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Inflammation is a protective response of the body to an irritant. When an inflammatory
response occurs, immune cells are recruited to the injury, eliminating the irritation. The
excessive inflammatory response can cause harm to the organism. Inflammation has been
found to contribute to cervical cancer if there is a problem with the regulation of
inflammatory response. Cervical cancer is one of the most common malignant tumors
globally, and the incidence tends to be younger. The harm of cervical cancer cannot be
ignored. The standard treatments for cervical cancer include surgery, radiotherapy and
chemotherapy. However, the prognosis for this treatment is poor, so it is urgent to find a
safer and more effective treatment. Natural products are considered excellent candidates
for the treatment of cervical cancer. In this review, we first describe the mechanisms by
which inflammation induces cervical cancer. Subsequently, we highlight natural products
that can treat cervical cancer through inflammatory pathways. We also introduce natural
products for the treatment of cervical cancer in clinical trials. Finally, methods to improve
the anticancer properties of natural products were added, and the development status of
natural products was discussed.
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1 INTRODUCTION

Inflammation is the organism’s protective response to a pathogen or irritant. When an inflammatory
response occurs, chemokines and cytokines are released, which activate innate immunity. Various
immune cells are summoned to the site of injury. When the danger signal is removed, inflammation
is programmed to be disabled. Inflammation could hurt the body if the original stimulus persists or if
it cannot be controlled autonomously (Medzhitov, 2008; Fernandes et al., 2015). In short,
inflammation is a double-edged sword. The organism needs to be able to regulate inflammatory
responses according to actual conditions flexibly. Inflammation is one of the principal determinants
of cancer, and the inflammatory response is also a dominant feature of cancer (Hanahan and
Weinberg, 2011). Inflammatory cells are the prominent members of the tumor microenvironment,
including macrophages, dendritic cells, neutrophils. Cancer cells could also release large amounts of
cytokines and chemokines, which call in immune cells and aggravate inflammation again (Hemmat
and Bannazadeh Baghi, 2019). And this demonstrates the vital link between inflammation and
cancer. It has been found that chronic inflammation could increase the risk of cancer. For example,
chronic bronchitis can increase the risk of lung cancer; the occurrence of pancreatic cancer can be
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induced by chronic pancreatitis; the number of helicobacter
pylori is a principal determining factor of gastric cancer
(Schetter et al., 2009; Sadri Nahand et al., 2020). Inflammation
also plays a crucial role in the mechanism leading to cervical
cancer.

Cervical cancer is the third leading cause of cancer-related
death in women worldwide. The onset of cervical cancer is
starting to get younger. It is a matter that cannot be ignored
(Freddie et al., 2018; Olusola et al., 2019). As the leading cause of
cervical cancer, HPV infects the epithelial cells of the cervix
through sexual contact. The term “persistent human
papillomavirus (HPV) infection” can be traced to two causes:
an imbalance of the cervical-vaginal microbiome and an
inflammatory response. It is the best condition for HPV
infection (Zhou et al., 2021). In addition, as research
continues, other microorganisms may also contribute to
cervical cancer, such as fusobacterium spp., mycoplasma
genitalium, chlamydia trachomatis and herpes simplex virus
(HSV). They induce local inflammatory processes, but they also
increase the chances of persistent HPV infection (Golais and
Mrazova, 2020; Sudomova et al., 2021; Zhou et al., 2021).
Although the immune system could clear most HPV
infections, it will lead to an unfortunate beginning once HPV
has completed its life cycle in the host cell (Kemp et al., 2010;
Shafabakhsh et al., 2019). Immune cell infiltration can be caused
by persistent HPV infection, contributing to cervical cancer if
not diagnosed and treated correctly (Zheng et al., 2015). Patients
with early-stage cervical cancer are commonly treated with
surgical resection, while patients with advanced cervical
cancer are treated with cisplatin-based chemotherapy and
brachytherapy, both of which are usually administered
simultaneously (Small et al., 2017). Neoadjuvant therapy
needs further research. However, chemotherapy resistance
and severe toxicity are also worrisome due to the poor
prognosis (Kamran et al., 2022). Effective novel treatments
need to be discovered in clinical settings. Plant-derived
natural products might be used as candidates for new cancer
medicines.

Natural products are considered a promising substitute for
chemotherapy drugs or be used in combination with
chemotherapy agents. Their wide range of sources, typical side
effects, and diverse biological activities make them a popular
target for researchers. There are ongoing studies demonstrating
the non-negligible role of natural products in inhibiting cancer
occurrence, development and spread (Mann, 2002; Ouyang et al.,
2014; Thazin et al., 2017; Kikuchi et al., 2019). Therefore, this
review first summarizes the relationship between inflammation
and cancer, and a comprehensive description of cancer initiation,
development and dissemination is provided. Next, we highlight
the natural products for the treatment of cervical cancer based on
inflammatory pathways, which can be divided into five categories:
alkaloids, flavonoids, terpenoids, phenolic compounds, and
others. We also focus on some natural products that have
been treated before clinical treatment. We also discuss current
approaches to improving the anticancer properties of natural
products. Finally, we discuss the challenges and future directions
of natural product development.

2 LITURATURE SEARCH STRATEGY

We conducted a keyword search on articles published in the
PubMed and Google Scholar database. The mechanism between
cervical cancer and inflammation utilizes keywords such as
“cervical cancer”, “inflammation”, “HPV” and “microbiome”.
The drug summary section makes use of “flavonoids”,
“alkaloids”, “phenols”, “terpenoids”, “natural products”,
“paclitaxel”, “curcumin” or other related keywords. Most of
the data cited in the 2010–2021 time frame for the most
recent published study.

3 INFLAMMATION IS LINKED TOCERVICAL
CANCER
3.1 The Role of Inflammation in the Initiation
of Cervical Cancer
Tumorigenesis is an outcome controlled by many factors.
Inflammation helps the organism fight off pathogens, but
persistent inflammation could bring adverse effects, such as
tissue damage. Repeated tissue repair and tissue damage can
easily lead to DNA damage. The unstable mechanism is apt to be
a promoter of tumorigenesis (Yamanishi et al., 2002). Neoplasms
are characterized by epigenetic changes or mutations in
oncogenic/tumor suppressor genes, as well as the
transformation of normal cells. These two features are easily
facilitated by persistent inflammation (Anuja et al., 2017). The
complexity of the tumor approaches that of normal tissue. Tumor
microenvironment (TME) refers to the environment surrounding
tumor cells (Liu et al., 2020). TME consists of various cell
populations, such as stromal cells, cancer cells, cancer stem
cells (CSC), fat cells etc. In addition to cellular components,
the extracellular matrix (ECM) contains a variety of signaling
molecules. Immune inflammatory cells (ICs) also play an
essential role in TME. One noteworthy phenomenon in TME
is that immune cells are recruited due to the heterogeneity of the
tumor microenvironment. At the same time, various pro-tumor
and anti-tumor inflammatory cells fight each other (Hanahan
and Weinberg, 2011). These cells are capable of releasing pro-
inflammatory cytokines, chemokines and growth factors. DNA
damage pathways can be activated by accumulating these
molecules over time. Interleukin-1 (IL-1), IL-6, and IL-8 are
involved in inflammatory processes, among which IL-1 and IL-6
play an important role in tumor cell growth and metastasis
(Zhang et al., 2007). IL-1β is a common pro-inflammatory
cytokine that can turn on immunosuppressive mechanisms
and promote cancer development. It is also a marker molecule
for identifying early cancer (Voronov and Apte, 2017). Notably,
nuclear factor-kappa B (NF-κB) can be activated by both immune
and cancer cells. Il-1β also activates NF-κB pathways (Lu et al.,
2016; Yasuda et al., 2019). NF-κB is a nuclear transcription factor,
and NF-κB signaling pathway plays a crucial driving role in
innate and acquired immunity (Taniguchi and Karin, 2018). NF-
κB may lead to chromosome instability and changes in
epigenetics. NF-κB can induce mutations associated with
mutations and increase the likelihood of genetic mutations. A
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study has identified that NF-κB could be able to induce cytidyl
deaminase (CDA), which leads to the conversion of cytosine to
thymine (Shimizu et al., 2012). At the same time, NF-κB and
other transcription factors such as signal transducer and activator
of transcription (STAT3) express chemokines that induce more
aggregation of inflammatory cells, further increasing the severity
of inflammation (Karin and Lin, 2002; Sparmann and Bar-Sagi,
2004).

Among the contributing factors to cancer development,
oxidative damage is a non-negligible factor in cancer
promotion. Various inflammatory cells clustered in the
inflammatory site can cause the accumulation of reactive
oxygen species (ROS) and nitrogen oxides while releasing pro-
inflammatory cytokines. Neutrophils are one of the main sources
of ROS (Nicolás-ávila et al., 2017). Oxygen nitrification stress is
positively related to chronic inflammation. ROS and nitrogen
oxides have genotoxic effects, inducing DNA damage. Genetic
aberrations could be caused by this change in DNA (To et al.,
2020; Liskova et al., 2021b). The likelihood of important genetic
mutations is increased by the presence of these factors, which are
the occurrence of inflammatory cytokines and chemokines, the
occurrence of oxygen nitrification and the repeated damage and
repair of the tissue. P53 is a common and vital gene that plays an
important role in associated tumors caused by chronic
inflammation (Yamanishi et al., 2002). Persistent HPV
infection is an essential factor of cervical cancer. When the
balance of the reproductive tract microbiota is disturbed, local
inflammatory responses are activated. The endometrial epithelial
barrier of the cervix is disrupted due to changes in the products of
the reproductive tract and the persistence of inflammation. It
makes HPV infection much more accessible. The invasion of
specific pathogens could also lead to this trend. For example,
HSV-2 can be a cofactor of HPV. There is localized ulceration of
the cervix, which in the case of HSV-2 infection facilitates the
entry of HPV into the basal cells. As expected, HSV-2 induces
inflammation, leading to cytotoxic effects that promote DNA
mutations (Golais and Mrazova, 2020). During infection, HPV
integrates its genetic information into the DNA of the host cell,
causing a series of effects that are conducive to its survival and
promote cancer in the host cell. HPV attaches to the plasma
membrane of keratinocytes as it travels through the host
(Adefuye and Sales, 2012). It cannot be detected by the innate
immune system and is one of the mechanisms HPV evades
detection. When infection occurs, cytotoxic mechanisms are
activated. Some immune receptors such as major
histocompatibility complex Ⅰ (MHC Ⅰ) and MHC Ⅱ intervene
and are recognized by NK cells (Benyue et al., 2003; Ashrafi et al.,
2006; Miura et al., 2010). HPV E5 oncoprotein interferes with the
expression and transport of these key immune receptors, thus
preventing the immune system from recognizing infected cells
(Dimaio and Petti, 2013). It affects antigen presentation and
contributes to the persistence of viral infection. Furthermore, the
HPV18 E5 protein is also required for viral DNA synthesis in
basal cells (Wasson et al., 2017). In addition, pattern-recognition
receptors (such as Toll-like receptor 9) are downgraded by HPV,
turning off the interferon pathway. At this point, the chance of
integrating the host cell DNA of HPV is significantly increased.

When the viral oncogenes are successfully integrated into the host
cell DNA, the host cell automatically synthesizes the viral DNA
and releases more viral particles as the cell matures, migrates and
apoptosis (Adefuye and Sales, 2012). Innate and acquired
immunity is activated. However, there are also cases where
inflammation is exacerbated by untimely pathogen clearance
and contributes to malignant lesions (Tindle, 2002). The
carcinogenesis of infected cells is shown in Figure 1. After
keratinocytes are successfully infected with HPV, the viral E1
and E2 proteins begin to play, which leads to the formation of
viral DNA loops (Kadaja et al., 2009). At the same time,
oncogenes E6 and E7 come into play, prompting the release of
pro-inflammatory cytokines and inducing persistent
inflammation (Liu et al., 2015). After persistent infection
caused by HPV, immune cells are activated and aggregated,
and the accumulation of cytokines and ROS causes tissue
damage. High expression of IL-10 and transforming growth
factor β1 (TGF-β1) also causes the entire tumor
microenvironment to receive immunosuppression (Wang
et al., 2018).

Interestingly, E2 oncoprotein is lost when the HPV gene is
integrated, which can be used as a marker for cervical cancer. E6
and E7 oncoprotein are activated when E2 oncoprotein is lost. In
the study by Prabhavathy et al. E2 inhibited the expression of the
E6 gene, suggesting that E2 oncoprotein plays a significant role in
tumor suppression (Prabhavathy et al., 2015). Oxidative damage
can be caused by persistent infection with HPV. The damaged

FIGURE 1 | The process by which HPV infected cells becomes
cancerous. The process by which HPV infected cells becomes cancerous.
HPV virus particles are released when HPV infected cells undergo lysis. At this
point, immune cells are recruited by virus particles and release pro-
inflammatory cytokines. Inflammation will persists if the virus particles are not
completely removed in time. This could cause HPV infected cells to become
cancerous.
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antioxidant mechanism is unable to strike a balance with a large
amount of oxynitrogen compounds. The chances of cancer cells
appearing in this imbalance are greatly increased. Oncogene E6
activates glutathione (GSH) and catalase (CAT), so the
appearance of damage and mutation of normal cellular DNA
becomes reasonable (Hemmat and Bannazadeh Baghi, 2019;
Preci et al., 2021). Notably, nitric oxide (NO) also induces
transcription of oncogenes E6 and E7, suggesting a mutually
reinforcing mechanism between HPV infection, inflammatory
response and oxygen nitration response (Bogdan, 2001). The
signaling pathways of the initial stage of cervical cancer cells can
be referred to in Figure 2.

3.2 The Role of Inflammation in the
Development of Cervical Cancer
In addition to immune cells, tumor cells are capable of producing
their own pro-inflammatory cytokines and growth factors after
formation, which further drive large numbers of immune cells
together, such as neutrophils and monocytes. Monocytes in the
tumor inflammatory microenvironment are able to differentiate
into tumor-associated macrophages (TAMs) (Adefuye and Sales,
2012). TAMs can produce proteases such as cysteine cathepsin
and activate cytokines, undoubtedly contributing to tumor
development (Quail and Joyce, 2013). Macrophages can be
divided into M1 and M2. In early-stage tumors, M1
macrophages predominate and recruit natural killer cells,
whereas in advanced tumors, macrophages transform into M2
phenotype capable of remodeling tissue and angiogenesis. As a

result, TAMs are beneficial to the proliferation and survival of
tumor cells (Biswas and Mantovani, 2010; Liu et al., 2020).

Hypoxia is a common phenomenon in the inflammatory
microenvironment of tumors due to the transformation of
monocytes into macrophages, massive infiltration of immune
cells, and vascular structure disorder. Hypoxia-inducible factor-
1α (HIF-1α) is activated, and the survival of tumor cells is
guaranteed to some extent. Cytokines like tumor necrosis
factor-α (TNF-α) and IL-1β can also promote the proliferation
of cancer cells (Gilkes and Semenza, 2013; Zhang et al., 2021).
Moreover, NF-κB not only blocks tumor cell apoptosis induced
by oncogene Ras and regulates the transcription of anti-apoptotic
genes (Zhang et al., 2003).

In the process of cervical lesions, the role of various cytokines
still should not be underestimated. In the presence of ROS, the
HPV16 E5 protein can promote the degradation of the
proteasome of Bax, thereby inhibiting the apoptosis of cervical
cancer cells (Oh et al., 2010). E5 also inhibits Fas ligand (FasL)
and tumor necrosis factor-associated regulation to ligand
(TRAIL) (Kabsch and Alonso, 2003). In addition, The high
levels of E6 and E7 oncoproteins overexpress IL-16, which
activates the NF-κB pathway and promotes the proliferation of
cancer cells (Qiongying et al., 2018). By binding to p53, E6
oncoprotein promote DNA mutations in normal cells, thus
inhibiting apoptosis of cancer cells (Hemmat and Bannazadeh
Baghi, 2019). Dysregulation of JAK/STAT signaling has also been
shown to contribute to cancer progression. The STAT pathway is
activated when cytokines (such as IL-6) and growth factors bind
to transmembrane receptors. This leads to JAK actication,

FIGURE 2 | Signaling pathways in the initial stage of cervical cancer cells. NF-κB is activated by pro-inflammatory cytokines such as IL-1β. NF-κB can not only
change cytosine into thymine, but also induce CDA expression, thereby inducing gene mutation. The accumulation of inflammatory cells allows ROS to accumulate. The
buildup of ROS could cause DNA damage. HPV E6 oncoprotein can inhibit GSH and CAT. ROS is further accumulated.
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followed by recruitment, phosphorylation, and activation of
STAT proteins. Subsequently, the STAT dimer is transferred
to the nucleus and binds to target genes (Scarth et al., 2021).
In fact, E5 oncoprotein also induces phosphorylation of STAT in
cervical cancer cells and may be regulated by activated EGFR
(Akerman et al., 2001; Spangle et al., 2013).

Processes such as cell cycle arrest, apoptosis and DNA damage
responses can be regulated by p53. HPV induces p53
ubiquitination by forming a complex between p53, E6
oncoprotein, and E6-associated protein (E6AP). P53 is
degraded, contributing to chromosome instability. This is one
of the mechanisms of cervical cancer cells to avoid their apoptosis
and cycle arrest (Medda et al., 2021). E6, one of the culprits in
transforming normal cells into tumor cells, degrades and inhibits
p53 via promoting ubiquitination. E7 binds to retinoblastoma
protein (pRb) (Parida and Mandal, 2014). PRb is a tumor
suppressor protein that works with P107 and P130 to form a
“pocket protein” that regulates the cell cycle. Additionally, pRb
can also bind to E2F transcription factors to form a complex,
promoting cell arrest in the G1/S phase, thus regulating the
rhythm of cell growth and division cycle. In cervical cancer
cells, E7 oncoproteins bind to the pRb-E2F complex, a step
that separates E2F from pRb. In the case of high E2F
expression, cells will pass the G1/S phase and pRb will
eventually be degraded by the proteasome (Scarth et al., 2020).
On the other hand, p21WAF1 protein controls phosphorylation of
PRB-E2F complex and transcription of genes that regulate cell
proliferation (Lim and Kaldis, 2013). E5 protein can inhibit
p21WAF1 gene expression (Tsao et al., 1996), which activates
the cyclin D/CDK4 complex, which in turn promotes the release

of transcription factors that release E2F, leading to cell cycle
changes. Collectively, pRb is the guard that ensures average cell
growth and differentiation (Hanahan and Weinberg, 2011). Due
to the inactivation of tumor suppressor genes P53 and pRb, cells
caused by HPV have a much higher chance of becoming
cancerous. Furthermore, E6 and E7 oncoproteins inhibit CDKs
inhibitors and disrupt the control of cell cycle checkpoints. The
signaling pathways of the development stage of cervical cancer
cells can be referred to in Figure 3.

3.3 The Role of Inflammation in the Metastis
of Cervical Cancer
Tumor metastasis involves two aspects: the invasion and invasion
of cancer cells to surrounding tissues, and the other is an
epithelial-mesenchymal transition (EMT) (Varga and Greten,
2017; Greten and Grivennikov, 2019). As the main force of
tumor metastasis, cancer stem cells (CSCs) play a crucial role.
CSCs bind to various cytokines and chemokines, such as IL-6, IL-
8, TGF-β, and vascular growth factors. These molecules regulate
the metastasis of tumor cells. The complex regulatory network
between different cells can be interfered with by CSCs. At the
same time, CSCs had a closer transcription behavior with
mesenchymal cells than with normal epithelial cells (Babashah,
2015; Hong et al., 2018; Powell et al., 2020). Further,
inflammatory cells likewise play a role in tumor invasion and
spread. Endoosmosis and extravasation are characteristic features
of tumor diffusion in blood vessels and lymphatics, which are
regulated by specific adhesion molecules and integrins.
Coincidentally, pro-inflammatory cytokines can induce the
expression of adhesion molecules and integrins. Due to a
series of abnormal biological effects of tumor cell regulation,
adhesion between cells also becomes extremely smooth (Fu et al.,
2020). NF-κB regulates some EMT molecules (such as Smad-
interacting protein1) which initiate EMT and enhance cancer cell
migration (Scheel and Weinberg, 2012; Pires et al., 2017).
Furthermore, NF-κB and inflammatory cells directly regulate
the expression of transfer-related genes (Malki et al., 2021).
NF-κB could also induce self-renewal and metastasis in CSCs
(Rinkenbaugh and Baldwin, 2016). TGF-β also plays a significant
role in tumor metastasis, where it can be produced by cancer cells
and affects the differentiation of Treg and TH17 cells. Some
studies have found that TGF-β has an effect in tumor metastasis
and invasion (Meulmeester and Dijke, 2011). Hypoxia is known
to be a characteristic feature of the tumor microenvironment, and
HIF-1α is activated in the presence of both hypoxia and
inflammation, which leads to the activation of vascular
endothelial growth factor (Kamura et al., 1999). Inflammatory
media and proteases can also be triggered by HIF (Agnieszka and
Maciej, 2015).

The development and spread of cervical cancer also follow
these typical cancer development rules. IL-1 adhesion to vascular
endothelial cells promotes extravasation and tumor invasion
(Hemmat and Bannazadeh Baghi, 2019). IL-6 phosphorylates
STAT3 and induces STAT3 to promote the invasion of cervical
cancer cells by activating the transcription of matrix
metalloproteinase (MMPs) (Xie et al., 2004). Besides, STAT3

FIGURE 3 | Signaling pathways in the development stage of cervical
cancer cells. E7 oncoproteins binds to the PRB-E2F complex, a step that
separates E2F from pRb. In the case of high E2F expression, cells will pass the
G1/S phase and pRb will eventually be degraded by the proteasome.
The STAT3 signaling pathway can be activated by IL-6 to promote cell
proliferation which can also be induced by HIF-1α, E5 can inhibit the
expression of p21WAF1, thus promoting the separation of E2F from pRb, and
regulate STAT3 by regulating EGFR.
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directly binds to focal adhesion kinases (FAK) and paxillin,
promoting cancer cell invasion. It has been shown that a high
expression of FAK exists in HPV-infected patients. Interestingly,
E6 oncoprotein binds to paxillin and fibulin1 (Du et al., 2002;
Deivendran et al., 2014). COX-PG pathway is one of the key
signaling pathways between inflammation and cancer. E5
oncoprotein regulates the COX-PG pathway (Sales et al., 2002;
Libra, 2009; Adefuye et al., 2014). Some studies have found that
COX-2 expression is positively correlated with MMPs (Liu et al.,
2015). Meanwhile, activation of EGFR signaling pathway can
increase COX-2 expression (Hemmat and Bannazadeh Baghi,
2019). Coincidentally, remodeling of the extracellular matrix
(ECM) can be induced by MMP, which promotes
angiogenesis. HPV E5 protein can up-regulate the expression
of COX-2 andMMP-7, and it has been proved that E5 protein can
promote the invasion and spread of cervical cancer by activating
the NF-κB and EGFR pathways (Kemp et al., 2010; Gutierrez-
Xicotencatl et al., 2021).

4 THE RAPEUTIC POTENTIAL OF NATURAL
PRODUCTS THROUGH INFLAMMATION
PATHWAYS
Human beings have never stopped the exploration of cancer.
With the continuous in-depth exploration of cancer, more
possibilities have been brought to treatment. Finding better
drugs with fewer side effects has been the goal of many
researchers over the years. Concurrently, with the gradual
deepening of biochemistry and pharmacology, scholars have
gradually paid attention to natural products. More and more
research has begun to be carried out in the direction of natural
products in the treatment of cervical cancer. Nature, a treasure
trove of medicines, is a source of many natural medicines that can
be used to treat and prevent disease, especially in the field of
cancer (Dias et al., 2012). In addition, natural products are also
considered to be evolutionarily optimized ligands for biological
targets and receptors (Grigalunas et al., 2020). We described 30
natural products that have the potential to treat cervical cancer by
influencing a range of inflammatory effects.

4.1 Alkaloids
A study explores the ability of piperine (PP) to reverse the
resistance of cervical cancer cells. PP is a pepper and alkali
compound extracted from Piper longum L. It inhibits oxidative
stress, inflammatory response, and even tumor growth. The
expression of p65 was significantly reduced after the low
concentration of PP treated Hela cells. PP decreased the
expression of p-STAT3, NF-κB, and Bcl-2 in HeLa cells, while
the activities of Bax, Bid, Caspase and PARP were increased (Han
et al., 2017). In addition, in Dasari’s study, they used an in vitro
model to study the effects of neptoline on HeLa and SiHa cells.
The results show that neptoline inhibited the activity of HeLa and
SiHa cells and increased the intracellular ROS, which in turn
promoted autophagy and apoptosis of cervical cancer cells in a
dose-response manner. Meanwhile, Nephrine, as a lotus seed
alkaloid, is also very toxic to normal cells (Dasari et al., 2020).

In addition to influencing the growth of cervical cancer cells by
affecting signaling pathways and oxidative stress, some alkaloids
can directly affect gene transcription and protein synthesis of
HPV. After berberine is absorbed by HeLa cells, the tubulin
network of HeLa cells is destroyed. Berberine is destroyed by
the microtubule protein network of Hela cells absorbed by HeLa
cells. In addition, the E6/E7 expression of HeLa cells that
absorbed berberine is also significantly suppressed. The
mechanism is that berberine can further adjust the expression
of the cancer gene p53 and further regulate the HPV 18 E6/E7
virus carcinoma. Via western blot analysis, the expression of
Cyclin and NF-κB were also decreased, suggesting that berberine
may also be involved in the treatment of cervical cancer through
the signal transduction pathway (Saha and Khuda-Bukhsh, 2014).
Another study also found that berberine can selectively inhibit
AP-1 group activation, thereby down-regulating HPV oncogene
expression (Mahata et al., 2011). Colchicine, a plant-derived
alkaloid, could significantly reduce the expression of HPV 16
E6/E7 mRNA and protein in CaSki and HeLa cells. This effect
results in up-regulation of tumor suppressor proteins p53 and Rb
and down-regulation of phosphorylated Rb (pRb) proteins (Yan
et al., 2020).

4.2 Flavoniods
Flavonoids are widely found in plants in nature. Studies have
found that flavonoids have antimicrobial, antioxidant, anti-
inflammatory and anti-tumor effects. Flavonoids are also an
essential dietary component of human beings (Serafini et al.,
2010; Panche et al., 2016; Choy et al., 2019; Maleki et al., 2019).
Icaritin can increase the ROS expression in the Hela cells,
increasing the number of DNA fractures in the HeLa cells,
raising the expression of Bax and Caspase 3 and 9 (Xin et al.,
2018). In another study,morusin decreased the expression of NF-
κB, p65, and Bcl-2 and increased the levels of Bax and Caspase-3
(Wang et al., 2013). Wogonin had cytotoxic effects on both SiHa
and CaSki cells. The oncogenes of E6 and E7 virus were
significantly inhibited in wogonin-treated SiHa and CaSki cells.
Besides, wogonin can cleave poly ADP ribose polymerase (Kim
et al., 2013). Kaempferol-7-O-b-D-glucoside (KG) can reduce the
nuclear translocation of NF-κB in a dose-response manner. At the
same time, KG can also up-regulate the expression of Bax and
down-regulate Bcl-2 (Xu et al., 2008). Similarly, fisetin could
inhibit the p38MAPK-dependent NF-κB signaling pathway in a
concentration-dependent manner. fisetin can also down-
regulating the expression of urokinase-type plasminogen
activators (Chou et al., 2013). Baicalein, extracted from the
root of Scutellaria baicalensis Georgi, promotes HeLa cell
apoptosis by inhibiting the phosphorylation of NF-κB and
I-κBα, thereby blocking the TNF-α induced nuclear ectopia of
P65. In addition, baicalein was found to reduce the expression of
pro-inflammatory cytokines such as IL-8 and monocyte
chemoattractant protein 1 (MCP1) (Xiaolan et al., 2014; Yong
et al., 2015). Fisetin is widely found in various vegetables and
fruits, and nuts are no exception (Kashyap et al., 2019). The
evidence from a study suggests that fisetin inhibits the invasion of
SiHa and CaSki cells by inhibiting the phosphorylation of P38/
MAPK, affecting NF-κB and inhibiting nuclear translocation
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(Chou et al., 2013). Luteolin has been found to have a variety of
therapeutic effects. Luteolin could inhibit the activation of NF-κB
by inhibiting TNF-α, and enhance the activity of JNK, thus
promoting the apoptosis of HeLa cells (Shi et al., 2004).
Similarly, as reported, naringin also promoted the apoptosis of
HeLa cells by decreasing the expression of NF-κB and COX-2
(Zeng et al., 2014). Puerarin can be extracted from Pueraria
alopecuroides Craib, and its anti-inflammatory effects have been
demonstrated in various disease models. Puerarin increases the
activity of IL-2 and superoxide dismutase (SOD) in plasma of
U14 cervical cancer mice. Excess free radicals were removed in
certain doses. Puerarin as reported improved the tissue damage
induced via ROS, then increased the ability to fight tumors (He
et al., 2021).

4.3 Terpenoids
Terpenoids are the most extensive group of plant components.
These compounds have been reported to possess a variety of
pharmacological activities, such as anticancer activity (Cox-
Georgian et al., 2019; Kamran et al., 2022). Triphala inhibits
the phosphorylation of NF-κB, decreases the expression of cyclin
D1, and increases the expression of p53 at doses. The result is that
the proliferation of HeLa cells is inhibited (Zhao et al., 2018). TNF
related apoptosis inducing ligand (TRAIL) plays an essential role
in apoptosis. On the one hand, artesunate inhibits NF-κB
activation, thereby reducing the expression of pro-survival
proteins such as XIAP. This can enhance the pro-apoptotic
effect of TRAIL and promote the apoptosis of HeLa cells
(Thanaketpaisarn et al., 2011). On the other hand, artesunate
also inhibit the expression of COX-2, which inhibits the
proliferation of HeLa and CaSki cells. The percentage of
T cells is also decreased due to the absorption of artesunate
(Zhang LX. et al., 2014).

4.4 Phenols
The research ofManickam et al. has shown that Curcumin has the
ability to regulate apoptosis, proliferation and angiogenesis. They
suggest that curcumin does this by regulating the expression of
kinases and gene factors that inhibit the expression of NF-κB.
This speculation was finally confirmed in Hela cells (Manickam
et al., 2005). In addition, Curcumin has attracted much attention
because of its extensive anti-cancer, anti-oxidation, anti-
inflammatory, anti-bacterial and other therapeutic effects
(Vecchione et al., 2016). curcumin has excellent anti-
inflammatory activity because it could inhibit the proliferation
of HeLa, CaSki and Siha cells by inhibiting the expression of
COX-2 and inducible nitric oxide synthase (INOS) (Singh and
Singh, 2009). Camellia sinensis (L.) Kuntze is a popular herb with
many biologically active natural products, such as (-)
Epigallocatechin gallate (EGCG), (-) EpigalLocatechin 3-gallate
(ECG), (-) Epigallocatechin (EGC), and (+)catechin. Among them,
EGCG is well known for its various pharmacological activities.
Being a catechin compound, on the one hand, EGCG inhibits the
activation of NF-κB in HeLa cells and SiHa cells, thereby
inhibiting the expression of COX-2 (Singh et al., 2011; Mp
et al., 2021). On the other hand, EGCG can regulate the
number of ROS, indicating that EGCG can play an anti-tumor

role through the antioxidant pathway (Min and Kwon, 2014).
Quercetin is a dietary compound that is often found in vegetables
and fruits as a secondary plant metabolite. It has a variety of
biological activities (Andres et al., 2018). A finding of a study
suggests that quercetin can target the NF-κB pathway and inhibit
HeLa cells proliferation. Furthermore, quercetin also inhibits the
binding of the oncoprotein E6 to E6AP, which removes the fear of
p53 being unused, thereby, inducing apoptosis of HeLa and SiHa
cells (Vidya Priyadarsini et al., 2010; Clemente-Soto et al., 2019).
Resveratrol is a dietary polyphenol derived from grapes, berries
and other plants. Resveratrol has been shown to inhibit the
migration of HeLa cells by inhibiting NF-κB and MMP9
expression (Tang et al., 2007; Zhao et al., 2019). Further,
Zhang et al.’s research team treated different cervical cancer
cell lines with resveratrol to explore the effects of Resveratrol
on STAT3, Notch and Wnt pathways. It was concluded that
resveratrol could simultaneously inhibit the action of three
signaling pathways, thereby promoting the apoptosis of HeLa
and SiHa cells (Zhang P. et al., 2014). Kaempferol is found in
various fruits and vegetables, such as onions, parsley and oranges.
In vitro studies, it can inhibit nuclear heterotopic of NF-κB in
C33A, CaSki, HeLa and SiHa cells, and then promote cell cycle
arrest in G2/M phase (Marius et al., 2016; Souza et al., 2017;
Wozniak et al., 2021). Morin is widely derived from a variety of
fruits and vegetables (Osage orange, apple guava, strawberry,
almond shell, sweet chestnut, onion, and jackfruit). Morin
decreases NF-κB mRNA expression and promotes HeLa cell
apoptosis. In addition, morin could increase ROS expression
in cancer cells (Zhang et al., 2018; Solairaja et al., 2020). Rutin
is an active substance in asparagus, buckwheat, apricot, apple,
cherry, grape and other plants. Several lines of evidence suggest
that rutin can reduce the expression of COX-2 and the leukocytes
invasion when rutin is injected into K14-HPV16 mice according
to the prescribed dosage (Deepika et al., 2018; Moutinho et al.,
2018; Nouri et al., 2020). Derived from the dry root of scutellaria
baicalensis. Salvianolic Acid B can reduce the expression level of
tumor necrosis factor TGF in Hela cells, thus promoting cell
apoptosis (Jing et al., 2016).

4.5 Others
It has been reported that E6-associated E3 ubiquitin ligase E6AP
targets p53 degradation and E7-associated transcription factor
E2F1 is also decreased by tanshinone IIA in a dose-dependent
manner (Munagala et al., 2015). After emodin treatment of SiHa
and C33A cells, intracellular HOCl/OCl− was decreased, p-Akt
activation was also inhibited as well as NO−, O2

− in a dose-
response manner (Moreira et al., 2018). Eugenol could regulate
cell viability. After eugenol treatment, the expressions of PARP,
Bax, Caspase-3 and ROS were up-regulated, while the expression
of Bcl-2 was down-regulated in HeLa and SiHa cells (Das et al.,
2018). The ethyl acetate extracts isolated from pistacia vera L
could induce apoptosis and inhibit angiogenesis. Studies have
found that it can down-regulate the expressions of TNF, Bcl-2,
IAP and TRAF in a dose-response manner (Seifaddinipour et al.,
2018). Praeruptorin-B has been reported to have excellent
antitumor activity. Praeruptorin-B can down-regulate NF-κB,
MMP-2 and -9 in HeLa and SiHa cells. Interestingly,
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TABLE 1 | Therapeutic potential of natural products based on inflammation in cervical cancer.

Name In-vitro/vivo odels Mechanism Dose/time-
effect

Ref

Colchicine CaSKi and HeLa cells Decrease the expression of HPV 16 E6/E7 mRNA and protein,
increase

Dose-effect Yan et al. (2020)

Piperine HeLa cells, mice
xenograft models

Reduce the expression of p65, decreased the expression of
p-STAT3, NF-κB, and Bcl-2 in HeLa cells, while the activities of
Bax, Bid, Caspase and PARP were increased

Dose-effect Han et al. (2017)

Neferine HeLa and SiHa cells Increase the intracellular reactive oxygen species (ROS) Dose-effect Dasari et al. (2020)
Berberine HeLa cells Decrease the express of HPV 18 E6/E7, cyclin and NF-κβ. inhibit

AP-1 group activation
Dose-effect (Mahata et al., 2011

Saha and
Khuda-Bukhsh, (2014)

Icaritin HeLa cells Increase the expression of ROS, the number of DNA fractures,
raise the expression of Bax and Caspase 3 and 9

Dose-effect Xin et al. (2018)

Morusin Human cervical CSCs Decrease the expression of NF-κB, p65, and Bcl-2, and increased
the levels of Bax and Caspase-3

Dose-effect Wang et al. (2013)

Wogonin SiHa and CaSki cells Decrease the express of HPV 18 E6/E7, cleave poly ADP ribose
polymerase

Dose-effect Kim et al. (2013)

Kaempferol-7-O-b-D-
glucoside

HeLa cells Reduce the nuclear translocation of NF-κB, upregulate the
expression of Bax and down-regulate Bcl-2

Time-effect,
dose-effect

Xu et al. (2008)

Fisetin SiHa and CaSki cells Inhibit the p38MAPK-dependent NF-κB signaling pathway Dose-effect Chou et al. (2013)
Tanshinone IIA CaSki cells Decrease in HPV16 E6 and E7 protein levels Time-effect,

dose-effect
Munagala et al. (2015)

Emodin SiHa cells, C33A Inhibit the NO-,O2- and p-Akt activation, decrease HOCl/OCL- Dose-effect Moreira et al. (2018)
Eugenol HeLa and SiHa cells Up-regulate the expression of PARP, Bax, Caspase-3 and ROS,

down-regulate the expression of Bcl-2
Time-effect Das et al. (2018)

Ethyl acetate extracts isolated
from Pistacia vera L

CaSki cells Down-regulate the expressions of TNF, Bcl-2, IAP and TRAF Time-effect,
dose-effect

Seifaddinipour et al.
(2018)

Praeruptorin B HeLa and SiHa cells Down-regulate NF-κB, MMP-2 and -9 Dose-effect Hung et al. (2019)
Baicalein HeLa cells Inhibit the IL-8, phosphorylation of NF-κB and I-κBα, blocking the

TNF-α induced nuclear ectopia of p65
Dose-effect (Xiaolan et al., 2014

Yong et al. (2015)
Fisetin SiHa and CaSki Inhibit the phosphorylation of P38/MAPK, affecting NF-κB and

inhibiting nuclear translocation
Dose-effect Chou et al. (2013)

Luteolin HeLa cells Inhibit the activation of NF-κB by inhibiting TNF-α, and enhance
the activity of JNK

Time-effect,
dose-effect

Shi et al. (2004)

Naringin HeLa cells Decrease NF-κB and COX-2 Time-effect,
dose-effect

Zeng et al. (2014)

Puerarin U14 cervical cancer
mice

Increase the activity of IL-2 and superoxide dismutase (SOD) Time-effect He et al. (2021)

Triphala HeLa cells Inhibit the phosphorylation of NF-κB, decrease the expression of
cyclin D1, and increased the expression of p53

Dose-effect Zhao et al. (2018)

Artesunate HeLa cells Inhibit NF-κB Time-effect,
dose-effect

Thanaketpaisarn et al.
(2011)

HeLa and CaSki cells Inhibit the expression of COX-2 Dose-effect Zhang et al. (2014a)
Curcumin HeLa, CaSki and SiHa

cells
Inhibit the expression of NF-κB, COX-2 and INOS Dose-effect Manickam et al. (2005)

EGCG HeLa and Siha cells Inhibit the activation of NF-κB, the expression of COX-2 Dose-effect (Singh et al., 2011
Mp et al. (2021)

Regulate the number of ROS Time-effect.
dose-effect

Manohar et al. (2013)

Quercetin SiHa and HeLa cells Inhibits the binding of the oncoprotein E6 to E6AP Dose-effect (Vidhya Priyadarsini
et al., 2010

Clemente-Soto et al.
(2019)

Resveratrol HeLa cells Inhibiting NF-κB and MMP9 expression Dese-effect Tang et al. (2007)
Kaempferol C33A,CaSki, HeLa and

SiHa cells
Inhibit nuclear heterotopic of NF-κB, promote cell cycle arrest in
G2/M phase

Time-effect Xu et al. (2008)

Morin HeLa cells Decrease NF-κB mRNA expression, increases ROS expression Dose-effect (Zhang et al., 2018
Solairaja et al. (2020)

Rutin K14-HPV16 mice Reduce the expression of COX-2 and the leukocytes invasion Time-effect,
dose-effect

(Deepika et al., 2018
Moutinho et al., 2018
Nouri et al. (2020)

Salvianolic Acid B HeLa cells Reduce the expression level of TGF Time-effect,
dose-effect

Jing et al. (2016)

Praeruptorin-B HeLa and Siha cells Down-regulated the expression of NF-κB, MMP-2 and MMP-9 Dose-effect Hung et al. (2019)
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praeruptorin-B could block Akt phosphorylation without
affecting the MAPK pathway (Hung et al., 2019). Similarly,
Praeruptorin-B would down-regulated the expression of NF-
κB, MMP-2 and MMP-9, which affected the proliferation of
HeLa and SiHa cells. In addition, praeruptorin-B inhibits Akt
phosphorylation, thus inhibiting cell invasion (Hung et al., 2019).

Up to now, the anti-tumor mechanism of natural products
mainly involves multiple molecular mechanisms, such as
promoting cell apoptosis, regulating gene transcription and
protein synthesis, and regulating cell signal transduction
pathways, which can also contribute to the treatment of
inflammation-related cancers, indicating the direction. As for
microbiota regulation, most of the current literature mainly
directly affects the dynamic balance of microbiota through
probiotics. Consequently, we believe that natural products
might be an emerging therapeutic direction. Whether natural
products can directly affect the entire cervix vaginal microbiota
remains to be investigated. We summarized the experimental cell,
time/dose development and mechanism in natural product
research in Table 1, providing a reference for readers.

5 NATURAL PRODUCTS FOR CERVICAL
CANCER IN CLINICAL TRAILS

5.1 Paclitaxel
To date, Neoadjuvant chemotherapy has been tried to treat
patients with advanced cervical cancer (Benedetti-Panici et al.,
2002). Paclitaxel, a terpenoid compound, has become a
commonly used chemotherapeutic agent and is usually used
with cisplatin (Sofias et al., 2017). Regarding response rate
(RR) and progression-free survival (PFS), numerous data
indicate that cisplatin combined with paclitaxel has better
efficacy and safety than cisplatin alone. Unsurprisingly,
cisplatin combined with paclitaxel and bevacizumab has
become the first-line treatment for metastatic cervical cancer
(Marth et al., 2017). Some studies have also investigated the effect
of paclitaxel in neoadjuvant therapy.

Tambaro et al. performed surgery on 42 patients with cervical
cancer, 32 of whom were treated with paclitaxel, cisplatin, and
epirubicin (CEP) as adjuvant therapy. The results found complete
remission in 8 cases (25%), partial remission in 17 cases (53%),
and stable disease in 9 cases (28%). Similarly, the RR was 78.5% at
the end of chemotherapy (Tambaro et al., 2004).

Moreover, other chemotherapeutic agents in combination
with paclitaxel are also being studied. For example,
carboplatin combined with paclitaxel also had better
tolerability and higher RR (Meletios et al., 2002). Pectaside
et al. studied 51 patients with advanced cervical cancer, and
when they were treated with paclitaxel and carboplatin, 16
percent had complete remission and 37 percent had partial
remission. Further, the relative risk for patients who received
only radiotherapy was 68%, while the relative risk for
chemotherapy patients was only 28% (Pectasides et al.,
2008). The British Columbia (BC) Cancer Institute in
Vancouver stated that the combination of carboplatin and
paclitaxel is the standard treatment for advanced cervical

cancer, The combination of carboplatin and paclitaxel has a
higher RR and better PFS than cisplatin alone (Meletios et al.,
2002). Takekuma et al. also studied the combination of
paclitaxel and nedaplatin in treating patients with
advanced cervical cancer. Takekuma et al. evaluated the
efficacy of paclitaxel combined with nedaplatin intreating
50 patients with cervical cancer. Discontinue co-therapy
when disease progression changes or adverse reactions
occur (Sutton et al., 1993; Monk et al., 2009; Takekuma
et al., 2011). A phase II trial study also investigated the
role of paclitaxel as monotherapy to treat patients with
advanced cervical cancer. After treatment, the RR was 17
percent (Mcguire et al., 1996).

Collectively, the combination of paclitaxel with some
chemotherapeutic agents such as platinum has a better effect
(Della Corte et al., 2020). However, given the primary and
acquired resistance to paclitaxel, molecules that increase the
sensitivity of cancer cells to paclitaxel, like transmembrane-
associated multidrug resistance proteins (P-GP, MRP-1 and
ABCG2), could be selected. This also indicates that paclitaxel
still has value in clinical application.

5.2 Curcumin
Paclitaxel has the function of inducing radiosensitization.When these
natural products are combined with chemotherapeutic agents such as
platinum drugs, the effect of radiotherapy can be better played - the
ability to control the growth and metastasis of cancer cells is greatly
enhanced. It is important to note that the enhancement of
chemotherapy effect has a severe challenge to focus on: the
amplification of cytotoxicity of chemotherapy. It is necessary to
introduce a product that can induce chemotherapeutic agents
without harming normal tissue as much as possible and increase
sensitivity to chemotherapeutics. Curcumin is a classic example (Lao
et al., 2006; Javvadi et al., 2008; Li et al., 2017).

According to a study by Javvadi et al., curcumin enhances the
antioxidant effect of normal cells by increasing ROS production
in cancer cells and down-regulates the NF-κB and AKT signaling
pathways, thereby enhancing the re-sensitization of
radiotherapy-resistant cells (Javvadi et al., 2008). Another
finding was that thioredoxin reductase 1 (TxnRd1) could be
induced by curcumin, and the sensitivity of cancer cells to
radiation therapy is increased. TxnRd1, an antioxidant
enzyme, may remove the concentration of intracellular ROS
produced by infrared radiation. Overexpression of TxnRd1
could enhance the anti-sensitivity effect of cancer cells
(Javvadi et al., 2010). Curcumin could increase the
sensitization of cancer cells to radiation drugs and radiation.

In addition, a Phase I clinical study conducted by Cheng et al.
(2001) in which 4 patients with cervical intraepithelial neoplasia
were treated with a dose of curcumin, biopsies and analysis were
performed after 3 months. The results showed that histological
improvement in two patients. The main weakness of the research
is that there were few patients involved, and one patient’s
condition worsened. The clinical effects of curcumin are still of
great value and potential. At present, curcumin tends to be used
with other chemotherapeutic agents in order to achieve a better
therapeutic effect.
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6 TECHNOLOGIES TO IMPROVE THE
ANTICANCER PROPERTIES OF NATURAL
PRODUCTS
Currently, radiotherapy and chemotherapy are commonly used
for cancer treatment (Falzone et al., 2018), but they have specific
negative effects. Targeted cancer therapy enables the precise
treatment of molecules unique to particular cancer (Troy, 2015).
However, this represents a high degree of dependence of
targeted therapies on cancer-related mutant proteins and
signaling pathways. Suppose the targeted gene mutation or
signal pathway changes, the efficacy of targeted therapy will
be greatly reduced. It shows that due to the abnormal
physiological mechanism of cancer cells, the drug resistance
of cancer cells to anti-cancer drugs is a problem that cannot be
ignored. Cancer cells have the ability to adapt flexibly to various
mechanisms to increase resistance to anti-cancer drugs, such as
increased immune evasion, increased gene mutations,
reactivation of drug targets, and altered metabolism (Ma and
Zong, 2020). As a result, most anticancer drugs have a good
effect in the initial treatment, but the efficacy is weakened after
drug resistance or even relapse after chemotherapy. At present,
the anticancer application of natural products is mainly
reflected in the use of natural products to improve the
resistance of cancer cells to cancer treatment, so it is
necessary to consider improving the bioavailability of natural
products (Liskova et al., 2021a).

6.1 Combined Use of a Variety of Natural
Products
At present, there are few natural chemotherapeutic drugs directly
used in the clinic, but the resistance of cancer cells to
chemotherapeutic drugs is a problem that must be faced. The
current study found that natural products can increase the
efficacy of natural chemotherapeutic drugs by sensitizing
cancer cells to them again.

Paclitaxel has become a commonly used chemotherapy drug,
and some studies have proved that the combination of curcumin
and paclitaxel can improve the efficacy of paclitaxel. Combined
treatment with liposome curcumin and paclitaxel synergistically
reduced the size and incidence of squamous cervical cancer
models in mice compared with monotherapy (Sreekanth and
Bava, 2011). Further studies have shown that curcumin regulates
NF-κB pathway related proteins and genes and regulates the
activities of c-Jun N-terminal kinase (JNK) and extracellular
regulated protein kinases (ERK), thus synergistically improving
the efficacy of combination therapy with paclitaxel. In addition,
another report showed that the combination of paclitaxel and
curcumin had a more potent anticancer response than paclitaxel
alone, targeting HeLa cells (Bava et al., 2004). Similar to
curcumin, the combination of quercetin and docetaxel
effectively slowed tumor growth. Quercetin can also induce
ROS production, thereby promoting the effect of paclitaxel on
prostate cancer PC-3 cells (Zhang et al., 2020). These
undoubtedly show that the combination of natural products
can increase the sensitization of cancer cells.

6.2 Using Nanotechnology to Promote the
Anticancer Effects of Natural Products
Although natural products have sound anti-cancer and
sensitizing effects, the premise of maximizing the effects of
natural products is to improve the bioavailability of natural
products. At present, nanotechnology can be used to optimize
the rigid limitations such as the bioavailability of natural products
to improve their therapeutic efficacy and pharmacokinetic
characteristics (Masashi et al., 2011; Prasad et al., 2014;
Sahebkar and Momtazi, 2016; Ahmed et al., 2017a).
Nanotechnology can be used to modify and encapsulate
natural products, thus giving natural products a longer half-
life and enhancing their targeting ability. Different types of
nanotechnology have been widely used to compensate for the
shortcomings of natural products.

6.2.1. Polymeric Nanoparticles
PNPs are nanospheres and nanocapsules that exist in a solid
phase and have different structures and compositions (Ahmed
et al., 2021). The nanocapsules have an oily core encased in a
polymer film on which natural products can be adsorbed and
dissolved. Nanospheres are a matrix system on which natural
products can be directly retained (Alexis et al., 2008). PNPs could
control drug release and targeted therapy and act on the cell
surface to enhance the therapeutic index (Fonseca-Santos and
Chorilli, 2020). Typical polymer nanoparticles include chitosan,
poly (lactic-coglycolic acid) (PLGA) nanospheres, and poly (butyl
cyanoacrylate) (PBCA).

Chitosan is a linear polysaccharide with good
biocompatibility, low toxicity and biodegradability. At present,
chitosan has been widely used in nanomedicine and has great
potential in cancer treatment (Dev et al., 2010; Jin et al., 2016;
Kaur et al., 2020). Studies have found that the combination of
gambogic acid and chlorthalidone retinoic acid supported
ethylene glycol chitosan nanoparticles can effectively inhibit
the growth of osteosarcoma MG63 cancer cells (Liu et al.,
2016). In addition, in another study of metastatic melanoma
in the lungs, chitosan nanoparticles loaded with curcumin
inhibited tumor nodules three times more than free curcumin
did (Havel et al., 2016). PLGA is a biodegradable functional
polymer organic compound synthesized by the polymerization of
lactic acid and glycolic acid. PLGA nanoparticles are widely used
in pharmaceutical, medical engineering materials and modern
industry due to their excellent biocompatibility, non-toxicity and
exemplary performance in forming capsules and films (Ahmed
et al., 2021). PLGA could also enhance the anticancer effect of
natural products. Mukherjee et al. found that curcumin-PLGA
nanospheres produced a more significant anticancer effect on
prostate cancer cells (Mukerjee and Vishwanatha, 2009). Yallapu
et al. also demonstrated that curcumin-PLGA nanoparticles were
more effectively internalized into prostate cancer cells than free
curcumin (Yallapu et al., 2014; A.; Aljuffali et al., 2016). PBCA
nanoparticles are also ideal for transporting natural products
(Rempe et al., 2014). PBCA nanoparticles can effectively prevent
the degradation of natural products. One study found that the
half-life of PBCA nanoparticles loaded with curcumin was
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52 times increased by intravenous administration, while the final
scavenging amount of curcumin was reduced by 2.5 times (Duan
et al., 2010). In addition, PEGylated nanoparticles coated with
curcumin have a slower release rate. Compared with free
curcumin, the size of the tumor treated with PEGylated
nanoparticles coated with curcumin was 2.7 times smaller (A.
Aljuffali et al., 2016), and PEGylated nanoparticles did not cause
significant toxicity.

6.2.2. Lipid Nanoparticles
PNPs are a typical drug transport carrier, but polymer toxicity
and solvent residues after synthesis are the problems we have to
face when using PNPs (Blomberg et al., 2001). LNPs can
effectively avoid these problems (Muller and Keck, 2004).
Solid lipid nanoparticles (SLNs) are nanospheres composed of
Solid lipid cores that can control drug release, avoid drug
degradation or leakage, and have good targeting properties. At
present, SLNs can be mass-produced by the high-pressure milk
homogenization method. Other preparation methods are the
emulsification precipitation method and microemulsion
method (Kumar et al., 2012; Kashyap et al., 2021). It has been
confirmed that SLNs can improve the anticancer activity of
natural products. Vandita et al.’s study concluded that SLNs
coated with curcumin significantly reduced IC50 against human
cancer cells compared to capcurcumin (Vandita et al., 2012).

6.2.3. Protein Nanoparticles
Protein is one of the best materials for the synthesis of
nanoparticles (Figueiró et al., 2013). The surface of protein
nanoparticles can be well modified and connected to natural
products (Mukherjee et al., 2011). At the same time, protein
nanoparticles are biodegradable, which makes protein
nanoparticles be considered for various drug therapy.

Gelatin nanoparticles are widely used in drug delivery due to
their high biocompatibility. It has been found that gelatin
nanoparticles loaded with resveratrol are more likely to be
taken up by cells (Signorelli and Ghidoni, 2005). Similarly,
paclitaxel-gelatin nanoparticles have good anti-bladder cancer
activity (Lu et al., 2004). As protein nanoparticles, albumin
nanoparticles can be modified with resveratrol. In a study for
ovarian cancer, using resveratrol -albumin nanoparticles
significantly increased the drug’s accumulation in the ovaries
and reduced the drug’s concentration in the blood compared with
free resveratrol injections. It also highlights the excellent role of
albumin nanoparticles in drug encapsulation and targeted
transport (Guo et al., 2010). In addition, an albumin
nanoparticle formulation containing paclitaxel has been
approved for the treatment of patients with metastatic breast
cancer (Desai et al., 2006).

6.2.4. Metal Nanoparticles
In the past, the synthesis of metal and metal oxide nanoparticles
has been extensively studied by researchers, and there have been
continuous attempts to apply metal nanoparticles to biomedicine,
and particular achievements have been achieved (Ahmed et al.,
2016b). However, the process of synthesizing metal nanoparticles
through physical and chemical synthesis is cumbersome and has

the potential to pose risks to the environment, as the synthesis
requires a variety of hazardous chemicals and hazardous
substances. Direct use of these metal nanoparticles on humans
may also have negative effects such as toxicity. Biosynthesis of
metal nanoparticles is a simple, safe and green way of synthesis. In
biosynthesis, various parts of plants and fungi can synthesize
metal nanoparticles (Ahmed et al., 2016a; Ahmed et al., 2016b)
and adjust the size and shape of nanoparticles because
biologically active compounds in plants can accelerate the
conversion of metal ions into biologically active nanoparticles
(Munir et al., 2021). The researchers took note of biosynthesis
and investigated the effects of plant-based metal nanoparticles.

Plant-synthesized gold nanoparticles have unique
physicochemical properties and biocompatibility, and are
widely used in antibacterial therapy, drug delivery and
photothermal therapy (Begum et al., 2022; Habeeb
Rahuman et al., 2022). (Shukla et al., 2012) treated prostate
cancer with EGCG as a carrier of gold nanoparticles and found
that gold nanoparticles loaded with EGCG reduced tumor size
by 80% without toxicity after injection of the drug in xenograft
mice (R. et al., 2012). In addition, compared with free EGCG,
the IC50 value of nano-EGCG for bladder cancer cell lines was
6–7 times higher than that of free EGCG (Hsieh et al., 2011).
Silver nanoparticles are a good antibacterial agent, and it has
been found that modified plant silver nanoparticles can be used
in cancer treatment (Habeeb Rahuman et al., 2022). The leaf of
Taraxacum abietifolium Saarsoo extract used in conjunction
with silver nanoparticles showed good anticancer activity
against liver cancer cells, and it is worth noting that this
anticancer activity is comparable to commercial anticancer
drugs (Gauthami et al., 2015). Similar to most metal
nanoparticles, zinc oxide nanoparticles have good
antibacterial effects (Begum et al., 2022). Biosynthesized
ZnO nanoparticles have more advantages than physical and
chemical synthesized ZnO nanoparticles (Ahmed et al.,
2017b). Doxorubicin combined with ZnO nanoparticles
synthesized from fruit extracts is more cytotoxic than
doxorubicin alone in the treatment of breast and colon
cancer cells (Guo et al., 2010).

6.2.5. Other Nanotechnologies
In addition to nanoparticles, other nanotechnologies such as
liposomes and dendrimers are also frequently used to diagnose
and treat cancer. Liposomes are tiny spherical vesicles with
bilayer phospholipids and cholesterol and are amphiphilic
(Temidayo et al., 2018). Liposomes provide excellent
protection against drugs and reduce the nonspecific toxicity
associated with natural products. It is noteworthy that
liposomes are capable of delivering packaged drugs directly
into cells, and these characteristics make liposomes frequently
used for targeted drug delivery (Barazza et al., 2005; Parhi et al.,
2012; Hwang et al., 2022). Dendrimers are composed of
degradable monomers. Dendrimers are not toxic by
themselves, and their internal cavities and binding sites are
capable of carrying drugs. In addition, there are a lot of
functional groups on the surface of Dendrimers, and the
modified dendrimers have a good targeting effect (Kaur et al.,
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2020). Many research teams have begun to use dendrimers to
wrap natural products and study the anticancer effects of the
complex. For example, Babaei et al. have tried to wrap curcumin
into dendrimers and use the complex to treat fibrosarcoma
(Babaei et al., 2012).

7 CONCLUSION AND FUTURE
PERSPECTIVES

HPV is a necessary factor contributing to the occurrence of cervical
cancer. So blocking the oncogene expression of HPV from the
beginning is a treatment idea. Many abnormal mechanisms,
including further amplification of inflammation, are driven by
oncoprotein expression. This review illustrates the view that
inflammation plays an important role inregulating both the onset
and end of cancer. Immunotherapy has become a hot topic in cancer
treatment today because of a broad understanding of the relationship
between inflammation and cancer. Further study of these
mechanisms may contribute to the application of immunotherapy.
However, this process is lengthy. In addition to selecting typical
biomarkers, clinical trials and retrospective studies of these
biomarkers are also required. It should not be ignored that
attention should also be paid to matching the selected models
with human tumors when selecting preclinical models.

Plants and animals, marine life and even microbes are a
treasure trove of natural products notable for their diversity and
low toxicity. At present, natural products are mainly used as
sensitizers in cancer treatment. However, the anticancer
potential of natural products should not be ignored,
considering their limitations and whether there is a
possibility to solve the drug resistance of cancer cells. In
addition, it is worth thinking that the microbiota is closely
related to inflammation. Intestinal microbes can also indirectly
affect the microbiota and hormone changes in the reproductive
tract, thereby regulating inflammation and affecting the
occurrence of cervical cancer. So the link between natural
products and the gut microbiome may be an emerging field.
Fortunately, it has been found that berberine can directly
interact with intestinal microorganisms to improve metabolic
disorders and inhibit oxidation and inflammatory mediators.
Further studies combining pharmacodynamics,
pharmacokinetics, microbiome and metabonomics are
recommended to develop new therapies for the prevention
and treatment of cervical cancer.

However, there are still disadvantages to developing and
using natural products. The characteristics of low absorption,
extensive metabolism and metabolic elimination need to be
addressed. Besides, some natural products require sufficiently
high concentrations to reach the target tissue effectively.
Toxicity is also a fact that cannot be ignored. In the face of
these limitations, screening and optimization methods are
needed. At present, the value of natural products can be
developed by optimizing the solubility and bioavailability
of natural products. Firstly, the lead compound is modified
and modified by means of medicinal chemistry. Secondly,
choose a suitable carrier to optimize the delivery of natural

products. Nanoparticles are a good example, and more
attempts have been made. Nanoparticles are carriers with
great potential. It is worth considering that although
nanoparticles have the ability to improve drug
bioavailability significantly, there are too few cases that
have entered clinical trials. Different delivery systems have
different advantages and disadvantages. In addition to
choosing a delivery carrier that better matches the
designated natural product, biocompatibility and safety
should also be considered. Researchers may need to spend
more effort exploring the ways and mechanisms of drug
delivery. We believe that in addition to improving the
delivery mode of the carrier itself, we may also start from
external media to improve the conditions of the surrounding
environment to improve the accuracy of the delivery of
natural products. In addition, combination with other
drugs is a way to increase the sensitivity of cancer cells.
However, due to the multi-effect characteristics of natural
products, drug combinations may have interaction effects, so
the possible risks and benefits derived from the combined use
of natural products need to be grasped. Another interesting
approach is taking food and ysing natural products as dietary
supplements to achieve therapeutic effects. Phenolic
compounds, for example, are found in vegetables, fruits
and nuts. This method could also effectively avoid the toxic
effects caused by high concentrations. However, the effect of
this method is limited, and the daily nutrition for the body can
be used in this way, while the treatment of cancer still has to
rely on radiotherapy and chemotherapy. Bioavailability needs
to be rethought. The effectiveness and safety of long-term use
also need to be demonstrated. It is worth noting that the
efficiency of absorption, distribution, kidney excretion and
liver elimination of the active ingredients in natural products
is usually unknown in the human body, and only the
conclusions and experience of in vitro and animal
experiments are insufficient to infer the detailed effects of
natural products in vivo accurately.

Collectively, detailed information on the pharmacology,
formulation, potential toxicity and side effects of a drug needs to
be available before it can be used. Although this review aims to
demonstrate that natural products are a promising anti-cervical
cancer drug, cancer is an extremely complex disease and
treatment with natural products alone may not be sufficient to
cure cancer completely. It is recommended that combination
therapies and delivery systems be used simultaneously, with
detailed information, to overcome the challenges of drug
resistance and side effects. In addition to pre-clinical studies,
clinical studies are also necessary for continuous validation. It
takes a combined effort of cancer researchers, chemists and
clinical researchers.

As discussed above, many natural products suffer from twomajor
drawbacks: low bioavailability and toxicity, both of which require
researchers to find further solutions. Natural products not only have
effects that are relatively easy to obtain and low toxicity, but more
importantly as a goldmine, which could bring great exploration value
because of diversity and complexity. It is still of excellent significance
to study the role of natural products in treating cancer.
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GLOSSARY

ADP adenosine diphosphate

CSCs cancer stem cells

CAT catalase

CDA cytidyl deaminase

COX-2 cyclooxygenase-2

E6AP E6-associated proteinE6-associated protein

EMT epithelial-mesenchymal transition

E6AP E6-associated proteinE6-associated protein

EGCG Epigallocatechin gallate

ERK extracellular regulated protein kinases

FAK focal adhesion kinases

GSH glutathione

HPV human papilloma virus

HIF-1α hypoxia inducible factor-1α

HSV herpes simplex virus

IL Interleukin

JNK c-Jun N-terminal kinase

LNPs Lipid nanoparticles

MMP matrix metalloproteinase

NO nitric oxidenitric oxide

NF-κB nuclearfactor-kappaB

NO nitric oxidenitric oxide

PNPs Polymeric Nanoparticles

PLGA poly (lactic-coglycolic acid)

PBCA poly (butyl cyanoacrylate)

ROS reactive oxygen species

Rb retinoblastoma protein

SOD superoxide dismutase

STAT3 signal transducer and activator of transcription

SLNs Solid lipid nanoparticles.

TAMs tumor-associated macrophages

TNF-α tumor necrosis factor-α

TGF transforming growth factor

TME tumor microenvironment

TxnRd1 thioredoxin reductase 1
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