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PARP (poly ADP-ribose polymerase) family is a crucial DNA repair enzyme that

responds to DNA damage, regulates apoptosis, and maintains genome stability;

therefore, PARP inhibitors represent a promising therapeutic strategy for the

treatment of various human diseases including COVID-19. In this study, a multi-

task FP-GNN (Fingerprint and Graph Neural Networks) deep learning

framework was proposed to predict the inhibitory activity of molecules

against four PARP isoforms (PARP-1, PARP-2, PARP-5A, and PARP-5B).

Compared with baseline predictive models based on four conventional

machine learning methods such as RF, SVM, XGBoost, and LR as well as six

deep learning algorithms such as DNN, Attentive FP, MPNN, GAT, GCN, and

D-MPNN, the evaluation results indicate that the multi-task FP-GNN method

achieves the best performance with the highest average BA, F1, and AUC values

of 0.753 ± 0.033, 0.910 ± 0.045, and 0.888 ± 0.016 for the test set. In addition,

Y-scrambling testing successfully verified that the model was not results of

chance correlation. More importantly, the interpretability of the multi-task FP-

GNN model enabled the identification of key structural fragments associated

with the inhibition of each PARP isoform. To facilitate the use of the multi-task

FP-GNN model in the field, an online webserver called PARPi-Predict and its

local version software were created to predict whether compounds bear

potential inhibitory activity against PARPs, thereby contributing to design and

discover better selective PARP inhibitors.
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Introduction

Poly ADP-ribose polymerases (PARPs), an ancient protein

family of 17 members, are key components of the DNA damage

response in cells. Since an important study published in

2005 showed that tumor cells missing BRCA-1 or BRCA-2,

critical tumor suppressor proteins involved in double-strand

DNA break (DSB) repair via homologous recombination

(HR), are more vulnerable to PARP family DNA repair

enzyme inhibitors (Farmer et al., 2005), which has brought

PARP inhibitors into the spotlight in the treatment of DNA

repair-deficient tumors. The basic mechanism of PARP

inhibitors is synthetic lethality, which refers to the occurrence

of cell death caused by the simultaneous inactivation of two non-

lethal genes. PARP-1, the primary target of PARP inhibitors, is

involved in the repair of single-strand DNA breaks (SSBs).

Nevertheless, PARP-1 suppression is not lethal since the DNA

damage created by these drugs may be repaired by other DNA

repair mechanisms, including HR. In the absence of BRCA1/

2 and therefore a faulty HR, the PARP inhibitors-induced DNA

lesions cannot be repaired, resulting in cytotoxicity (Mateo et al.,

2019). Due to its inherent mechanism of action, PARP inhibitors

are effective for the treatment of malignancies caused by BRCA

mutations in the germline and HR deficiencies, including breast,

ovarian, pancreatic, prostate, endometrial, and bile duct

carcinoma cancers, particularly in patients with refractory

tumors such as well-differentiated ovarian cancer and triple-

negative breast cancer (TNBC).

PARP-1 catalyzes almost all intracellular PAR (de Murcia

et al., 1997), which undertakes more than 90% of the PARP

family functions in cells. However, intensive studies of the PARP

family have revealed that other members of the PARP family play

critical roles in DNA repair, gene stability, metabolism, and

telomere function, making them possible therapeutic targets.

For example, PARP-2 is a potential anticancer target due to

its important roles in DNA repair, cell cycle regulation,

metabolism, and angiogenesis (Ali et al., 2016). PARP-2 can

also act as a transcriptional regulator, which plays an essential

role in maintaining metabolic homeostasis (Bai et al., 2011).

Furthermore, PARP-5A and PARP-5B play critical roles in the

maintenance of telomeres, WNT signaling, and spindle assembly

(Hsiao and Smith, 2008). Currently, four PARP inhibitors

including Olaparib, Rucaparib, Niraparib, and Talazoparib

have been authorized by the U.S. Food and Drug

Administration (FDA) (Kim et al., 2021), which are all used

for the treatment of cancers. More importantly, an increasing

number of studies suggest that PARP inhibitors exhibit great

potential in the treatment of non-neoplastic indications, such as

ischemia (Eliasson et al., 1997), ischemia-reperfusion injury

(Zingarelli et al., 1998), inflammation (Wang et al., 2013),

neurological injury (Stoica et al., 2014), vascular disease

(Wang et al., 2019, 2), diabetes (Masutani et al., 1999), acute

lung injury (Szabo et al., 2020), as well as pulmonary fibrosis

(Lucarini et al., 2017). Notably, recent studies have shown that

PARP inhibitors such as CVL218, currently in Phase I clinical

trials, have the potential to inhibit severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) replication (Ge et al.,

2021, 19) and to combat the life-threatening sequelae of

coronavirus disease 2019 (COVID-19) through multiple

mechanisms (Curtin et al., 2020). However, these approved

PARP inhibitors suffer certain limitations in clinical use,

including toxicities (LaFargue et al., 2019), selectivity issues

(known as off-target effects) (Antolín and Mestres, 2014), as

well as the emergence of drug resistance (Mateo et al., 2019; Li

et al., 2020). Accordingly, there is an urge to discover new PARP

inhibitors for the treatment of tumor or non-tumor diseases.

Computational approaches have been used to identify or

explore structure-activity relationships and atomic-level

mechanisms of PARP inhibitors. For example, Hannigan et al.

employed structure (docking)-based virtual screening (VS) for

the discovery of five PARP-1 inhibitors with new scaffolds

(Hannigan et al., 2013). In 2021, Niu and coworkers

conducted an integrated VS protocol of pharmacophore

modeling and molecular docking to identify a new dual

tubulin/PARP-1 inhibitor (called TP-3) that displayed

superior in vitro antiproliferative activities against human

cancer cells, such as breast, liver, ovarian, and cervical

cancers, and in vivo antitumor activity in the MDA-MB-

231 xenograft model (Zheng et al., 2021). In addition,

quantitative structure–activity relationships (QSAR) method

was also used to study the correlation between various

Benzimidazole Carboxamide (Riahi et al., 2008; Zeng et al.,

2011; Sharma, 2016; Abbasi-Radmoghaddam et al., 2021)

derivatives and their PARP-1 inhibitory activities, which could

be utilized to predict or design better PARP-1 inhibitors.

Furthermore, Kirubakaran et al. (2014) proposed the

structure- and ligand-based virtual screening to explore novel

PARP-5A inhibitors. Alam and coworker developed a field point

based quantitative structure-activity relationship model for the

identification of selective flavone ligands targeting PARP-5A and

PARP-5B (Alam and Khan, 2019). These reported computational

models and protocols can accelerate the exploration of the

mechanism of action of specific scaffolds and the discovery of

new PARP inhibitors. However, due to the high sequential

homology and structural similarity of binding active sites

across the PARP family, it is difficult to identify highly

selective molecules for a specific PARP isoform through

structure-based VS methods. Besides, current QSAR models

have limited scalability because they are based on solely or

few scaffolds, making it too hard to design or predict PARP

inhibitors with other scaffolds. Given the significant sequential

homology and structural similarity of binding active sites

throughout the PARP family, it is conceivable that a

multitasking model may simultaneously identify inhibitors for

four isozymes, leading to improved prediction accuracy. For

example, Cai et al. (2019) established a multitask deep neural
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network (DNN) framework for comprehensive assessment of

hERG blockers, which achieved higher predictive accuracy

compared to other baseline models. In 2021, Nguyen-Vo et al.

(2021) developed iCYP-MFE, a computational framework for

accurately predicting the inhibitory activity of molecules against

five CYP isoforms (1A2, 2C9, 2C19, 2D6, and 3A4).

In the present study, we constructed an interpretable model

based on a multi-task FP-GNN deep learning (DL) framework

that allows for the simultaneous and accurate prediction of active

molecules against four PARP subtypes (Figure 1). In addition, we

exploited the interpretability of the multi-task FP-GNNmodel to

uncover and visualize the key components of inhibitors with

multiple scaffolds of PARPs inhibitory activity. Finally, our

online VS platform (https://parpipredict.idruglab.cn) and

python version software (https://github.com/idruglab/PARPi-

Predict) could facilitate the identification and modification of

selective PARP inhibitors.

Materials and methods

Dataset collection and preparation

The modelling datasets of PARPs inhibitors were collected

from various sources such as BindingDB (Liu et al., 2007),

PubChem (Kim et al., 2020), and ChEMBL (Mendez et al.,

2019) databases (accessed 01 Jan 2021). The raw data were

processed as the following steps: 1) kept compounds with the

definitely bioassay values (assay type = B), such as IC50, EC50,

Kd, or Ki, while compounds with no bioactivity data were

discarded; 2) conversion of bioactive units (e.g., g/mL, M, and

nM) to standard units in μM; 3) when a molecule has multiple

biological activity data points, the average of these reported

bioassay values is used as the final value; 4) duplicates and

molecules with a molecular weight greater than 1,000 Da were

removed; 5) each compound in the datasets was standardized

to a common representation using the Python Standardizer

package (https://github.com/flatkinson/standardiser) with

default parameters, including removing counter-ions,

solvent components, and salts, adding hydrogen atoms, and

neutralizing charge by adding or subtracting atoms). To

ensure the reliability and scalability of the models, the

number of molecules in the modelling dataset of each

PARP isoform is limited to eater than 300, resulting in a

final dataset containing 4,539 unique compounds involving

5,770 bioactive data points for four PARP subtypes

(i.e., PARP-1, PARP-2, PARP-5A, and PARP-5B). Finally,

molecules with biological activity values (e.g., pIC50, pEC50,

pKi, and pKd) ≥ 6 were labeled as actives, and vice versa. Each

dataset was randomly partitioned into three sub-datasets:

FIGURE 1
Model construction pipeline.
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training (80%), validation (10%), and test (10%) sets.

Supplementary Table S1 provides detailed information on

the number of active and inactive compounds in the

training, validation, and test sets.

Multi-task FP-GNN deep learning
framework and model training protocol

In the present study, a multi-task FP-GNN model

(Figure 1) was developed to establish classification models

for predicting active molecules against these four PARPs.

Briefly, the FP-GNN algorithm simultaneously learns

molecular graph information and fixed prior molecular

fingerprints information to better predict molecular

properties, including molecular physicochemical properties,

biological activities, and ADMET properties. Graph-based

module of FP-GNN model employs a spatial graph neural

network (GNN) with attention mechanism to acquire

structural information in molecular graphs, while the

fingerprint-based network module of FP-GNN uses an

artificial neural network (ANN) to learn information from

two substructure-based molecular fingerprints (PubChem FP

and MACCS FP) as well as a pharmacophore-based

fingerprint (Pharmacophore ErG FP). FP-GNN finally uses

fully convolutional networks (FCN) to fuse the features from

both GNN and FPN, and then outputs the prediction results of

molecular properties. FP-GNN DL algorithm achieves state-

of-the-art (SOTA) performance on multiple molecular

property prediction tasks (Cai et al., 2022), and is freely

available at (https://github.com/idrugLab/FP-GNN).

However, most datasets in drug discovery have substantial

connections between subtasks. Data association information

between subtasks (e.g., various PARP subtypes) will be lost if

just a single task model is employed for the training test.

Therefore, we proposed the multi-task FP-GNN model to

prevent data loss from subtasks. The multi-task FP-GNN

adopts the parameter sharing multi-task learning method,

inherits the molecular graph and molecular fingerprints

modules from the single task model, and extends the fusion

module into a multi-task output module. During training the

multi-task FP-GNN model in this study, Bayesian

optimization method was used to optimize the following

hyperparameters: Dropout (0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3,

0.35, 0.4, 0.45, 0.5, 0.55, 0.6), dropout gat (0, 0.05, 0.1, 0.15, 0.

2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6), dim (300, 350, 400,

450, 500, 550, 600), gat scale (0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8),

nheads (2, 3, 4, 5, 6, 7, 8), nhid (40, 45, 50, 55, 60, 65, 70, 75,

80). Among these hyperparameters, dropout and dropout gat

represent the dropout rates of fingerprint networks and graph

neural networks, respectively. The number of multi-head

attentions and the hidden size of attentions are controlled

by nheads and nhid in the attention mechanism. The hidden

size of fingerprint networks is affected by hyperparameter

dim. Gat scale is used to determine the ratio of GNN and FPN

in FP-GNN for tunning their weights. To eliminate

randomness and ensure the generalization capacity of our

models, we performed 10 independent runs with different

seeds to train and evaluate the multi-task FP-GNN models

and then computed the average values of evaluation metrics as

the results.

The baseline machine learning and deep
learning algorithms

To further fairly compare the multi-task FP-GNN model

in the PARPs inhibitors prediction tasks, we established

predictive models using four conventional machine

learning (CML) algorithms, i.e., random forests (RF)

(Breiman, 2001), support vector machine (SVM) (Cortes

and Vapnik, 1995), extreme gradient boosting (XGBoost)

(Chen and Guestrin, 2016), and logistic regression (LR)

(Davis and Offord, 1997) and six DL algorithms such as

deep neural networks (DNN) (Durstewitz et al., 2019),

Attentive FP (Xiong et al., 2020), D-MPNN (Chemprop)

(Petras et al., 2021), graph attention network (GAT)

(Velickovic et al., 2018), graph convolutional networks

(GCN) (Duvenaud et al., 2015), and message passing

neural networks (MPNN) (Gilmer et al., 2017). A brief

introduction to these CML and DL methods can be found

elsewhere (Dreiseitl and Ohno-Machado, 2002; Wang et al.,

2014; Wu et al., 2017; He et al., 2021). In this study, two

commonly used molecular fingerprints including MACCS

keys (Durant et al., 2002) (MACCS, 166 bits) and Morgan

fingerprint (Rogers and Hahn, 2010) (termed ECFP_4,

1,024 bits) were employed to construct CML and DNN

models. Other DL methods (GAT, Chemprop, Attentive

FP, GCN, and MPNN) implemented in DeepChem

software used molecular graphs as input features.

MolGraphConvFeatureizer was used to produce molecular

graphs for the GAT, Attentive FP, and MPNN models, while

the convmolfeatureizer module was used to calculate

molecular graphs for the GCN model using (Duvenaud

et al., 2015). All Fingerprints and graph features were

generated based on the smiles of compounds using RDKit

software.

The RF, SVM, and LR models were created using the

scikit-learn python package (https://github.com/scikit-learn/

scikit-learn, version: 0.24.1) (Pedregosa et al., 2018); the

XGBoost models were developed using the XGBoost python

package (https://github.com/dmlc/xgboost, version: 1.3.3)

(Chen and Guestrin, 2016); and other graph-based DL

models were constructed using the DeepChem Python

package (https://deepchem.io/). All these CML and DL

models, as well as FP-GNN models presented here were
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trained on the CPU (Intel(R) Xeon(R) Silver 4216 CPU at 2.

10 GHz) and GPU (NVIDIA Corporation GV100GL [Tesla

V100 PCIe 32 GB]).

Performance evaluation of models

The performance of the multi-task FP-GNN model as well

as the baseline CML and DL models is evaluated using the

following metrics, including specificity (SP/TNR), sensitivity

(SE/TPR/Recall), accuracy (ACC), F1-measure (F1 score),

Matthews correlation coefficient (MCC), the area under the

receiver operating characteristic (AUC), and balanced

accuracy (BA). The AUC is defined as the area under the

receiver operating characteristic curve (ROC) that plots TPR

vs. FPR at different classification thresholds. Six evaluation

metrics are defined as follows:

SP � TN

TN + FP
(1)

SE � TP

TP + FN
(2)

ACC � TP + TN

TP + TN + FP + FN
(3)

F1 � 2 × Precision × Recall

Precision + Recall
� 2 × TP

2 × TP + FN + FP
(4)

MCC � TP × TN − FN × FP
��������������������������������������������(TP + FN) × (TP + FP) × (TN + FN) × (TN + FP)√

(5)
BA � TPR + TNR

2
� SE + SP

2
(6)

The number of true positives, true negatives, false positives,

and false negatives is represented as TP, TN, FP, and FN,

respectively. The AUC metric was computed using the scikit-

learn python package. All models were optimized and selected

based on the BA value. The best-performing multi-task FP-GNN

model was saved and unitlized for the development of the online

VS platform (called PARPi-Predict) and python version large-

scale VS software.

Model applicability domain

Typically, the Organization for Economic Cooperation and

Construction (OECD) recommends the establishment of an

applicability domain (AD) for QSAR models, which allows

users to evaluate uncertainty in the prediction of a chemical

based on how similar it is to the training compounds used in

model development. In this work, we used a structural similarity-

based approach called the Euclidean distance-based method

(DM) for AD analysis. Morgan fingerprints is used to depict

the chemical structures. This procedure will eventually yield a

distance threshold (DT) that can be used to assess whether the

chemical is inside the AD of the model. The detailed DT is

expressed as follows:

DT � dave + Z × θ (7)
Where dave is the average Euclidean distance between each

compound in the training set and its nearest k compounds, θ is

the corresponding standard deviation, and Z is an optional

parameter representing the significance level. First, we calculate

the fingerprints of the test set and the training set by RDKit software,

and then we calculate the average of the Euclidean distance. dave and

θ are obtained from the Euclidean distances of the k nearest

neighbors for each molecule in the training set. Finally, the

Euclidean distance between each molecule in the test set and the

nearest neighbor molecule in the training set is calculated. If the

distance exceeds the threshold ofDT, the compound is considered to

be outside the domain (OD). Otherwise, it has fallen into the domain

(ID). Herein, we used the test set to find suitable parameters k and Z,

and then determined the threshold of the AD of themodel (Horvath

et al., 2010).

FIGURE 2
(A) Number of compounds in each PARP isoform dataset. (B)
Percentage of active and inactive compounds in each PARP
isoform.
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Results

Dataset analysis and model construction

According to the above-predefined criteria, four PARP

isoforms (PARP-1, PARP-2, PARP-5A, and PARP-5B,

Figure 2A) datasets were collected and filtered from the

PubChem, ChEMBL, and BindingDB databases. Details on the

four PARP isoforms and their corresponding target associated

compound datasets are listed in Table 1. 4,539 unique

compounds involved 5,770 bioassay data points for these four

PARP subtypes. Among these target-compound associations,

4,720 compounds were labeled as actives (positives) and

1,050 compounds were labeled as inactives (negatives). As

shown in Figure 2B, the active compounds accounted for

between 65.78% and 85.79% in the four PARP isoforms,

implying that there is a data imbalance in the PARP datasets.

Due to the natural, we did not add any theoretical decoys to

deliberately balance the PARP modelling datasets in this study

(Wang et al., 2017), although they may not be the best.

The structural diversity and large chemical space of the

molecules in the modelling datasets can help to build accurate

and robust predictive models (Wang et al., 2016b; Luo et al.,

2019; Guo et al., 2020). According to Bemis Murcko scaffold

analysis (Bemis and Murcko, 1996), the proportion of the

scaffolds in the PARP inhibitors modelling datasets ranged

from 17.55% to 26.70% (Table 1), indicating considerable

structural diverse of compounds within each PARP subtype.

Furthermore, compounds in the training, validation, and test sets

have a wide range of molecular weight (MW, 121.139–725.683)

TABLE 1 The modelling datasets of PARPs inhibitors.

Target UniProt ID No. of compounds No. of scaffolds Scaffolds/compounds (%)

PARP-1 P09874 3,777 663 17.55

PARP-2 Q9UGN5 412 110 26.70

PARP-5A O95271 849 175 20.61

PARP-5B Q9H2K2 732 159 21.72

FIGURE 3
Chemical space analysis of the compounds in (A) PARP-1 (B) PARP-2, (C) PARP-5A, and (D) PARP-5B datasets. Chemical space was defined
using molecular weight (MW, X-axis) and AlogP (Y-axis). MW and AlogP were computed using RDKit software.
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and AlogP (−1.946–8.700) (Figure 3), indicating that the

compounds in the modelling datasets have a broad chemical

space.

Evaluation results of fingerprint-based
predictive models

40 models were constructed based on Morgan and MACCS

fingerprints using four CML algorithms (RF, SVM, XGBoost, and

LR) and one DL DNN method. All models are represented by a

combination of an algorithm and a given molecular

representation (e.g., DNN:Morgan). Detailed hyperparameter

optimization and performance results of these fingerprint-

based predictive models are provided in Supplementary Tables

S2–S4.

As shown in Table 2, the fingerprint-based models achieved

better performance on the test set for each PARP isoform, with

average values of BA, F1 score and AUC greater than 0.65,

0.85 and 0.65, respectively. Taking the average BA value as the

main evaluation metric to take the imbalance of the data into

account, the Morgan-based models showed slightly better overall

predictive performance compared with the MACCS-based

models. Among them, the LR:Morgan models performed the

best with the highest average values of BA (0.735 ± 0.047), SP

(0.554 ± 0.095), and MCC (0.493 ± 0.085). Meanwhile, the LR:

Morgan models ranked first in three of the four PARP subtypes

(PARP-1, PARP-5A, and PARP-5B, Supplementary Table S5;

Figure 4). Furthermore, the DNN:Morgan models also achieved

very competitive performance, with the second-ranked mean BA

value, as well as the highest mean AUC value. In addition,

Supplementary Figure S1 illustrates that there is no significant

difference in the predictive performance of the models generated

by different ML algorithms combined with the same fingerprint.

Evaluation results of graph-based DL
models

Recently, GNN and variants, which utilize molecules as

natural graph structure data, have been developed and widely

used in various drug discovery related tasks. GNN models and

their variations (e.g., GAT, GCN, MPNN, Attentive FP, and

Chemprop) have been reported to achieve SOTA performance in

several molecular property prediction tasks (Wu et al., 2017;

Yang et al., 2019; Xiong et al., 2020).

We therefore used five DL methods (GAT, GCN, MPNN,

Attentive FP, and Chemprop) to create 20 graph-based DL

models for four PARP isoforms. Supplementary Tables S2, S6

provide the detailed hyperparameter setting and performance of

the graph-based DLmodels. As shown in Table 3, compared with

other GNN approaches, GAT had a relatively higher average BA

value (0.673 ± 0.066) for the test sets, but relatively poor other

evaluation metrics. Meanwhile, Chemprop (D-MPNN) achieved

the highest F1, AUC, ACC, and MCC values overall. Similar to

fingerprint-based models, Figure 5; Supplementary Table S6

TABLE 2 The overall predictive performance of fingerprint-based models for the test sets.

Model Test set

ACCa F1b BAc SEd SPe MCCf AUCg

DNN::Morgan 0.841 ± 0.059 0.899 ± 0.049 0.703 ± 0.057 0.930 ± 0.034 0.476 ± 0.109 0.468 ± 0.106 0.873 ± 0.043

XGBoost::Morgan 0.854 ± 0.049 0.909 ± 0.042 0.700 ± 0.069 0.947 ± 0.039 0.454 ± 0.155 0.486 ± 0.120 0.861 ± 0.050

SVM::Morgan 0.844 ± 0.063 0.901 ± 0.054 0.692 ± 0.074 0.936 ± 0.051 0.448 ± 0.163 0.453 ± 0.129 0.854 ± 0.050

RF::Morgan 0.849 ± 0.049 0.908 ± 0.041 0.655 ± 0.095 0.965 ± 0.034 0.344 ± 0.212 0.429 ± 0.142 0.870 ± 0.051

LR::Morgan 0.846 ± 0.052 0.901 ± 0.045 0.735 ± 0.047 0.917 ± 0.037 0.554 ± 0.095 0.493 ± 0.085 0.735 ± 0.047

Average (Morgan) 0.847 0.904 0.697 0.939 0.455 0.466 0.839

XGBoost::MACCS 0.850 ± 0.053 0.904 ± 0.049 0.691 ± 0.075 0.939 ± 0.061 0.443 ± 0.189 0.470 ± 0.104 0.853 ± 0.046

DNN::MACCS 0.846 ± 0.038 0.904 ± 0.035 0.681 ± 0.087 0.944 ± 0.032 0.417 ± 0.199 0.448 ± 0.127 0.832 ± 0.041

SVM::MACCS 0.846 ± 0.057 0.903 ± 0.049 0.680 ± 0.067 0.946 ± 0.044 0.414 ± 0.157 0.444 ± 0.107 0.817 ± 0.047

RF::MACCS 0.841 ± 0.062 0.900 ± 0.053 0.673 ± 0.063 0.943 ± 0.049 0.403 ± 0.148 0.442 ± 0.099 0.841 ± 0.044

LR::MACCS 0.835 ± 0.031 0.897 ± 0.028 0.695 ± 0.058 0.920 ± 0.023 0.470 ± 0.117 0.435 ± 0.116 0.695 ± 0.058

Average (MACCS) 0.844 0.902 0.684 0.938 0.429 0.448 0.808

aACC, accuracy.
bF1, F1-measure.
cBA, balanced accuracy.
dSE, sensitivity.
eSP, specificity.
fMCC, matthews correlation coefficient.
gAUC, the area under receiver operating characteristic.

Bold font illustrates the models that outperformed all other models.
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show that no GNN method can achieve the optimal prediction

results on all or most PARP subtypes. For example, when the BA

value is used as the final evaluation metric to select the best-

performing model, the MPNN, Chemprop, GAT, and GCN

models performed the best on PARP-1, PARP-2, PARP-5A,

and PARP-5B, respectively. In addition, it is clear that the

FIGURE 4
Performance of fingerprint-based prediction models on the test sets of PARP-1 (A), PARP-2 (B), PARP-5A (C), and PARP-5B (D).

TABLE 3 The overall predictive performance of graph-based DL models for the test sets (sorted by BA value).

Methods Test set

ACCa F1b BAc SEd SPe MCCf AUCg

GAT 0.801 ± 0.090 0.861 ± 0.086 0.673 ± 0.066 0.871 ± 0.096 0.475 ± 0.124 0.399 ± 0.129 0.803 ± 0.051

GCN 0.822 ± 0.096 0.881 ± 0.087 0.667 ± 0.078 0.914 ± 0.091 0.420 ± 0.160 0.398 ± 0.153 0.823 ± 0.079

Chemprop 0.848 ± 0.047 0.904 ± 0.045 0.664 ± 0.115 0.955 ± 0.053 0.372 ± 0.269 0.462 ± 0.144 0.832 ± 0.052

Attentive FP 0.819 ± 0.077 0.883 ± 0.064 0.649 ± 0.093 0.920 ± 0.067 0.378 ± 0.208 0.421 ± 0.120 0.799 ± 0.065

MPNN 0.826 ± 0.083 0.893 ± 0.063 0.630 ± 0.106 0.956 ± 0.038 0.303 ± 0.226 0.404 ± 0.141 0.783 ± 0.065

aACC, accuracy.
bF1, F1-measure.
cBA, balanced accuracy.
dSE, sensitivity.
eSP, specificity.
fMCC, matthews correlation coefficient.
gAUC, the area under receiver operating characteristic.

Bold font illustrates the models that outperformed all other models.
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graph-based DL models are far inferior to the fingerprint-based

ML models. The inherent self-learning mechanism of graph-

based DL methods suffers from insufficient PARP modelling

datasets, especially for PARP-2, PARP-5A, and PARP-5B

isoforms (Table 1), limiting their performance.

Evaluation results of multi-task FP-GNN
model

FP-GNN, a new DL architecture created in our Lab, can

operate over a hybrid molecular representation of molecular

graphs and fingerprints to enhance molecular property

prediction (Cai et al., 2022). However, there may be

correlations between subtasks of datasets in the field of drug

discovery and development, such as PARP subtypes. To solve this

problem, we proposed a multi-task FP-GNN model to lessen the

risk of loss of data association information between sub-tasks,

with the aim of further improving performance on the modelling

datasets of four PARP isoforms. The detailed hyperparameter

setting and performance of the multi-task FP-GNN and the

corresponding single-task FP-GNN models are summarized in

Supplementary Tables S2, S7, respectively.

As shown in Table 4, the average values of seven evaluation

metrics of the multi-task FP-GNN model for the test sets are

significantly higher than that of the single-task FP-GNN model,

demonstrating that the multi-task FP-GNN model outperform

the single-task FP-GNN model overall in predicting the

inhibitory activity of molecules against four PARP targets.

Specifically, the multi-FP-GNN model can simultaneously

improve the prediction performance of inhibitors of four

PARP subtypes (Figure 6), especially for PARP-2 (Figure 6B),

PARP-5A (Figure 6C), and PARP-5B (Figure 6D). Data point

distribution analysis further revealed that four PARP isoforms

share a large number of common molecular entities (Figure 7),

which explains the outstanding performance of the multi-task

FP-GNN model.

Comparison performance of fingerprint-
based, graph-based, FP-GNN, and multi-
task FP-GNN models

The comprehensive evaluation results of the above-

established prediction models indicated that the multi-task

FP-GNN method achieved the best performance, with the

FIGURE 5
Performance of graph-based DL models on the test sets of PARP-1 (A), PARP-2 (B), PARP-5A (C), and PARP-5B (D).
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highest average BA, F1, and AUC values of 0.753 ± 0.033, 0.910 ±

0.045, and 0.888 ± 0.016 for the test sets (Figure 8; Supplementary

Table S8). The detailed multi-task FP-GNN prediction model for

each PARP isoform is provided in Table 5. Such results indicate

that the multi-task FP-GNN algorithm shows superiority in

predicting the biological activity of molecules. Y-scrambling

test was performed to prove that the results of the multi-task

FP-GNN model were not due to a chance connection.

TABLE 4 The overall predictive performance of the single-task FP-GNN and multi-task FP-GNN model.

Model Test set

ACCa F1b BAc SEd SPe MCCf AUCg

Single-task FP-GNN 0.845 ± 0.056 0.899 ± 0.053 0.710 ± 0.066 0.921 ± 0.059 0.498 ± 0.159 0.464 ± 0.123 0.862 ± 0.040

Multi-task FP-GNN 0.862 ± 0.046 0.910 ± 0.045 0.753 ± 0.033 0.936 ± 0.044 0.570 ± 0.095 0.556 ± 0.042 0.888 ± 0.016

aACC, accuracy.
bF1, F1-measure.
cBA, balanced accuracy.
dSE, sensitivity.
eSP, specificity.
fMCC, matthews correlation coefficient.
gAUC, the area under receiver operating characteristic.

Bold font illustrates the models that outperformed all other models.

FIGURE 6
Performance of single-task FP-GNN andmulti-task FP-GNNmodels on the test sets of PARP-1 (A), PARP-2 (B), PARP-5A (C), and PARP-5B (D).
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Supplementary Figure S2 illustrates that the BA, F1, and AUC

values of the multi-task FP-GNNmodel were significantly higher

than those of the Y-scrambledmodels, confirming that the results

were not chance correlations.

Interpretation of the multi-task FP-GNN
model

To gain insight into the multi-task FP-GNN model for the

prediction of PARP inhibitors, we performed an interpretability

analysis of its GNN and FPN modules. Taking a selective PARP-

5A/5B inhibitor (CHEMBL2419697, Figure 9A) as an example

(PARP-5A, IC50 = 0.0645 μM; PARP-5B, IC50 = 0.023 μM;

PARP-1, IC50 = 10.4 μM; PARP-2, IC50 = 3.15 μM) (Shultz

et al., 2013), the multi-task FP-GNN architecture can calculate

the attention of adjacent atoms and map it to the bonds

connected to the atoms. A higher attention coefficient for a

given molecule represents a greater contribution of chemical

fragments to the prediction of molecular biological activity. The

portions of the molecule colored more darkly were more relevant

in predicting whether the molecule could inhibit PARP-5A

activity, whereas the light-colored parts are less critical for the

inhibition of PARP-5A activity (Figure 9A). To further analyze

the mechanism of inhibitory effects of these chemical fragments

on PARP targets, molecular docking was used to investigate the

bindingmodes of the molecule with PARP-5A, PARP-5B, PARP-

1, and PARP-2. The chemical structure of compound

CHEMBL2419697 was chemically standardized (including

ionizing at the pH range from −2.0 to 7.0 using Epik,

choosing desalt and generate tautomers option, retaining

specified chiralities, and optimization based on

OPLS_2005 force field) by means of the LigPrep module in

Maestro (version 9.4, Schrödinger). The PARPs proteins were

manipulated using the “Protein Preparation Wizard” workflow

in Maestro with default parameters, including the removal of all

water molecules, protonation, and optimization based on the

OPLS_2005 force field (Wang et al., 2016a). Re-docking studies

demonstrate that the Glide docking method is qualified for

docking small molecules to the PARP proteins

FIGURE 7
Common molecules in four PARP isoforms.

FIGURE 8
Comparison performance of all established predictive
models. (A), (B), and (C) represent the average BA, F1, and AUC
values of the test sets.
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(Supplementary Table S9). Previous studies have shown that

compounds form interactions with key residues, such as

Gly863 and Ser904 in PARP-1 (Tomassi et al., 2020),

Gly429 and Ser470 in PARP-2 (Papeo et al., 2015),

Asp1198 and His1201 in PARP-5A (Shultz et al., 2012), as

well as Asp1045, Tyr1071, Gly1032, His1048, and Tyr1060 in

PARP-5B (Karlberg et al., 2010; Shirai et al., 2019; Kinosada et al.,

2021), which are necessary to maintain their inhibitory activity

against PARPs. As shown in Figure 9B, the molecule can form

three H-bonds with Asp1198 and His1201 as well as a π-π
interaction with His1201 in the binding pocket of PARP-5A.

Moreover, the 4-fluorophenyl moiety can form hydrophobic

interactions with the surrounding hydrophobic amino acids

such as Ile1192, Ala1191, and Phe1188 (Supplementary Figure

S3A). Meanwhile, it also forms three H-bond interactions with

Gly1032, Asp1045, and Tyr1060 as well as π-π interactions with

Tyr1071 and His1048 in PARP-5B (Figure 9C). Furthermore, the

4-fluorophenyl moiety can form hydrophobic interactions with

the surrounding hydrophobic amino acids such as Ile1039,

Ala1038, and Phe1035 (Supplementary Figure S3B). However,

Supplementary Figure S4 shows that the molecule fails to form

visible interactions with key residues of PARP-1 (e.g., Gly863 and

Ser904) and PARP-2 (e.g., Gly429 and Ser470). Obviously, the

chemical fragments in red (Figure 9A) interact with key amino

acids of PARP-5A/5B (Figures 9B,C), demonstrating that the

high attention highlighted in the red portion from the multi-task

FP-GNN model was consistent with the binding modes analysis

results.

In addition to the GNN module, we investigated the

interpretation of the FPN module on PARP modelling

datasets. The 20 most significant bits are shown in

Supplementary Table S10, which may facilitate in the design

and optimization of new PARP-selective inhibitors. Among

these top crucial bits, there are 15 bits coming from the

Pharmacophore ErG FP. Such results illustrate that the

Pharmacophore ErG FP plays an important role in the

prediction of PARP inhibitors (Supplementary Table S10).

For clarity, we simplified the original structure of the active

molecule (CHEMBL2419697, Figure 9A) according to the

concept of ErG (Stiefl et al., 2006) (Supplementary Figure

S5). Supplementary Figure S6 shows that the substructures

represented by the 4th, 5th, 12th, 13th, 14th, and 19th bits

are important components of this active molecule.

Furthermore, the chemical fragments of interest in the FPN

module (Supplementary Figure S6) interact with key residues of

PARP-5A/5B (Figures 9B,C). Therefore, our multi-task model

can capture the important chemical fragments from the FPN

module, which can intuitively explain the prediction results of

the model.

Model AD analysis

We experimented with various k and Z values and

eventually obtained the corresponding number of OD

compounds (Supplementary Table S11). It can be seen that

the subsequent increase in Z values and the stay in k resulted

in a continual drop in compounds outside the AD. Posteriorly,

the multi-task FP-GNN model was used to predict the ID and

OD chemicals in the test set at various k and Z values, and the

detailed performance of PARP dataset is presented in

Supplementary Table S12. We noticed that when k = 2, Z =

0.4, and k = 3, Z = 0.2, the overall evaluation metrics of the

model were improved, and it was able to distinguish ID and

OD compounds of the PARP dataset to the maximum extent

(the predictive performance of ID compounds was

significantly better than that of OD compounds). These

findings indicated that our defined AD for PARP dataset is

suitable for the proposed multi-task FP-GNN model. Notably,

the multi-task FP-GNN model can predict not only ID

compounds but also OD compounds well in the prediction

of PARP inhibitors (Supplementary Table S12). Undoubtedly,

TABLE 5 The detailed performance of the multi-task FP-GNN model for each PARP isoform.

Target Model Test set

ACCa F1b BAc SEd SPe MCCf AUCg

PARP-1 Multi-task FP-GNN 0.897 0.938 0.788 0.952 0.623 0.615 0.911

PARP-2 Multi-task FP-GNN 0.795 0.843 0.774 0.871 0.677 0.558 0.888

PARP-5A Multi-task FP-GNN 0.871 0.923 0.728 0.958 0.497 0.525 0.877

PARP-5B Multi-task FP-GNN 0.886 0.934 0.723 0.962 0.483 0.525 0.876

aACC, accuracy.
bF1, F1-measure.
cBA, balanced accuracy.
dSE, sensitivity.
eSP, specificity.
fMCC, matthews correlation coefficient.
gAUC, the area under receiver operating characteristic.
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this phenomenon illustrates the advantages of a multi-task

learning strategy that exploits the linkages between various

subtasks while recognizing their distinctions. Even if a

compound lacks information from a task, it can potentially

increase the fault tolerance of the model by identifying

missing data via eavesdropping or hint mechanism.

Webserver construction and use

To facilitate the design and discovery of novel selective PARP

inhibitors by experts or non-experts in the field, an online

platform, termed as PARPi-Predict (https://parpipredict.

idruglab.cn), was created based on the multi-task FP-GNN

FIGURE 9
Interpretative analysis of the predicted results of the active compound (CHEMBL2419697) with high selectivity for PARP-5A and PARP-5B in the
multi-task FP-GNN model. (A) Mapping the attention coefficients to the active molecule through the GNN module in the multi-task FP-GNN
architecture to highlight substructures/chemical fragments that contribute significantly to the predicted outcomes. (B) and (C) represent the
predicted bindingmodes of themolecule to PARP-5A (PDB ID: 3UDD) (Glide-XP docking score: −8.004 kcal/mol) and PARP-5B (PDB ID: 7CE4)
(Glide-XP docking score: −8.602 kcal/mol), respectively. π-π interactions are indicated by green dotted lines, and hydrogen bonds are depicted by
yellow dotted lines. The binding modes were predicted using Glide-XP docking and the figures were generated using PyMOL software (https://
pymol.org/2/).
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model. As shown in Figure 10A, users can draw a structure

online, enter or upload multiple molecules in SMILES format to

estimate inhibitory activity against PARP of interest or all four

isoforms. In addition, a local version executable software (https://

github.com/idruglab/PARPi-Predict) was developed to perform

large-scale VS.

For example, the predicted scores of olaparib (Figure 10B)

were 1.000 and 0.999 for PARP-1 and PARP-2, indicating that

olaparib has a powerful inhibitory effect on PARP-1 and PARP-

2. Meanwhile, olaparib has the lower predicted scores for PARP-

5A (0.496) and PARP-5B (0.415), implying that olaparib may

have slightly or no inhibitory activity against PARP-5A and

PARP-5B (Figure 10B). Olaparib is an FDA-approved dual

PARP-1 (IC50 = 0.005 μM) and PARP-2 (IC50 = 0.001 μM)

inhibitor for the treatment of cancer. Actually, previous study

has shown that olaparib exhibits 300-fold greater inhibitory

activity against PARP-1 than PARP-5A (IC50 ≈ 1.5 μM)

(Menear et al., 2008, 1), demonstrating the accuracy and

usability of the PARPi-Predict webserver.

Conclusion

In this work, we first gathered the modelling datasets for four

human-derived PARP isoforms, including PARP-1, PARP-2,

PARP-5A, and PARP-5B, and then proposed a multi-task FP-

GNN model to predict the inhibitory activity of molecules against

these four PARP isoforms. Compared with the baseline predictive

models, such as 40 fingerprint-based models using ML (i.e., RF,

SVM, DNN, XGBoost, and LR) and 28 graph-based DL models

(i.e., GAT, GCN, Chemprop, Attentive FP,MPNN, and FP-GNN),

the multi-task FP-GNN model achieves the best overall

performance on these four PARP isoforms with the highest

average values of BA (0.753 ± 0.033), F1 (0.910 ± 0.045), and

AUC (0.888 ± 0.016) for the test sets. Y-scrambling testing

confirmed that the results of the multi-task FP-GNN model

were not random correlations. Additionally, the interpretability

of the multi-task FP-GNN model allows researchers to pinpoint

critical structural fragments associated with PARP subtype

inhibition. Finally, an online platform (called PARPi-Predict)

FIGURE 10
(A) The service interface of the PARPi-Predict. (B) The prediction results of Olaparib.
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and its local version software were established on the basis of

current models, which provide a theoretical foundation for the

design and discovery of new selective PARP inhibitors.

In the future, as the number of inhibitors of other PARP

subtypes gradually increases, more predictive models will be built

and added to the platform for the research community. There are

two optimization routes for our future works. On the one hand,

pre-trained methods may have great potential due to the

insufficient quantity and poor quality of biological datasets

including PARPs datasets. Extracting information from a large

dataset before training the target dataset can ensure the prescribed

minimum of prediction on the target dataset. On the other hand,

when training a model on a specific dataset, it is feasible to import

the information of the PARP protein into a modified FP-GNN

model models and then combine features of molecules and the

protein target to predict PARPs inhibitors collectively.
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