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The number of patientswith allergic asthma is rising yearly, and hormonal drugs,

such as dexamethasone, have unique advantages and certain limitations. In the

treatment of allergic diseases especially allergic asthma, increasing the

percentage or the function of immunosuppressive cells, such as Treg cells,

may achieve a good effect. On the basis of good clinical results, we found that

Guominkang (GMK) especially high-concentration GMK can achieve a similar

effect with dexamethasone in controlling the symptoms of allergic asthma and

inhibiting inflammation of allergic asthma. In our study, GMK can inhibit the

recruitment of inflammatory cells, decrease mucus production, and reduce

airway resistance. Besides, GMK can reconstruct the cellular immune balance of

Th1/2 and Treg/Th17 cells. Metabolome results show that DL-glutamine,

L-pyroglutamic acid, prostaglandin b1, prostaglandin e2, and 3,4-

dihydroxyhydrocinnamic acid are the metabolic biomarkers and are

associated with Th1/2 and Treg/Th17 cell balance. GMK can also change the

gut microbiota in the allergic asthma mouse model. The genus_Muriculum,

genus_(Clostridium) GCA900066575, genus_klebsiella, genus_Desulfovibrio,

genus_Rikenellaceae RC9 gut group, family_Chitinophagaceae,

family_Nocardioidaceae, and genus_Corynebacterium are gut microbiota

biomarkers treated by GMK. Among these biomarkers, genus_Muriculum is

the gutmicrobiota biomarker associatedwith Th1/2 and Treg/Th17 cell balance.

Interestingly, we first found that DL-glutamine, L-pyroglutamic acid,

prostaglandin b1, prostaglandin e2, and 3,4-dihydroxyhydrocinnamic acid are

all associated with genus_Muriculum. GMK will be a new strategy for the

treatment of eosinophilic asthma, and biomarkers will also be a new

research direction.
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Introduction

Asthma is a chronic inflammatory disease with high incidence

rate, which can cause more than 250000 deaths every year (Fahy,

2015). Epidemiological studies showed that environmental risk

factors (such as respiratory viral infections (Busse et al., 2010) and

air pollutants (Peden, 2005)) and increasing urbanized lifestyles

(including reduced exposure to microbes or their products

(Braun-Fahrländer et al., 2002)) are factors inducing allergic

asthma. Among the various forms of asthma (e.g., caused by

allergens, air pollution, exercise, aspirin, and cold), allergic asthma

is themost prevalent and can be induced by allergens, such as peanut,

house dust mite (HDM), pollen, and animal dander. Inhaled

corticosteroids (ICS) and long acting β Agonists are the basic

treatment of asthma, which can effectively control the symptoms

of allergic asthma. However, these therapies are not suitable for all

patients with allergic asthma because some patients develop severe

asthma. Severe asthma is characterized as difficulty in drug control,

recurrent attacks, and chronic airflow obstruction (Lloyd and

Hawrylowicz, 2009). Acute exacerbation of allergic asthma has a

huge impact on both adults and children. At the same time, it brings a

huge economic burden to patients with allergic asthma and

endangers public health. According to the regularly revised global

Asthma Initiative, few drugs are suitable for new biological agents or

treatment schemes such as allergen specific immunotherapy (Duan

et al., 2004; Sakaguchi et al., 2008).

Allergic asthma is predominantly divided into two inflammatory

subtypes caused by T helper (Th) cells, i.e., Th2-high and Th2-low.

The Th2-high subtype are associated with Th2 subtype cytokines

such as IL (interleukin)-4, IL-5, and IL-13, and are characterized

by airway eosinophilic infiltration. In allergic asthma, airway

eosinophilia and goblet cell metaplasia are predominantly induced

by IL-5 and IL-13, respectively (Finkelman et al., 2010; Chung, 2015).

IL-4 has a certain correlation with sensitization and IgE production.

IL-5 participates in eosinophil survival, and IL-13 affects the

development and reorganization of airway hyperresponsiveness

(AHR) (Sun et al., 2020). Studies have shown that the

pathogenesis of airway inflammation in allergic asthma is related

to the imbalance of Th1/Th2 cells, and the main reason for the

excessive differentiation of Th2 cells is the insufficient differentiation

of Th1 cells. An important strategy for the treatment of allergic

asthma is to induce allergen immune tolerance (Heffler et al., 2019).

Current treatments based on glucocorticoid inhalation can only

control Th2-driven eosinophil inflammation but cannot induce

immune tolerance (Dhami et al., 2017). Foxp3+ Treg cells are

critical for maintaining immune homeostasis in allergic asthma,

and can inhibit inflammatory response (Joetham et al., 2007).

Treg cells are a type of CD4+ T cell subpopulation, and the

transcription factor Forkhead Box 3 (FOXP3), as a specific Treg

cell maker, is essential to their function (Bullens et al., 2006;

Finkelman et al., 2010). FOXP3 is the key to the differentiation of

Treg cells. If FOXP3 gene is mutated, abnormal Treg cells will be

produced. They lack regulatory function (Berker et al., 2017;

Asayama et al., 2020). For patients with allergic asthma, the

imbalance of Treg and Th cells in the process of allergic reaction

has a certain impact on the development of asthma (Lee et al., 2009).

IL-10 and TGF-β play an irreplaceable role in the regulation of

allergic asthma. TGF-β can induce Foxp3 expression and Treg cell

differentiation. IL-10 is also critical for the effective suppression of

allergic reactions in the lung (Kudo et al., 2012). Recent studies

showed that the IL-17A produced by Th17 cells promotes allergen-

inducedAHR through direct effects on airway smoothmuscle (Gavin

et al., 2007). The elevated levels of IL-17A are found in serum,

sputum, and bronchoalveolar lavage (BAL) of patients with allergic

asthma, and the concentrations of IL-17A are positively correlated

with asthma severity at these sites (Baatjes et al., 2015; Zhao and

Wang, 2018). Recent studies have shown that both Treg and

Th17 cells have the ability to redifferentiate and belong to an

unstable population (Tortola et al., 2019). Some treatment

schemes are aimed at improving the symptoms of allergy and

asthma. They all start from stimulating the proliferation of Treg

cells to increase the number of Treg cells or restore the function of

Treg cells (Hori et al., 2003). Therefore, increasing studies focused on

stimulating Treg cell proliferation or inhibiting Th17 cell

redifferentiation and changing the differentiation level of Treg or

Th17 cells to rebuild the balance of Th17/Treg cells, which is

correlatedwith asthma severity (Fontenot et al., 2003; Lin et al., 2007).

In the past few years, the combination of hormone therapy, such

as ICS, with other medications, including a long-acting β2-agonist or
a leukotriene modifier, is the first choice to treat allergic asthma, but

not all patients achieve asthma control (Durrant andMetzger, 2010).

A new drug that can induce immune tolerance and is expected to

inhibit the recurrence of asthma is urgently needed. GMK is a drug

prescribed by academician Qi Wang after many years of clinical

experience and has achieved good clinical effect in treating allergic

disease. In this study, we try to clarify the mechanism of GMK in

treating eosinophilic asthma.

Materials and methods

Mice

Female BALB/c mice (age: 6–8 weeks old) were obtained

from Beijing Vital River Laboratory Animal Technology Co.

Ltd., Beijing, China. These mice were housed in pathogen-free

conditions. All animal procedures were approved by Beijing

University of Chinese Medicine Animal Care and Use

Committee and conducted in accordance with AAALAC

and IACUC guidelines.

Preparation of GMK

The four components of GMK used in our experiment are: Wu-

Mei (Mume Fructus) 20 g, Chan-Tui (Cicadae Periostracum) 10 g,
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FIGURE 1
GMK can alleviate inflammation of eosinophilic asthma in BALB/c mice model. (A) Flow chart of eosinophilic asthma model construction in
BALB/c mice. (B) Allergens airway hyperresponsiveness assessment by non-invasive methods. Mice (n = 4–5/group) were sensitized and challenged
with OVA. a, p < 0.05 vs. Control; aa, p < 0.01 vs. Control; aaa, p ≤ 0.001 vs. Control. b, p < 0.05 vs. GMK(H); bb, p < 0.01 vs. GMK(H); bbb, p ≤ 0.001 vs.
GMK(H). c, p < 0.05 vs. GMK(M); cc, p < 0.01 vs. GMK(M); ccc, p ≤ 0.001 vs. GMK(M). d, p < 0.05 vs. GMK (L); dd, p < 0.01 vs. GMK(L); ddd, p ≤
0.001 vs. GMK(L); e, p < 0.05 vs. DEX; ee, p < 0.01 vs. DEX; eee, p ≤ 0.001 vs. DEX. (C)HE staining and inflammation score of lung tissue. (D) Typical PAS
staining and the related corresponding score of lung tissue. (E) Specific OVA-IgE antibody detection in serum, eosinophil count in bronchoalveolar
lavage fluid (BALF), IL-5 and IL-13 cytokines detection in BALF (n = 5–6/group). The experiments repeated 2–3 times in this study. *p < 0.05, **p <
0.01, ***p ≤ 0.001.
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Fang-feng (Saposhnikoviae radix) 10 g, Ling-zhi (Ganoderma) 10 g,

Shou-Wuteng (Caulis Polygoni Multiflori) 15 g, Tian-ma (Gastrodia

elata Blume) 10g, they were named by Pharmacopoeia of China

(2020). After soaked in deionized water for 30 min. The

final concentration of the drug were GMK(H) group:19.5 g/kg/d,

GMK(M) group: 9.75 g/kg/d, GMK(L) group:4.875 g/kg/d. More

details can be found in references (Wu et al., 2019). DEX

(Dexamethasone) was given 1mg/kg/d, and it was dissolved in

saline solution. The drug of GMK and DEX were given according

to Figure 1A,GMKwere given fromday 14 to day 25, DEXwas given

from day 21 to day 25, they were all given once a day.

Construction of eosinophilic asthma
mouse model, administration of GMK, and
detection of airway resistance

The eosinophilic asthma mouse model was induced by

ovalbumin (OVA). Mice were sensitized on days 0 and 14 by

intraperitoneal injection with 2 mg OVA (Sigma-Aldrich,

Cat#A5503) and 2 mg Alum Adjuvant (Invitrogen, Cat#77161)

dissolved in PBS. Mice inhaled 1%ova for 30 min from day 21 to

day 25. BAL fluid (BALF) was collected 24 h after the last challenge.

On day 26, after challenge for 5 days, 0, 6.25, 12.5, 25, and 50 mg/

ml methacholine (Sigma, Cat#A2251) was used to detect the

enhanced pause (Penh) value. The airway resistance experiment

was carried through the noninvasive measurement of airway hyper-

responsiveness by whole-body plethysmography (WBP-4MR, TOW,

China) as described previously (Li et al., 2009). The Penh ratio was

used to represent the Penhmeasured (usingmethacholine divided by

the mean Penh over a 5-min interval using PBS).

Hematoxylin and eosin and periodic
acid–schiff staining of lung tissue

Lung tissues were fixed in 4% paraformaldehyde,

embedded into paraffin, and cut into 4 μm prepared

FIGURE 2
Th1, Th2 cells and their related cytokines and gene detection. (A) Th1 and Th2 cells related cytokines detection in BALF and the IL-4 and IFN-γ
mRNA expression in lung tissue analyzed by real-time RT-PCR. (B,C) Flow cytometry detection of Th1 and Th2 cells in spleen tissue, results was all
represent as mean±SEM (n = 5–6/group). CD3+CD4+ cells were gated, then IFN-γ+ cells were gated for Th1 cells. CD3+CD4+ cells were gated, then
IL-4+ cells were gated for Th2 cells. The experiments repeated 3 times in this study. *p < 0.05, **p < 0.01, ***p ≤ 0.001.
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sections. Lung tissues were stained by HE staining for

cell infiltration detection or PAS for mucus production. As

mentioned earlier, inflammatory cells and goblet cells were

scored in at least three different areas of each lung section

(Buzney et al., 2016).

Percentage of Th1, Th2, Treg and
Th17 cells and cytokines in BALF and
specific OVA–IgE detection in Serum

Collecting spleen tissue and prepareing it into single cell

suspension. Pay attention to the aseptic operation. For flow

cytometry, cells were stimulated in complete RPMI containing

2 μl cocktail A (BD, Cat#550583) for 4 Construction of

eosinophilic asthma mouse h, after blocked by Fc-receptor

blocker (BD, Cat#513141) in 37°C for 40Construction of

eosinophilic asthma mouse min, washed, and resuspended

in 1 × PBS, and stained with FVS780 (BD, Cat#565388) to

discriminate viable cells. The eBioscience Fix/Perm (Cat#00-

5523-00) and BD Fix/Perm (Cat#554714) buffer kits were used

to fix and permeabilize the cells. The intracellular staining

Foxp3 (eBioscience, Cat#17-5773-82), IFN-γ (BD,

Cat#557735), IL-4 (BD, Cat# 562915), or IL-17A (BD,

Cat#564169) were used. Finally, we analyzed the data by

the LSR Fortessa cell analyzer and Diva software (BD).

Multi-cytokine detection containing IL-4, IFN-γ, IL-5, IL-13,
TGF-β, IL-6, IL-10, and IL17A was performed in accordance

FIGURE 3
Treg, Th17 cells and their related cytokines and mRNA detection. (A) Treg and Th17 cells related cytokines detection in BALF. (B,C) Percentage
detection of Treg and Th17 cells in spleen tissue. (D) The Foxp3 and RORγt mRNA relative expression in the lung tissue analyzed by real-time RT-PCR,
results was represent as mean±SEM (n = 5–6/group). CD3+CD4+ cells were gated, then CD25+Foxp3+ cells were gated for Treg cells. CD3+CD4+

cells were gated, then IL-17+ cells were gated for Th17 cells. The experiments repeated 3 times in this study.*p < 0.05, **p < 0.01, ***p ≤ 0.001.
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with the premixed AimPlex™ multiplex-assay kits

(Cat#T2C0710709 and Cat#B111206). OVA-specific IgE in the

serum was detected in accordance with the protocol (Cayman,

Cat#500840).

Detection of IFN-γ, IL-4, Foxp3, and RORγt
mRNA levels by real-time PCR

\The transcription factors of IFN-γ, IL-4, FOXP3, and

RORγt in lung tissue were detected, and the total RNA from

the tissues was extracted by TRIzol (Invitrogen) in

accordance with the manufacturer’s instructions. cDNA

was synthesized by reverse transcription by using the first-

strand cDNA synthesis kit (Servicebio, G3330) in accordance

with the manufacturer’s instructions and used for real-time

PCR assay performed in 1× SYBR green qPCR master mix

(Servicebio, G3320) together with 0.2 mM forward and

reverse primers. The amount of mRNA of the indicated

genes after normalization of β-actin mRNA. The primers

of GAPDH, Foxp3, RORγt, IFN-γ and IL-4 genes were as

described as in a previous study (Zhou et al., 2022).

Untargeted plasma metabolomics
detection and analysis

In this study, UHPLC (1290 Infinity LC, Agilent

Technologies) and quadrupole time-of-flight (AB Sciex

TripleTOF 6,600) in Shanghai Applied Protein Technology

Co., Ltd. were used to perform LC-MS/MS analysis. The

orthogonal partial least-squares discriminant analysis was

used to perform multivariate data analysis, and VIP >1 and

p value <0.05 were used to screen metabolites’ significant

changes. The Pearson correlation analysis with R package was

used to determine the correlation between variables.

FIGURE 4
(Continued).
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Gut microbiota detection and analysis

The 16S rDNA amplicon sequencing was used to

detect gut microbiota after extracting the total genome

DNA by the CTAB/SDS method (Bansal et al., 2018).

Sequencing libraries were generated using the NEB

Next®Ultra™DNA Library Prep Kit for Illumina (NEB,

United States) following the manufacturer’s

recommendations, and index codes were added. The library

was sequenced on the Illumina Miseq/

HiSeq2500 platform. STAMP software was used to confirm

the difference in abundance value, and LEfSe was used to

conduct quantitative analysis of biomarkers in different

groups.

FIGURE 4
(Continued). Untargeted metabolomics of plasma detection treated by GMK. (A) OPLS-DA score plots derived from UPLC-Q-TOF/MS in
positive and negative ionization modes. (B) Volcano map in positive mode and negative mode. (C) The hierarchical cluster analysis of different
metabolites between GMK and model group under positive and negative modes. (D) Enriched KEGG pathways based on significant different
metabolites between GMK(H) and model group (n = 7/group).
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Correlation analysis of differential plasma
metabolites and differential gut
microbiota with Th1, Th2, Treg and
Th17 cells in eosinophilic asthma

The Pearson correlation analysis with R package was performed

to determine the correlation of variables, such as differential plasma

metabolites; differential gutmicrobiota; Th1, Th2, Treg and Th17 cell

percentages; specific OVA–IgE antibody; Penh value (Methacholine:

12.5, 25, and 50mg/ml); and eosinophilic number in BALF.

Statistical analysis

Use SPSS 20.0 software for statistical analysis of data. Data

are presented as means ± SEM. Analysis of variance (ANOVA)

with the Bonferroni correction for post hoc comparisons was

used to test group differences, and the rank sum test was used for

percentage analysis. p < 0.05 was considered statistically

significant. The Pearson correlation analysis was used to

analyze the correlation of differential metabolites and

differential gut microbiota with Th1/2 and Treg/Th17 cells.

Results

GMK plays a certain role in relieving
allergic inflammation in eosinophilic
asthmatic mouse model

The allergic asthma model in BALB/c mice with

eosinophil infiltration was constructed as shown in

Figure 1A. The Penh value, which reflected airway

resistance, indicated that GMK could significantly decrease

the Penh value. The high-concentration GMK, GMK(H) had

good effect, whereas the positive drug group,

i.e., Dexamethasone (DEX) group, had the best effect

(Figure 1B). The same effect could be seen in Figures 1C,D.

GMK especially the (GMK(H)) group could achieve improved

effect, whereas DEX had the best effect in inhibiting allergic

inflammation, such as inflammatory cell infiltration

(Figure 1C) and mucus production (Figure 1D).

Interestingly, in the detection of specific OVA–IgE, IL-5,

and IL-13 antibodies and eosinophilic number (Figure 1E),

DEX had the best effect, and compared with the middle- and

low-concentration GMK, GMK(H) had the best effect.

TABLE 1 Differentiated plasma metabolites between model and GMK groups.

Name ESI VIP Fold Change p value

Erucamide + 10.05189 3.374263664 0.000125

L-pyroglutamic acid + 3.846949 0.830618952 0.004358

DL-glutamine + 2.412555 0.832989231 0.005224

2-methylbutyryl-L-carnitine + 1.272464 0.799934156 0.011032

Pirinixic acid aminothiazole + 1.030683 1.77173329 0.02643

Cytosine + 1.239749 0.849232667 0.03137

N-acetyltryptophan − 1.779763 1.402748814 0.001626

Glutamine − 3.114074 0.760124438 0.004224

1,5-anhydro-d-sorbitol − 2.085506 1.391837849 0.006918

Dihydro-4,4-dimethyl-2,3-furandione − 1.167511 0.78160733 0.007372

L-Galactono-1,4-lactone − 1.725859 0.684250598 0.013781

Pc(18:1e/9-hode) − 2.2884 1.885403306 0.013944

Prostaglandin e2 − 3.424605 0.130341353 0.014098

Prostaglandin b1 − 1.169405 0.514396644 0.014977

Pantothenate − 1.852229 0.745324355 0.017882

1h-indole-3-propanoic acid − 1.479907 0.595061082 0.01828

Pseudouridine − 1.240415 0.78508799 0.030125

Sm d34:1 − 2.112093 1.383823251 0.031022

3,4-dihydroxyhydrocinnamic acid − 1.449743 0.689174528 0.036569

D-Quinovose − 1.304085 1.279815081 0.039916

N-acetylcytidine − 1.363898 0.736552224 0.047463

Palmitic acid − 15.57049 0.78886185 0.049912
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GMK can reconstruct Th1/2 cellular
balance in eosinophilic asthma

The Th1/2 cell balance was destroyed in the eosinophilic

asthma model but reconstructed after GMK treatment

especially in the GMK(H) group (Figures 2B,C). The

cytokines of IL-4 and IFN-γ in serum and the mRNA

expression levels of IL-4 and IFN-γ in lung tissue had the

same effect (Figure 2A). Surprisingly, DEX did not have the

same effect and could decrease Th2 cell percentage and

related cytokines, such as IL-4 and IFN-γ mRNA

expression, but can not increase Th1 cell percentage

and the related cytokine and mRNA expression, such as

IFN-γ.

Treg/Th17 cellular immune balance is
reconstructed after GMK treatment

The allergic asthma model group showed a significant

decrease in the percentage of Treg cells. In contrast, the

percentage of Treg cells increased significantly in the GMK

groups, especially in the GMK (H) group (Figures 3B,C).

Interestingly, GMK groups especially the GMK(H)

group had decreased Th17 cell detection. The mRNA

expression of Foxp3 and RORγt in lung tissue is

consistent with the detection results of Treg and

Th17 cells in Figure 3D. The cytokine detection result

showed that GMK treatment decreased IL-17A and IL-6

levels and increased IL-10 and TGF-β levels (Figure 3A).

DEX also achieved the same effect as GMK(H) in the

detection.

Plasma metabolites were changed after
GMK treatment

We studied the plasma metabolism after GMK treatment

to explore the mechanism of GMK on immune balance

reconstruction in eosinophilic asthma. As shown in

Figure 4A, metabolites were detected in the positive (POS)

and negative (NEG) modes (i.e., 0.3 < Q2 = 0.368 < 0.5 in POS

FIGURE 5
Correlation analysis between differential metabolites and Th1/2, Treg/Th17 cells balance treated by GMK in eosinophilic asthma. (A) Pearson
correlation analysis between differential metabolites and Th1/2, Treg/Th17 immune balance, Penh value, OVA-IgE antibody and eosinophil number
in BALF compared between GMK(H) and model group. (B)Metabolic biomarkers closely related to Th1/2 and Treg/Th17 cell balance in eosinophilic
asthma (n = 7/group). *p < 0.05, **p < 0.01, ***p ≤ 0.001.
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mode and 0.3 < Q2 = 0.387 < 0.5 in NEG mode), which

indicated that the model was stable. A total of 5,058 and

4,387 metabolites in the POS and NEG modes, respectively,

were detected. Six of these metabolites were significantly

expressed in POS mode and 16 were significantly expressed

in NEG mode (Table 1). Differential metabolites with FC >
1.5 or FC < 0.67 and p value <0.05 were visualized using a

volcano graph in Figure 4B. The results of the hierarchical

clustering analysis of differential metabolites, 6 and

16 metabolites in POS and NEG modes respectively are

shown in Figure 4C. In the KEGG pathway analysis, most

differential metabolites were enriched to pyrimidine

metabolism and D-glutamine and D-glutamate metabolism

pathway (Figure 4D).

Biomarkers associated with Th1/2 cell or
Treg/Th17 cellular immune balance at the
metabolic and gut microbiota levels

The Pearson correlation analysis was used to analyze the

correlation and further explore the immune mechanism of GMK

in treating eosinophilic asthma at the metabolic level (Figures

5A,B). The plasma metabolites in the GMK(H) and eosinophilic

asthma mice model groups were detected. Among the differential

metabolites, DL-glutamine, L-pyroglutamic acid, prostaglandin

b1, prostaglandin e2 and 3,4-dihydroxyhydrocinnamic acid were

the metabolic biomarkers, they were all connected to OVA-IgE,

Penh value (Mch:12.5,25,50 mg/ml), Eos number, Th1/2 and

Treg/Th17 cell balance.

FIGURE 6
Gut microbiota Biomarker detection after GMK treated. (A) Principal coordinate analysis (PCoA) of gut microbiota in GMK treated group and
eosinophilic asthma model group; (B) The top 10 gut microbiota at genus level between GMK treated group and model group; (C) Lefse analysis of
differential gut microbiota between GMK treated group and model group (LDA >2 was used); (D) STAMP analysis of differential gut microbiota
between GMK(H) treated group and model group (p < 0.05 was used), n = 7/group.
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GMK was treated by intragastric administration to further

investigate whether GMK could change gut microbiota, and

16S rDNA amplicon sequencing analysis was performed in the

study. The gut microbiota was separated significantly

(Figure 6A) and the top 10 relative abundance at genus

level (Figure 6B). The LDA Effect Size (LEfSe) and STAMP

analyses were used to examine the differential gut microbiota

between GMKand model groups. LDA value >2 was used in

the LEfSe analysis, and p value <0.05 was used in STAMP

analysis. Genus_Muriculum, genus_(Clostridium)

GCA900066575, genus_klebsiella, genus_Desulfovibrio,

genus_Rikenellaceae RC9 gut group,

family_Chitinophagaceae, family_Nocardioidaceae, and

genus_ Corynebacterium were gut microbiota biomarkers

after GMK treatment as shown in Figures 6C,D.

The Pearson correlation analysis was used in this study to

investigate whether gut microbiota changes were related to the

reconstruction of immune balance. The genus_ (Clostridium)

GCA900066575, genus_Desulfovibrio, genus_Muriculum, and

genus_ Rikenellaceae RC9 gut group were all associated with

Th1 cells, and genus_Desulfovibrio was associated with Th2 cells.

These cells were important in the Th1/2 cell balance.

Genus_Muriculum and genus_klebsiella were associated with Treg

cells, and genus_Desulfovibrio and genus_Muriculum related to

Th17 cells. These cells were essential in the Treg/Th17 immune

balance. Among them, genus_Muriculum is the biomarker based on

the OVA-IgE, Penh value (Mch:12.5, 25, 50 mg/ml), Eos number,

Th1, Th2, Treg and Th17 cell percentage, which indicated that

genus_Muriculum is the gut microbiota biomarker interrelated to

Th1/2 and Treg/Th17 cell balance (Figure 7A).

FIGURE 7
Correlation analysis between gut microbiota and Th1/2, Treg/Th17 cell balance in eosinophilic asthma. (A) Correlation analysis between
differential microbiota and Th1,Th2, Treg and Th17 cell percentage, Penh value, OVA-IgE antibody and eosinophil number in BALF. (B) Correlation
analysis of diffenential metabolites and gut microbiota biomarker treated by GMK (n = 5–6/group).
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Gut microbiota and plasma metabolites play essential roles in

GMK treatment. Genus_(Clostridium)GCA900066575 was

associated with pantothenate, genus_ Desulfovibrio was associated

with prostaglandin e2, and genus_Muriculum was associated with

prostaglandin e2, prostaglandin b1, L-pyroglutamic acid, glutamine,

DL-glutamine, dihydro-4,4-dimethyl-2,3-furandione, 3,4-

dihydroxyhydrocinnamic acid, and 1,5-anhydro-d-sorbitol.

Genus_klebsiella was associated with pseudouridine, prostaglandin

e2, pantothenate, L-pyroglutamic acid, DL-glutamine, 3,4-

dihydroxyhydrocinnamic acid, and 1,5-anhydro-d-sorbitol.

Genus_Rikenellaceae RC9 gut group was associated with

prostaglandin b1 (Figure 7B). Very interesting, the metabolites

biomarker of prostaglandin e2, prostaglandin b1, L-pyroglutamic

acid, DL-glutamine, 3,4-dihydroxyhydrocinnamic acid are all

associated with genus_Muriculum.

Discussion

Many studies have proved that the inflammation induced

by a variety of Th cells, including Th1, Th2, Th9, Th17 and

Th22 cells and their specific cytokines, has a certain

correlation with the onset and development of allergic

asthma. Th2 cells should not be neglected in the

pathogenesis of allergic inflammation due to an imbalance

of Th1/Th2 response (Hartl et al., 2007). More and more

studies have shown that the root causes of Th2 response

enhancement and allergic asthma are insufficient

differentiation and functional defects of Treg cells. One

study (Hanania, 2008) reported that patients with allergic

asthma have fewer Treg cells in the peripheral blood than

nonasthma normal ones. Another study proved that young

patients with asthma and ICS treatment have fewer Treg cells

in the lungs than normal ones, but this treatment fails to

suppress pulmonary Th2 responses (Sun et al., 2021). Treg

cells have an immuno suppressive function and are

predominantly adjusted to the Foxp3 gene (Kim et al.,

2022). Th17 cells have a certain correlation with the

pathogenesis of asthma. This cell regulates eosinophil and

neutrophil inflammation. (Maggi et al., 2021). Therefore,

Th1, Th2, Treg, and Th17 cells play critical roles in

maintaining immune homeostasis. Reducing immune

response caused by Th2 or Th17 cells, promoting

differentiation of Treg cells, or increasing the numbers of

Th1 and Treg cells to rebuild the immune balance of Th1/2 or

Treg/Th17 cells are new strategies to treat allergic asthma.

GMK, which regulates body constitution, is a classic

prescription in the field of allergy field for academician Qi

Wang. Regulating body constitution in allergic asthma disease

means regulating immune homeostasis in patients with allergic

asthma. GMK plays a role in reducing Ag-specific IgE, Ag-

induced T-cell proliferation, and mast cell histamine release in

treating allergic rhinitis (Zhou et al., 2018). Eosinophilia is a

hallmark of allergic airway inflammation, and eosinophils can

participate in many immune processes, such as Ag presentation

and release of stored proinflammatory mediators (e.g., cytokines,

chemokines, reactive oxygen species, lipid mediators, and

granule proteins) (Heul et al., 2019). In the present study, an

allergic asthma mouse model predominantly infiltrated by

eosinophils with OVA and aluminum hydroxide is

successfully constructed. GMK has a critical role in inhibiting

eosinophil infiltration by reducing the eosinophil number and

inhibiting related cytokines, such as IL-5 and IL-13. Imbalances

in Th1/2 and Treg/Th17 cells exist in the allergic asthma model.

The role of GMK in regulating immune balance is first evaluated.

GMK can inhibit eosinophilic asthma by decreasing eosinophil

number, decreasing inflammation index, and reducing airway

resistance. GMK can also make the immune balance of Th1/

2 and Treg/Th17 cells normal. GMK has the same function of

DEX in suppressing allergic asthma and has unique advantages in

immune balance reconstruction especially in increasing the

percentage of Th1 cells. This result may be related to the way

the model is constructed and needs to be validated in

combination with clinical practice.

In the plasma metabolism detection, DL-glutamine,

L-pyroglutamic acid, prostaglandin b1, and 3,4-

dihydroxyhydrocinnamic acid are initially identified as

biomarkers associated with Th1/2 and Treg/Th17 immune

balance on the basis of reducing eosinophil number, inhibiting

Ag-specific IgE antibody, and reducing inflammation

induction. Glutamine can suppress allergic airway

inflammation through the upregulation of MAPK

phosphatase-1, which is consistent with our results (Kim

et al., 2022). ILC2s predominantly participate in the

physiopathology of allergic diseases especially eosinophilic

asthma (Maggi et al., 2021). Prostaglandin E2 can inhibit

the production of IL-5 and IL-13 and the amplification of

ILC2 in vitro (Zhou et al., 2018). At present, there is no report

that prostaglandin b1 and 3,4-dihydroxyhydrocinnamic acid

are involved in the treatment of allergic asthma. They may be a

new strategy for the treatment of allergic asthma. While until

now, there are few study focus on the relationship between gut

microbiota and plasma metabolites, and the relationship

between gut microbiota, plasma metabolites and

the function of T cells, they will be a new research

direction for us.

Intestinal microbiota can affect the immune response and

physiology of allergic asthma, and also affect the activity and

number of T cell subsets including Th1, Th2, Th17 and

effector/memory T lymphocytes (Heul et al., 2019). Study

shows Klebsiella/Bifidobacterium in early life is correlate with

later development in paediatric allergy (Low et al., 2017).

Genus_ Corynebacterium in the nasopharynx (NP) impacts

severity of lower respiratory infection and risk of asthma

development (Teo et al., 2015). T lymphocyte activation is

dependent on glutamine, which is essential nutrient in the
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activation of naive T cells (Carr et al., 2010). Prostaglandin e2

(PGE2) can regulate immune response, such as it can

modulate local attraction and degranulation of mast cells

(Hu et al., 1995; Weller et al., 2007), it plays essential role in

activation and migration of DC cells (Kalinski et al., 1998), it

can also inhibit activation and expansion of naive T cells

(Muthuswamy et al., 2010). Moreover, PGE2 can influence

Th1 and Th2 response (Betz and Fox, 1991; Kapsenberg et al.,

1999), differentiation of Treg and Th17 cells (Muthuswamy

et al., 2008; Boniface et al., 2009), which is important in

allergic asthma. All these results is consistent with our results

and can support our preliminary conclusions, while it still

need further experimental verification in the future study.

The oral administration of Clostridium can reduce OVA-

induced allergic airway inflammation in a mouse model,

whereas it is only associated with airway resistance and

Th1 cells in our study (Juan et al., 2017). At present, we

focus our research on the biomarkers of genus_Muriculum,

genus_klebsiella, and genus_Desulfovibrio.

Genus_Desulfovibrio may influence Treg/Th17 balance in

ulcerative colitis (Cui et al., 2018). Interestingly, DL-

glutamine, L-pyroglutamic acid, prostaglandin b1,

prostaglandin e2, and 3,4-dihydroxyhydrocinnamic acid

are associated with genus_Muriculum; prostaglandin e2 is

associated with genus_Desulfovibrio; and DL-glutamine,

L-pyroglutamic acid, prostaglandin b1, prostaglandin e2,

and 3,4-dihydroxyhydrocinnamic acid are associated with

genus_klebsiella. The above results are studied, and they may

be a new strategy to treat allergic asthma. While, until now

there are none research about the DL-glutamine,

L-pyroglutamic acid, prostaglandin b1, prostaglandin e2,

and 3,4-dihydroxyhydrocinnamic acid associated with

genus_Muriculum. 1,5-anhydro-d-sorbitol is associated

with Treg/Th17 cell balance in allergic asthma mouse

model (Zhou et al., 2022). There are none research based

on the penh value associated them. Our future research will

be conducted on the above basis. Given the limitations, in the

future study, it should be combined with clinical results.

Besides that, the research will also focus on other allergic

asthma model like neutrophilic asthma induce by HDM or

other inducer.
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