-
1β, IL-6, and TNF-α and promoting apoptosis of pancreatic acinar
cells (Sun et al., 2020).

2.6 Xijiao Dihuang decoction

The Xijiao Dihuang decoction (XJDHD) comprises rehmannia,
peony, cortex moudan, and cornu bubali and is used in China for
the treatment of sepsis (Lu et al., 2020b). XJDHD administration
was shown to improve the survival rate of rats subjected to CLP, as
well as of cultured macrophages, by inhibiting aerobic glycolysis
triggered by the TLR4/hypoxia-inducible factor 1α (HIF-1α)/
pyruvate kinase M2 (PKM2) pathway (Lu et al., 2020b).
Additional research on the above sepsis models further
indicated that prolonged survival correlated with XJDHD-
mediated inhibition of HIF-1a and p65 (Lu et al., 2020a).

3 TCM monomers

3.1 Triterpenoid

3.1.1 Tanshinone IIA
Tanshinone IIA (TSA) occurs in the dried roots and rhizomes of

salvia miltiorrhiza (lamiaceae), and is one of the main
pharmacologically active components of hydrophilic tanshinones
(Wang N et al., 2020). TSA has anti-inflammatory activity by
inhibiting a variety of cytokines. In LPS-stimulated bone marrow-
derived macrophages (BMDMs), TSA exposure inhibited succinate
dehydrogenase (SDH)-mediated IL-1β and IL-6 production and
blocked BMDM polarization towards the M1 phenotype (Liu Q.Y.
et al., 2021). In addition, suggesting beneficial effects against
neuroinflammatory and neurotoxic insults, TSA pretreatment was
shown to attenuate pro-inflammatory cytokine secretion through
inhibition of TLR4, MyD88, and TNF receptor associated factor 6
(TRAF6) expression and subsequent repression of signaling through
the NF-κB and MAPK pathways in LPS-treated human
U87 astrocytoma cells (Jin et al., 2020). TSA treatment also
reduced calcium inflow, inhibited transient receptor potential
melastatin 7 (TRPM7), and suppressed the release of pro-
inflammatory cytokines in pulmonary interstitial macrophages
from rats with sepsis-induced ALI (Li J et al., 2018). Meanwhile,
incubation with Salvia miltiorrhiza extract decreased LPS-induced
phosphorylation of IκB-α and IKK, thus inhibiting NF-κB activity,
inhibited MAPK phosphorylation, and disrupted TLR4 dimerization
to prevent TLR4-MyD88 complex formation in RAW264.7 cells (Gao
et al., 2017).TA
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TABLE 2 Characteristics of TCM extracts/monomers on sepsis.

Monomers Molecular structure Effects Source Animal/Cell model Dose/Concentration Targets Ref

Tanshinone IIA

C19H18O3

Anti-inflammatory; Antifibrotic; Antioxidative
activities

Salvia miltiorrhiza
Bunge

Mice: LPS 15 mg/kg, RAW264.7 cells: LPS
100 ng/mL (Liu Q.Y. et al., 2021); U87 cells:
LPS 100 ng/mL (Jin et al., 2020)

Mice: 20 mg/kg, RAW264.7 cells: 10 μM(Liu Q.Y.
et al., 2021); U87 cells: 1, 5, 10 μM(Jin et al., 2020)

Sirt2 ↑ HIF-1α ↓, SDH↓; NLRP3 ↓, HK-II ↓
PKM2 ↓; TLR4/NF-κB/MAPKs↓

Liu Q.Y. et
al. (2021)

Jin et al.
(2020)

Astragaloside IV

C41H68O14

Anti-inflammatory; Anti-oxidative and anti-
apoptotic effects; Decreasing barrier permeability;
Increasing tight junction

Astragalus
membranaceus
(Fisch) Bge

Mice: CLP, Caco-2 cells: LPS 100 μg/mL (Xie et
al., 2020); Rats: CLP (Huang and Li, 2016);
Mice: LPS 1 mg/kg (Song et al., 2018)

Mice: 3 mg/kg Caco-2 cells: 200 μg/mL (Xie et al.,
2020); Rats: 2.5, 5, 10 mg/kg (Huang and Li, 2016);
Mice: 20, 40 mg/kg (Song et al., 2018)

RhoA/NLRP3 ↓ PPARγ ↑ NF-κB ↓ Xie et al.
(2020)

Huang and
Li, (2016)

Song et al.
(2018)

Glycyrrhizin

C42H62O16

Suppressing proinflammatory cytokines and
apoptosis

Gancao (licorice root) Rats: CLP, NR8383 cells: LPS 1 μg/mL or
HMGB1 1 μg/mL

Rats:10 mg/kg, NR8383 cells: 10,50, 100 μg/mL HMGB1↓, RAGE/TLR4 ↓ MAPK ↓ NF-κB ↓ Zhao et al.
(2017)

Triptolide

C20H24O6

Anti-inflammatory Tripterygium wilfordii
Hook.F

HUVECs: LPS 1 μg/mL HUVECs: 25, 50, 100 nM NF-κB ↓ Song C et
al. (2019)

Artemisinin

C15H22O5

Anti-inflammatory; Improving cognitive
impairments and attenuating neuronal damage
and microglial activation

artemisinin Mice: LPS 750 μg/kg, BV2 cells: LPS
100 ng/mL

Mice: 30 mg/kg, BV2 cells: 40 μΜ AMPKα1 ↑, NF-κB ↓ Lin S.P et al.
(2021)

Ginsenoside Rg1

C42H72O14

Suppressing inflammation and apoptosis ginseng Mice: LPS 5 mg/kg, NRCMs cells: LPS 1 μg/mL NRCMs cells: 20 μM TLR4/NF-kB/NLRP3 ↓ Luo et al.
(2020)

Apigenin

C15H10O5

Enhancing the antioxidant ability and decreasing
the production of inflammatory cytokines

parsley, chamomile and
propolis

Mice: D-GalN 700 mg/kg, LPS 20 μg/kg Mice: 100, 200 mg/kg Nrf-2 ↑, PPARγ ↑ NF-κB ↓ Zhou et al.
(2017)

Salidroside

C14H20O7

Suppressing myocardial lipid peroxidation and
inhibiting inflammatory cytokines

Rhodiola rosea Rats: LPS 15 mg/kg, H9C2 cells: LPS 4 μg/mL
(Chen L et al., 2017); Mice: CLP, RAW264.7
cells: LPS 1 μg/mL (Lan et al., 2017); HUVECs:
LPS 10 μg/mL (You et al., 2021)

Rats: 20, 40 mg/kg, H9C2 cells: 20, 40 µM (Chen L
et al., 2017) Mice:20, 40 mg/kg, RAW264.7 cells:
30, 60, 120 μM(Lan et al., 2017) HUVECs:
50 μM(You et al., 2021)

NF-κB ↓, PI3K/Akt/mTOR ↓; SIRT1 ↑,
HMGB1 ↓, NLRP3↓

Chen L et
al. (2017)

Lan et al.
(2017)

You et al.
(2021)
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TABLE 2 (Continued) Characteristics of TCM extracts/monomers on sepsis.

Monomers Molecular structure Effects Source Animal/Cell model Dose/Concentration Targets Ref

Baicalein

C15H10O5

Suppressing the ROS level and pro-inflammatory
cytokines

root of Scutellaria
baicalensis Georgi

BV-2 cells: LPS 0.1 μg/mL (Yan et al., 2020);
THP-1 and RAW264.7 cells: LPS 1 μg/mL and
ATP 5 mM (Luo et al., 2017)

BV-2 cells: .5, 1, 2, 4 µM(Yan et al., 2020) THP-1
and RAW264.7 cells: 10, 25, 50 µM(Luo et al.,
2017)

ROS ↓, COX2 ↓, NF-κB ↓; TLR4/MyD88 MD-
2/TLR4 complex ↓, NLRP3 ↓

Yan et al.
(2020)

Luo et al.
(2017)

Resveratrol

C14H12O3

Anti-inflammation and anti-apoptotic; Improving
in vascular relaxation reactivity

mulberries, peanuts, and
grape skins

Mice: CLP, MH-S cells: LPS 150 μg/mL (Yang
et al., 2018); PBMC: LPS 100 ng/mL (Wang B
et al., 2020); Mice: CLP (Zhang Z.S. et al., 2019)

Mice: 40 mg/kg, MH-S cells: 10 µM(Yang et al.,
2018) PBMC: 40 µM(Wang B et al., 2020) Mice:
5,10 mg/kg (Zhang Z.S. et al., 2019)

VEGF-B ↑ NF-κB ↓, SphK ↓, ERK1/2
phosphorylation ↓ MyD88 ↓; Rac-1 ↓, HIF-
1α ↓

Yang et al.
(2018)

Wang B et
al. (2020)

Zhang Z.S.
et al. (2019)

Paeonol

C9H10O3

Inhibiting the inflammatory response; Promoting
the phagocytic ability of macrophages

moutan cortex Mice: CLP, RAW264.7 cells: LPS .2 μg/mL
(Mei et al., 2019); Mice: LPS .2 mg/kg,
RAW264.7 cells: LPS .2 μg/mL (Miao et al.,
2020)

Mice: 120 mg/kg, RAW264.7 cells: 1 mM(Mei et
al., 2019); Mice: 80 mg/kg, RAW264.7 cells: 600,
1000 nM(Miao et al., 2020)

miR-339-5p ↑, HMGB1 ↓, IKK-β↓, P53 ↓ Mei et al.
(2019)

Miao et al.
(2020)

6-Gingerol

C17H26O4

Inhibiting inflammasome formation and
pyroptosis

ginger rhizome Mice: CLP, RAW264.7 and BMDM cells: LPS
100 ng/mL and ATP 5 mM(Zhang F.L. et al.,
2020); Mice: CLP, RAW264.7 cells: LPS 1 μg/
mL and ATP 5 mM(Hong et al., 2020)

Mice: 20 mg/kg, BMDMs: 8μM, RAW264.7:
4 μM(Zhang F.L. et al., 2020)

MAPK ↓, NLRP3 ↓, Nrf2 ↑ Zhang F.L.
et al. (2020)

Mice: 40 mg/kg, RAW264.7 cells: 8 μM(Hong et
al., 2020)

Hong et al.
(2020)

Berberine C20H18NO4 Inhibiting gluconeogenesis, insulin resistance and
proinflammatory molecule release; Lowering gut-
vascular barrier hyperpermeability

Coptis chinensis Rats: CLP, HepG2 and rat intestinal
microvascular endothelial cells: LPS 100 ng/mL
(Li Y et al., 2020); Rats: CLP, RIMECs: LPS
50 ng/mL (He et al., 2018); Mice: LPS 5 mg/kg
(Xu et al., 2021); Rats: LPS 10 mg/kg (Chen et
al., 2021); RAW264.7 cells: LPS 100 ng/mL
(Zhang H et al., 2017)

Rats:25, 50, 100 mg/kg, HepG2 and rat intestinal
microvascular endothelial cells: 5, 10, 20 μM(Li Y
et al., 2020); Rats: 25, 50 mg/kg, RIMECs: 10,
20 µM(He et al., 2018); Mice: i.p 1, 2 mg/kg and
inh .1, .2 mg/mL (Xu et al., 2021); Rats: 50 mg/kg
(Chen et al., 2021), RAW264.7 cells: 1, 2.5,
5 μM(Zhang H et al., 2017)

ApoM/S1P ↑Wnt/beta-catenin ↑ TLR4/NF-κB
↓ JAK2/STAT3 ↓; SIRT1 ↑

Li Y et al.
(2020)

He et al.
(2018)

Xu et al.
(2021)

Chen et al.
(2021)

Zhang H et
al. (2017)

Cordycepin

C10H13N5O3

Alleviating inflammation Cordyceps sinensis Mice: LPS 30 mg/kg (Qing et al., 2018);
RAW264.7 cells and THP-1 cells: LPS 100 ng/
mL (Yang J et al., 2017)

Mice: 1, 10, 30 mg/kg (Qing et al., 2018);
RAW264.7 cells: 6.25, 12.5, 25, 50 μmol/L (Yang J
et al., 2017)

Nrf2 ↑, HO-1 ↑; NLRP3 ↓, ERK1/2 ↓, COX2 ↓ Qing et al.
(2018)

Yang J et al.
(2017)

Emodin

C15H10O5

Ameliorating hypercoagulation and fibrinolytic
inhibition; Inhibiting inflammatory reaction;
Anti-neuroinflammatory

Radix rhizoma Rhei Mice: LPS 40μL, 4 mg/mL inhale (Liu B et al.,
2020); Microglia cells: LPS 1 μg/mL (Park et al.,
2016)

Mice: 5,10, 20 mg/kg (Liu B et al., 2020); Microglia
cells: 40 μM(Park et al., 2016)

NF-κB and p65 DNA binding activity↓;
AMPK/Nrf2 ↑; NF-κB ↓, AP-1↓, STAT ↓,
MAPK ↓

Liu B et al.
(2020)

Park et al.
(2016)
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3.1.2 Astragaloside IV
Astragaloside IV (AS-IV) is a small saponin obtained from the

roots of astragalus membranaceus (Xia et al., 2020). AS-IV has anti-
inflammatory and neuroprotective activities. Studies in the CLP
mouse model showed that AS-IV treatment inhibited the secretion
of inflammatory cytokines and downregulated the expression of
NLRP3, apoptosis associated speck like protein containing CARD
(ASC), and cleaved caspase-1 in both intestinal tissue and BALF, thus
reducing multi-organ injury (Huang and Li, 2016; Xie et al., 2020). AS-
IV administration was also shown to protect blood-brain barrier
integrity in LPS-treated mice by upregulating zonula occludens-1
(ZO-1) and occludin and downregulating vascular cell adhesion
molecule 1 (VCAM1) expression in brain micro-vessels;
experimental results in cultured bEnd.3 and microglial cells
attributed this protective effect to both activation of the Nrf2-
dependent antioxidant response and inhibition of the NF-κB/
NLRP3 inflammasome signaling pathway (Li H et al., 2018; Yang
et al., 2019). Further research showed that AS-IV attenuated LPS-
induced neuroinflammation in mice by upregulating the expression of
PPARγ and inducing phosphorylation of glycogen synthase kinase-3β
(GSK3-β) in the hippocampus. AS-IV-mediated neuroprotection was
further evidenced by reduced expression of inflammatory factors, in
association with NF-κB signaling suppression (Song et al., 2018). In a
mouse model of acute E. coli peritoneal infection, AS-IV treatment
alleviated peritonitis symptoms by promoting the influx of neutrophils
to the infection site, an effect mediated by inhibition of G protein-
coupled receptor kinase-2 (GRK2) expression and subsequent
blockade of LPS-induced suppression of CXC motif chemokine
receptor 2 (CXCR2) on neutrophils (Huang et al., 2016). Moreover,
in LPS-treated rats, AS-IV administration attenuated cardiac
dysfunction, reduced myocardial damage, improved mitochondrial
energy metabolism, and inhibited cardiomyocyte apoptosis and
autophagy by downregulating miRNA-1 expression (Wang et al.,
2021).

3.1.3 Glycyrrhizin
Glycyrrhizin is a natural triterpene glycoside and the major active

component of gan cao (licorice root). Glycyrrhizin treatment was
associated with significantly improved survival in a rat model of CLP-
induced sepsis. This effect was associated with suppression of
HMGB1 expression and inhibition of downstream MAPK/NF-κB
pathways both in vivo and in vitro (Zhao et al., 2017). In turn, in
LPS-treated mice, a protective role of glycyrrhizin on heart and lung
was attributed to the increase in the ratio of myeloid-derived
suppressor cells (MDSCs) to CD11b+Gr1 bone marrow cells in the
blood, heart, and lungs (Seo et al., 2017). In addition, glycyrrhizin was
shown to negatively regulate PI3K/mTOR signaling and inhibit the
expression of inflammatory markers such as iNOS, COX-2, HMGB1,
TNF-α, IL-1β, and IL-6 in LPS-stimulated human liver macrophages
(Shen et al., 2020).

3.1.4 Triptolide
Triptolide is a primary bioactive ingredient of the roots of the

Chinese herb tripterygium wilfordii Hook. F. Triptolide exerted
vascular anti-inflammatory effects by downregulating
proinflammatory cytokine and chemokine secretion, attenuating
VCAM-1 and intercellular adhesion molecule-1 (ICAM-1)
expression, and inhibiting IκBα phosphorylation and NF-κB
p65 DNA binding activity in LPS-stimulated endothelial cells (Song

C et al., 2019). ZT01, a triptolide derivative, showed also anti-
inflammatory activity via reducing TNF-α and IL-6 levels, blocking
the formation of the TGF-β-activated kinase1 (TKA1)/TAK1-binding
protein1 (TAB1) complex, and inhibiting the phosphorylation of both
mitogen-activated protein kinase kinase 4 (MKK4) and JNK in both in
vivo and in vitro sepsis models (Fu et al., 2020).

3.1.5 Artemisinin
Artemisinin is a sesquiterpene lactone obtained from the sweet

wormwood plant Artemisia annua. Although mainly recognized by its
efficacy to treat malaria, there is growing evidence that artemisinin
may be useful to treat several health conditions, including sepsis, by
exerting potent anti-inflammatory and immunoregulatory effects.
Artemisinin treatment was shown to significantly reduce LPS-
induced cognitive impairment in mice by attenuating both
neuronal damage and microglial activation in the hippocampus
(Lin S.P et al., 2021). This study further showed that artemisinin
reduced TNF-α, IL-6, IL-1α, IL-1β, and iNOS production and
suppressed the migratory ability of LPS-stimulated BV2 microglial
cells by activating the AMPKα1 pathway and inhibiting nuclear
translocation of NF-κB (Lin S.P et al., 2021). Artesunate is a water-
soluble derivative of artemisinin with multiple biological activities. In
rats with LPS-induced ALI, artesunate treatment reduced TNF-α and
IL-6 levels in BALF, decreased oxidative stress markers (i.e., MDA,
SOD, and GSH-Px), and reduced apoptosis of lung cells by activating
the mTOR/AKT/PI3K signaling pathway (Zhang E et al., 2020).
Notably, artesunate was reported to reverse sepsis-induced
immunosuppression in mice by interacting with the vitamin D
receptor in an autophagy- and NF-κB-dependent manner (Shang
et al., 2020).

3.1.6 Ginsenoside Rg1
Ginsenoside Rg1 (GRg1), a triterpenoid saponin, is the main

bioactive component of ginseng (panax ginseng). Administration of
GRg1 ameliorated LPS-induced acute myocardial injury by inhibiting
the NF-κB pathway and attenuating inflammatory responses,
including NLRP3 expression (Luo et al., 2020). GRg1 treatment
also alleviated lung injury and extended survival in mice with LPS-
induced ALI; experiments in LPS-challenged pulmonary epithelial
A549 cells further showed that GRg1 exposure inhibited ROS
production, prevented apoptosis, and reduced ER stress and
inflammatory cytokine expression by upregulating Sirt1 (Wang
Q.L. et al., 2019). In animal models of sepsis-associated ALI and
encephalopathy, the protective effect of GRg1 was shown to also
depend on autophagy enhancement, via a mechanism related to the
activation of Nrf-2 and inhibition of NF-κB signal transduction (Li Y
et al., 2017; Ji et al., 2021).

3.2 Flavonoids

3.2.1 Apigenin
Apigenin, a flavonoid found in abundance in many fruits and

vegetables, has shown remarkable efficiency in controlling the
inflammatory response. In LPS-treated mice, apigenin
administration decreased the levels of cardiac troponin I (cTnI),
cardiac myosin light chain-1 (cMLC1), and inflammatory cytokines
such as TNF-α, IL-1β, MIP-1α, and MIP-2, an effect attributed to
reduced NF-κB nuclear translocation and enhanced peroxisome
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proliferator-activated receptor gamma (PPARγ) nuclear translocation
(Li F et al., 2017; Zhou et al., 2017). In addition, apigenin ameliorated
LPS-induced acute liver injury in mice via inhibiting oxidative stress,
evidenced by upregulation of the activities of superoxide dismutase
(SOD), catalase (CAT), glutathione-S-transferase (GST) and
glutathione reductase (GR). This protective role was partly
dependent on increased hepatic expression of nuclear factor
erythroid 2-related factor 2 (Nrf-2) (Zhou et al., 2017). The
potential of apigenin to counteract neuroinflammation was in turn
suggested by its ability to downregulate the expression of CD68 (an
M1 pro-inflammatory microglia marker), OX42 (a microglia
activation marker), IL-6, and glycoprotein 130 in LPS-stimulated
neuronal/glial co-cultures (Dourado et al., 2020).

3.2.2 Salidroside
Salidroside is extracted mainly from the root and rhizome tissues

of the rose (rhodiola rosea). Many studies reported that salidroside has
anti-inflammatory, anti-oxidative, and antibacterial properties. In rats
with myocardial or lung injury triggered by LPS-induced
endotoxemia, salidroside enhanced antioxidative activity and
inhibited iNOS and COX2 expression, as well as NF-κB
phosphorylation, in cardiac and lung tissues (Chen L et al., 2017;
Jingyan et al., 2017; Zheng et al., 2020). Salidroside also reduced lung
inflammation and alleviated ALI symptoms by upregulating
Sirt1 expression and inhibiting both NF-κB activity and
nucleocytoplasmic translocation of HMGB1 both in vivo and
in vitro (Lan et al., 2017; Qi et al., 2017). In LPS-stimulated
HUVECs, salidroside exposure increased antioxidant activity,
inhibited apoptosis and NLRP3 inflammasome activation, and
decreased the expression of NLRP3-related proteins, including ASC
and caspase-1 (You et al., 2021).

3.2.3 Baicalein
Baicalein is a flavonoid extracted from the roots of the Chinese

herb scutellaria baicalensis georgi. Its anti-inflammatory and anti-
oxidative qualities have been demonstrated in several experimental
settings. Baicalein-mediated protection against neuroinflammation
was exemplified by its ability to downregulate LPS-induced NO
generation, inhibit the expression of inflammatory cytokines such
as IL-6, TNF-α, and COX2, and suppress NF-κB and p65-MAPK
signaling in BV2 microglial cells and macrophages (Luo et al., 2017;
Yan et al., 2020). Baicalin alleviated LPS-induced liver injury in mice
by inhibiting the expression of IL-1α, IL-1β, and gasdermin D
(GSDMD) and blocking NLRP3/IL-1β signaling (Xiao et al., 2021).
Moreover, baicalin prevented the development of LPS-induced ALI
and alleviated colitis symptoms by blocking LPS-induced TLR4/MD-
2 complex formation, inhibiting the activation of MAPK and NF-κB
signaling pathways, and reducing leukocyte infiltration and
production of inflammatory mediators (Luo et al., 2017; Chen H
et al., 2019).

3.3 Phenols

3.3.1 Resveratrol
Resveratrol is a non-flavonoid polyphenol with potent antioxidant

properties, present in the skin of fruits such as grapes and berries.
Resveratrol pretreatment protected mice against CLP-induced ALI.
Research on LPS stimulated MH-S alveolar macrophages suggested

that the underlying mechanism was related to inhibition of NF-κB and
MAPK pathways, as well as of LPS-induced autophagy, which
depended on enhanced expression of vascular endothelial growth
factor B (VEGF-B) (Yang et al., 2018). In primary monocytes,
resveratrol inhibited the LPS-stimulated inflammatory response by
blocking phospholipase D activity and its downstream signaling
molecules SphK1, ERK1/2, and NF-κB, and protected mice
against septic shock induced by CLP (Wang B et al., 2020). In
rats subjected to CLP, resveratrol improved vasodilation and
hemodynamic parameters by upregulating endothelial nitric
oxide synthase (eNOS) and downregulating iNOS, Rac family
small GTPase 1 (RAC-1), and HIF-1α expression in arterial
tissue (Zhang Z.S. et al., 2019). Resveratrol was also shown to
ameliorate acute kidney injury (AKI) induced by sepsis by
inhibiting renal inflammation triggered by endoplasmic
reticulum (ER) stress activated-IRE1/NF-κB pathway activation
(Wang et al., 2017). In LPS-treated mice, cardioprotective effects of
resveratrol, evidenced by decreased 4-hydroxynonenal and MDA
levels in myocardial tissue and improved contractility and Ca2+

homeostasis in cardiomyocytes, were attributed to increased Nrf-2
expression and to phospholamban oligomerization leading to
enhanced SERCA2a activity (Bai et al., 2016).

3.3.2 Paeonol
Paeonol, a phenolic compound found in peonies such as paeonia

suffruticosa (moutan cortex), shows multiple pharmacological effects,
including anti-inflammatory and anti-tumoral activities. Paeonol
exposure increased the expression of miR-339-5p and
downregulated the expression of inflammatory markers, such as
TNF-α, IL-1β, IKK-β, and HMGB1, in LPS-stimulated
RAW264.7 cells (Mei et al., 2019). In a rat model of sepsis-induced
AKI, paeonol treatment showed protective effects by lowering serum
levels of TNF-α and IL-1β and suppressing NF-κB signaling in renal
tissue (Mei et al., 2019). In the advanced stage of sepsis, impaired
phagocytic activity of macrophages and monocytes contributes to
immune dysfunction. Interestingly, the decline in the phagocytic
ability of peritoneal macrophages induced by LPS could be
reversed by paeonol co-administration, an effect mediated by
suppression of HMGB1 nucleocytoplasmic translocation (Miao
et al., 2020).

3.3.3 6-gingerol
6-gingerol, a major polyphenol extracted from the ginger

rhizome (zingiber officinale roscoe), exhibits anti-inflammatory,
antioxidant, anticancer, and neuroprotective properties. Treatment
with 6-gingerol suppressed systemic IL-1β release and prolonged
survival in mice with CLP-induced sepsis. Complementary in vitro
studies showed that 6-gingerol pre-treatment blocked MAPK-
dependent NLRP3 inflammasome activation in LPS/ATP-treated
BMDMs and RAW264.7 cells, which attenuated pyroptosis and
therefore decreased the release of mature IL-1β into the medium
(Zhang F.L. et al., 2020). In mice with CLP-induced acute liver
injury, 6-gingerol administration reduced serum levels of AST,
ALT, and IL-1β and elicited antioxidant and anti-apoptotic effects
by upregulating hepatic Nrf-2 and HO-1 transcription (Hong et al.,
2020). Similarly, renoprotective effects of 6-gingerol, consistent
with its antioxidant and anti-inflammatory properties, were
reported in a rat model of sepsis-induced AKI (Rodrigues et al.,
2018).
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3.4 Alkaloids

3.4.1 Berberine
Berberine is potent anti-inflammatory alkaloid compound

extracted from herbs such as cortex phellodendri and rhizoma
coptidis. In animal studies, berberine treatment ameliorated sepsis-
related intestinal vascular barrier injury by modulating the
Apoliprotein M (ApoM)/Sphingosine-1-Phosphate (S1P) axis and
the Wnt/β-catenin pathway (He et al., 2018; Li Y et al., 2020). In
LPS-induced acute respiratory distress syndrome (ARDS), berberine
treatment prevented endothelial glycocalyx damage and hence
reduced pulmonary vascular permeability by inhibiting TNF-α, IL-
1β, IL-6, MMP-9, and heparanase expression, attenuating ROS
production, and decreasing neutrophil infiltration in BALF (Huang
et al., 2018). Further research in the ARDS model indicated that
berberine’s protective mechanism resulted from inhibition of TLR4/
NF-κB and JAK2/STAT3 signaling pathways (Xu et al., 2021).
Cardioprotective effects of berberine, manifested by improved
cardiac diastolic function and hemodynamics, were observed in
rats with LPS-induced septic cardiomyopathy (Chen et al., 2021).
Berberine treatment was also reported to reduce LPS-induced
cognitive deficits and restore spatial learning ability in rats. These
effects were correlated with increased antioxidant activity, reflected by
upregulation of glutathione peroxidase (GPx), SOD, CAT, and
glutathione, and decreased acetylcholinesterase (AChE), MDA,
carbonyl protein, and caspase-3 activity in the hippocampus
(Sadraie et al., 2019). In cultured RAW264.7 macrophages,
berberine exposure inhibited LPS-induced synthesis of
proinflammatory cytokines (MCP-1, IL-6, and TNF-α). This effect
was mediated by reversal of LPS-induced Sirtuin1 (Sirt1)
downregulation, which inhibited IκBα degradation and IKK
phosphorylation, effectively suppressing NF-κB signaling (Zhang H
et al., 2017).

3.4.2 Cordycepin
Cordycepin is the main active component of the fruiting bodies of

the ascomycete fungus cordyceps militaris. In a mouse model of LPS-
induced ALI, cordycepin administration downregulated the
expression of MPO and MDA in lung tissue and reduced TNF-α
and IL-1β levels in BALF. The underlying mechanism was found to be
related to inhibition of NF-κB activity and stimulation of Nrf-2 and
HO-1 expression (Lei et al., 2018; Qing et al., 2018). Cordycepin was
also reported to decrease LPS-induced pro-inflammatory cytokine
production and COX-2 expression in RAW264.7 and THP-1 cells,
effects attributed to the inhibition of the NLRP3 inflammasome and
the ERK1/2 signaling pathway (Yang J et al., 2017).

3.5 Quinones

Emodin belongs to the Quinones class of compounds and is
mainly extracted from the dry roots and rhizome of rhubarb (Hu
et al., 2020). According to TCM precepts, emodin is effective in
reducing accumulation, cooling blood, reducing fire, promoting
blood circulation, removing blood stasis, and draining the
gallbladder to relieve jaundice. Emodin was shown to possess a
wide range of pharmacological properties, linked to anticancer,
hepatoprotective, anti-inflammatory, antioxidant, and antimicrobial
effects (Cui et al., 2020). In rats with LPS-induced ALI, emodin

suppressed IKKβ, p-IKKβ, p65, and p-p65 levels, decreased NF-κB
DNA binding activity, and inhibited IL-8, IL-1β, TNF-α, and
myeloperoxidase (MPO) expression in lung tissues, and increased
the proportion of Gr1+/CD11b+ cells in bronchoalveolar lavage fluid
(BALF) (Liu B et al., 2020). It was reported that emodin further
protected against ALI by downregulating the mechanistic target of
rapamycin kinase (mTOR)/HIF-1α/vascular endothelial growth factor
(VEGF) signaling pathway (Li X et al., 2020). Granulocytes are the first
line of defense against pathogen invasion and play a crucial role in
innate immunity. Emodin could upregulate the ability of granulocytes
to phagocytize bacteria and generate of neutrophil extracellular trap
(NETs), meanwhile, downregulated the production of ROS expression
in the LPS-stimulated granulocytes, therefore alleviating lung tissue
damage (Mei et al., 2020). Anti-neuroinflammatory effects of emodin
were also evidenced by decreased TNF-α, IL-6, nitric oxide (NO),
prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS), and
cyclooxygenase 2 (COX-2) synthesis, inhibition of NF-κB and
activation of activator protein-1 (AP-1) signaling pathways, and
suppressed phosphorylation of STATs and MAPKs in LPS-
stimulated microglial cells (Park et al., 2016; Xie et al., 2019). In a
mouse model of LPS-induced acute liver injury, emodin treatment
alleviated hepatic inflammation and promoted M2 polarization of
liver macrophages. Consistent with these findings, emodin exposure
downregulated TLR4, MyD88, Toll/interleukin-1 receptor (TIR)
domain-containing adaptor protein (TIRAP), TRAF-6, TIR-
domain-containing adapter-inducing interferon-β (TRIF),
interferon regulatory factor 3 (IRF-3), and AP-1 protein expression
in LPS-activated RAW264.7 macrophages (Ding et al., 2018). In a
mouse model of LPS-induced septic cardiomyopathy, emodin
treatment inhibited expression of cardiac injury markers, i.e., LDH
and creatine kinase-MB (CK-MB), and downregulated the expression
of inflammatory cytokines. These protective effects were attributed to
inhibition of NOD-like receptor family, pyrin domain containing 3
(NLRP3) inflammasome activation in cardiomyocytes (Dai et al.,
2021).

4 Acupuncture

Acupuncture is a non-pharmacological TCM method of treating
diseases that acts through mechanical stimulation (usually by
needling, but also via heat or pressure) on specific skin sites
(acupoints) that lie along passageways through which energy flows
throughout the body (meridians). In recent years, evidence that
acupuncture on specific acupoints, i. e. Zusanli (ST36) and Tianshu
(ST25), can regulate immunity suggested that this procedure
represents a promising alternative in clinical anti-inflammatory
therapy (Kim et al., 2007; Liu S et al., 2020). As a non-
pharmacological therapy, and supported by preclinical studies,
acupuncture has increasingly attracted the attention of clinicians
(Lai et al., 2020; Liu S et al., 2020). Electroacupuncture treatment
was shown to improve sepsis-related damage of brain, heart, kidney,
intestines, and other organs in animal models. Its application
improved survival rate in CLP model rats, and ameliorated
cognitive impairment in rats with sepsis-related encephalopathy by
inhibiting hippocampal synaptic damage, neuronal loss, oxidative
stress, and release of inflammatory cytokines trough activation of
the Nrf-2/HO-1 pathway and hippocampal α7 nicotinic acetylcholine
receptors (Han et al., 2018; Li C et al., 2020). In a rat model of sepsis,
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electroacupuncture pretreatment at ST36 attenuated inflammatory
responses, decreased plasma urea, creatinine, and D-lactate levels, and
increased intestinal tight junction protein occludin expression and
intestinal barrier permeability, thereby reducing acute kidney and
intestinal injury (Zhu et al., 2015; Zhang Z et al., 2018; Harpin et al.,
2020). In the rat CLP model, electroacupuncture treatment at ST
36 reduced the activity of plasma CK-MB and offered cardioprotection
by reducing TNF-α, NO, MPO levels and water content in myocardial
tissue by activating the cholinergic anti-inflammatory pathway (Zhang
L et al., 2018). In clinical trials, electroacupuncture at both ST36 and
Shangjuxu (ST37) significantly reduced procalcitonin (PCT), TNF-α,
intestinal fatty acid-binding protein (I-FABP), D-lactate, citrulline,
and the TCM quantitative score of intestinal dysfunction in patients
with sepsis-related intestinal dysfunction and intestinal obstruction
(Meng J.B. et al., 2018). In addition, a prospective randomized
controlled trial found that electroacupuncture at both ST 36 and
Guanyuan (RN 4) in patients with sepsis played an immunoprotective
role by reducing the APACHE II score, increasing CD3+, CD4+, CD8+

expression and the CD4+/CD8+ ratio, and increasing HLA-DR
expression in lymphocytes (Yang et al., 2016).

The above systematically summarized the research and
mechanism of TCM in the treatment of sepsis (the relevant
mechanisms are shown in Figure 1). Tables 1, 2 respectively
summarize the relevant research of TCM compounds and
monomers in the treatment of sepsis in recent years, which further
prove the effectiveness of TCM.

5 Post-sepsis immune suppression and
fuzheng treatment strategy of TCM

There are many concepts recognizing the critical state of patients who
are survived from early death, such as chronic critical illness (CCI),
compensatory anti-inflammatory response syndrome (CARS), and
persistent inflammation, immune suppression, and catabolism
syndrome (PICS), among which immune suppression are a common
state and has been implicated as a predisposing factor for the secondary
nosocomial infections and increased mortality, though the identification
of these concepts remains to be further clarified (Torres et al., 2022).
Immunotherapy such as granulocyte-macrophage colony stimulating
factor (GM-CSF) and granulocyte-colony stimulating factor (G-CSF)
aiming to promote restoration of normal lymphocyte numbers and
function, and/or restore mature functional myeloid populations
achieves great improvement in preventing secondary infection, but
failed to demonstrate any significant improvements in 28-day
mortality and long-term outcomes (Bo et al., 2011; Darden et al., 2021).

According to the basic theory of TCM, there are two strategies for
the treatment of infectious diseases and followed critical state—Quxie
and Fuzheng. The function of TCM on inhibiting inflammatory
response during the early sepsis refers to the Quxie strategy that
means blocking of factors leading to disease. In contrast, Fuzheng
strategy agree with the therapy enhancing the anti-disease capacity of
the body, which focus on the enhancement of anti-infectious
immunity. Innate and adaptive immune cells are both the targets
of TCM herbs. Dendritic cells are the main professional antigen-
presenting cells, whose function drives the activation of macrophage
and antigen-specific T-cells (Lin W et al., 2021). Accumulating
evidence shows that the extracts or active monomers of TCM
herbs, such as cordyceps sinensis, ganoderma lucidum, astragalus

mongholicus. etc. can act as the adjuvant to promote the maturation,
pro-inflammatory cytokine production and function of DCs, therefore
enhancing the immune responses against tumor and infection (Li
et al., 2015a). It is worth recalling that astragalus, especially the
astragalus polysaccharide may be the representative of TCM herbs
for immunity enhancement, whose function varies from humoral to
cellular immune responses (Sultan et al., 2014; Deng et al., 2022).
Though there is a lack of direct evidence, studies about the immune
deficiency diseases and cancer suggested the potential function of
immune enhancement herbs on sepsis related immune suppression.
Except for the direct inhibition of tumor, immunity-enhancing
capacity plays a vital role in the anticancer activity of TCM herbs
(Wang S et al., 2020; Wang Y et al., 2020) For example, shenqi fuzheng
injection, mainly consist of ginsen and astragalus, could promote NK
and T helper cells proliferation and function, therefore enhancing the
effects of chemotherapy drugs and decreasing adverse events in
cancers (Dong et al., 2010; Li et al., 2015b; Yang Y et al., 2017).
Results of randomized clinical trials and real-world data reveals that
integrating Fuzheng TCM herbs and anti-retroviral therapy promotes
long-term reconstitution of the immune system and significantly
improved the survival periods of AIDS patients (Zou et al., 2016;
Tao et al., 2021; Jin et al., 2022).

6 Discussion and perspectives

Sepsis is a common severe complication of patients with infection,
severe trauma, shock, burns, etc. With the development of public health
policy, infection-prevention efforts reduce sepsis incidence. Diversified
treatment and multiple organ support therapy contribute to the reduced
mortality in past years. However, sepsis remains a major cause of health
loss worldwide with high health-related burden, especially in Asia and
Africa (Rudd et al., 2020). The problems facing the effective antibiotics-
based combination therapies are the ever-growing antibiotic resistance
(Reynolds et al., 2022) and the potential risk of drug-induced liver injury,
enteric dysbacteriosis, and fungal infection (Kwon et al., 2022), whichmay
further aggravate organ dysfunction (Meng et al., 2017). Therefore, more
treatment strategy for sepsis is needed.

TCM established a complete system of diagnosis and treatment for
pandemic and endemic diseases, possessing a well-documented
history of treating infectious diseases and clinical practice, such as
Treatise on Febrile and Miscellaneous Disease (“Shanghan Zabing
Lun” in Chinese) and Detailed Analysis of Epidemic Warm Diseases
(“Wenbing Tiaobian” in Chinese). Given the complexity of the
chemical components of traditional Chinese herbs and the
ambiguity of the effective components, research has been devoted
to the separation of the active components of prescriptions and single
traditional Chinese herb for cell or animal study. This review
summarizes the function and mechanism of TCM compounds,
active monomers (terpenoids, flavonoids, polyphenols, alkaloids),
and acupuncture on sepsis treatment, which varies from anti-
inflammation, anti-oxidation, anti-mitochondrial dysfunction,
regulating apoptosis and autophagy etc. Because of the lack of
clinical evidence, an important issue that is not covered in this
review is whether the potential side effects of TCM on related
organs would aggravate the multi-organ injury in patients with
sepsis. Indeed, a study reveals that TCM herbs and dietary
supplements were the leading causes of drug-induced liver injury
(DILI) in mainland China (Shen et al., 2019), which attracts much
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attention. However, researchers pointed that implicated drug
categories adopted in this study might seriously influence the
reliability of conclusions (Cong et al., 2019). A latest study
screened 94,593 DILI reports from 308 medical centers across the
China mainland between 2012 and 2016, and found that TCM herbs
only accounted for 4.5% of the DILI reports (Wang et al., 2022). The
main challenge facing the application of TCM for the treatment of
sepsis in drug safety aspect is how to identify the scattered categories of
drug that are potentially harmful to the organ function, and the
assessment of risk/benefit ratio.

In recent years, conventional molecular biological studies, network
pharmacology prediction, molecular docking analysis, and
visualization analysis reveal the widely potential targets of TCM
compounds and active monomers in infectious diseases (Huang
et al., 2021; Zhou et al., 2021; Li et al., 2022), and in this state lack
of standardized and large-scale clinical studies counts in limiting
clinical translation value. In addition, targeting the activation of the
immune system and related imbalance of pro-inflammation and anti-
inflammation is the main mechanism that studies of sepsis focus on,
while the protection of organs and prevention of sequelae such as
sepsis-associated encephalopathy, ICU-acquired weakness, sepsis-
induced cardiomyopathy, etc., are partly neglected.
Multidisciplinary research is needed to explain the scientific
connotation of compound compatibility of anti-sepsis TCM recipes.
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Glossary

AChE Acetylcholinesterase

AKI Acute kidney injury

AKT Protein kinase B

ALI Acute lung injury

AP-1 Activator protein-1

ApoM Apoliprotein M

AQP Aquaporin

ARDS Acute respiratory distress syndrome

ASC Apoptosis associated speck like protein containing CARD

AST Aminotransferase

BALF Bronchoalveolar lavage fluid

Bcl-2 B cell lymphoma-2

BMDMs Bone marrow-derived macrophages

CARS Compensatory anti-inflammatory response syndrome

CAT Catalase

CCI Chronic critical illness

CK-MB Creatine kinase-MB

CLP Cecal ligation and puncture

cMLC1 cardiac myosin light chain-1

CNKI China National Knowledge Infrastructure

COX-2 Cyclooxygenase 2

cTnI cardiac troponin I

CXCR2 CXC motif chemokine receptor 2

DCQD dachengqi decoction

eNOS endothelial nitric oxide synthase

ER endoplasmic reticulum

ERK extracellular regulated protein kinase

GPx glutathione peroxidase

GR glutathione reductase

GRK2 G protein-coupled receptor kinase-2

GSDMD gasdermin D

GSK3-β glycogen synthase kinase-3β
GST glutathione-S-transferase

HIF-1α hypoxia-inducible factor 1α
HLA-DR human leukocyte antigen DR

HLJDD huanglian jiedu decoction

HMGB1 high mobility group box 1

ICAM-1 intercellular adhesion molecule-1

I-FABP intestinal fatty acid-binding protein

IL-1 interleukin 1

iNOS inducible nitric oxide synthase

IRF-3 interferon regulatory factor 3

JAK Janus kinase

JAM-C junctional adhesion molecule C

LDH lactate dehydrogenase

LPS lipopolysaccharide

MAPK mitogen activated protein kinase

MD2 myeloid differentiation factor 2

MDA malondialdehyde

MDSCs myeloid-derived suppressor cells

MEK mitogen-activated protein kinase repalmitoylated

MKK4 mitogen-activated protein kinase kinase 4

MMP-9 matrix metalloproteinase 9

MPO myeloperoxidase

mTOR mechanistic target of rapamycin kinase

MyD88 myeloid differentiation factor 88

NETs neutrophil extracellular trap

NF-κB nuclear factor-κB
NLRP3 NOD-like receptor family pyrin domain containing 3

NO nitric oxide

Nrf-2 nuclear factor erythroid 2-related factor 2

PAMPs pathogen-associated molecular patterns

PCT procalcitonin

PGE2 prostaglandin E2

PI3K phosphatidylinositol 3-kinase

Pink1 PTEN-induced kinase 1

PKM2 pyruvate kinase M2

PPARγ peroxisome proliferator-activated receptor gamma

RAC-1 Rac family small GTPase 1

ROS reactive oxygen species

S1P Sphingosine-1-Phosphate

SAP severe acute pancreatitis

SDH succinate dehydrogenase

SFI Shenfu injection

Sirt1 Sirtuin1

SMI shengmai injection

SOD superoxide dismutase

SOFA sequential organ failure assessment

STAT signal transducer and activator of transcription

TAB1 TAK1-binding protein1

TCM traditional Chinese medicine

TIR interleukin-1 receptor

TIRAP TIR domain-containing adaptor protein

TKA1 TGF-β-activated kinase1

TLR4 Toll-like receptor 4

TNF-α tumor necrosis factor alpha

TRAF6 TNF receptor associated factor 6

TRIF TIR-domain-containing adapter-inducing interferon-β
TRPM7 transient receptor potential melastatin 7

TSA Tanshinone IIA

VCAM1 vascular cell adhesion molecule 1

VEGF vascular endothelial growth factor

VEGF-B vascular endothelial growth factor B

XBJI xuebijing injection

XJDHD xijiao dihuang decoction

ZO-1 zonula occludens-1
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