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This work was performed to determine the pharmacological effects of Bufei

Jianpi granules on chronic obstructive pulmonary disease and its metabolism

in rats.

Chronic obstructive pulmonary disease (COPD), ranked as the third leading

cause of death worldwide, is seriously endangering human health. At present,

the pathogenesis of COPD is complex and unclear, and the drug treatment

mainly aims to alleviate and improve symptoms; however, they cannot achieve

the purpose of eradicating the disease. Bufei Jianpi granule (BJG) is a Chinese

medicine developed by the First Affiliated Hospital of Henan University of

Traditional Chinese Medicine for treating COPD. This study focuses on the

pharmacological effects of BJG on COPD and its metabolism in rats, aiming to

provide a scientific basis for developing BJG against COPD. A total of

72 Sprague–Dawley (SD) rats were divided into the blank group, model

group, positive control group, and BJG groups (2.36, 1.18, and 0.59 g/kg).

Except for the blank group, rats in other groups were administered

lipopolysaccharide (LPS) combined with smoking for 6 weeks to establish

the COPD model. After another 6 weeks of treatment, the therapeutic effect

of BJG on COPD rats was evaluated. In the BJG (2.36 g/kg) group, the cough

condition of rats was significantly relieved and the bodyweight was close to that

of the blank group. Compared with the mortality of 16.7% in the model group,

no deaths occurred in the BJG (2.36 g/kg) and (1.18 g/kg) groups. The lung

tissue damage in the BJG groups was less than that in the COPD
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group. Compared with the model group, MV, PIF, PEF, and EF50 in the BJG

groups were observably increased in a dose-dependent manner, while sRaw,

Raw, and FRCwere obviously decreased. Also, the contents of IL-6, IL-8, TNF-α,
PGE2, MMP-9, and NO in the serum and BALF were lowered dramatically in all

BJG groups. All indicators present an obvious dose–effect relationship. On this

basis, the UPLC-QTOF-MS/MS technology was used to analyze characteristic

metabolites in rats under physiological and pathological conditions. A total of

17 prototype and 7 metabolite components were detected, and the

concentration of most components was increased in the COPD pathologic

state. It is suggested that BJG has a pharmacological effect in the treatment of

COPD and the absorption and metabolism of chemical components of BJG in

rats exhibited significant differences under physiological and pathological

conditions.

KEYWORDS

Bufei Jianpi granule (BJG), chronic obstructive pulmonary disease (COPD),
pharmacological effects, metabolites, UPLC-QTOF-MS/MS technology

1 Introduction

Chronic obstructive pulmonary disease (COPD) is a

preventable and treatable lung disease characterized by

continuous airflow restriction (Rong et al., 2020; Huang et al.,

2022). Its airflow restriction mostly develops in a progressive

manner, which is associated with the enhanced chronic

inflammatory response of airways and lung tissue to harmful

gases or particles such as tobacco smoke. It is a common and

frequently occurring disease that seriously endangers human

health (Ono et al., 2020). In 2020, it was ranked as the third

leading cause of death in the world along with hypertension and

diabetes, seriously endangering physical and mental health of

humans (Song et al., 2021; Zou et al., 2022). The treatment of

COPD mainly includes drug treatment and nondrug treatment,

where the former is the key to improving the symptoms of COPD

and reducing acute exacerbation (Li, 2020). Thus, long-term

adherence to drug therapy and regular follow-up should be

ensured. Furthermore, in terms of drug treatment, it mainly

involves bronchodilators, glucocorticoids, and expectorants (Lin

et al., 2020). However, due to the complex pathogenesis of COPD

and incomplete understanding, drug treatment mainly aims to

relieve and improve symptoms but is unable to achieve the goal of

radical cure of the disease.

As an effective preparation commonly used in the First

Affiliated Hospital of Henan University of Traditional Chinese

Medicine for the treatment of COPD, the Bufei Jianpi granule

(BJG) is composed of 12 traditional Chinese medicines (TCMs),

including Astragalus mongholicus Bunge [Fabaceae; Astragalus

mongholicus radix], Codonopsis pilosula (Franch.) Nannf

[Campanulaceae; Codonopsis pilosula radix], Polygonatum

kingianum Collett & Hemsl [Asparagaceae; Polygonatum

kingianum rhizoma], Atractylodes macrocephala Koidz

[Asteraceae; Atractylodis macrocephalae rhizoma], Poria cocos

(Schw.) Wolf [Poromycelidae; Poria], Fritillaria thunbergii Miq

[Liliaceae; Fritillariae thunbergii bulbus], Pheretima aspergillum

(E. Perrier) [Lumbricidae; Pheretima], Magnolia officinalis

Rehder & E. H. Wilson [Magnoliaceae; Magnoliae officinalis

cortex], Citrus reticulata Blanco [Rutaceae; Citri reticulatae

pericarpium], Aster tataricus L. f [Asteraceae; Asteris radix et

rhizoma], Epimedium brevicornu Maxim [Berberidaceae;

Epimedii folium], and Ardisia japonica (Thunb.) Blume

[Primulaceae; Ardisiae japonicae herba] at a ratio of 12:6:12:9:

9:6:9:6:9:6:6:15 (Li and Li, 2011). Clinical studies found that BJG

can efficiently enhance the pulmonary function of patients with

COPD in the stable stage, lower the number of acute

exacerbations, and improve exercise endurance (Tang et al.,

2019). However, at present, it is only used internally in the

First Affiliated Hospital of Henan University of Traditional

Chinese Medicine. In order to meet the needs of the majority

of patients, it is urgently needed to develop BJG into a Chinese

patent medicine preparation with a national brand for the

treatment of COPD. For this purpose, systemic research has

been carried out on the pharmacological effects, mechanism of

action, and process and quality control of BJG in the treatment of

COPD (Yu et al., 2019; Cui et al., 2020).

In this study, the commonly recognized pharmacological

model of lipopolysaccharide (LPS) combined with the smoke-

induced rat COPDmodel was used. The daily physiological state,

lung function, lung tissue appearance and morphology, lung

histopathological changes, and inflammatory factors in the

serum and bronchoalveolar lavage fluid (BALF) were taken as

the detection indicators to investigate the therapeutic effect of

BJG at different doses on COPD from the perspective of

pharmacological efficacy. On this basis, adopting the UPLC-

QTOF-MS/MS technology combined with tandem mass

spectrometry fragment ion information and comparison

methods of the reference substance, the components of BJG

absorbed into blood and their metabolites were analyzed under

physiological and pathological conditions. The differences in
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chemical component metabolism in rats were compared so as to

explore the effective chemical components of the prescription

and the law of disease treatment, which provide the experimental

basis for the development of BJG as a new drug for the treatment

of COPD.

2 Materials and methods

2.1 Chemicals and reagents

MS-grade methanol and acetonitrile were purchased from

Merck (Germany). MS-grade formic acid was bought from

Thermo Fisher Technology Co., Ltd. (United States). Mullein

isoflavone glucoside, naringin, hesperidin, ononin, epimedoside

A, icariin, nobiletin, and tangeretin (purities > 98%) were all

purchased from Sichuan Vicky Biotechnology Co., Ltd.

(Chengdu, China). Betaine, adenosine, magnoflorine, peimine,

peiminine, vanillin, hesperetin, wogonin, honokiol, magnolol,

and linoleic acid (purities > 98%) were all acquired from

Chengdu Pufei De Biotech Co., Ltd. (Chengdu, China).

Lipopolysaccharide (LPS) was offered by Shanghai Sulaibao

Biotechnology Co., Ltd. (Shanghai, China). Interleukin-8 (IL-

8), interleukin-6 (IL-6), tumor necrosis factor α (TNF-α),
prostaglandin E2 (PGE2), matrix metalloproteinase-9 (MMP-

9), and nitric oxide (NO) testing kits were purchased from

Shanghai Langton Biotechnology Co., Ltd. (Shanghai, China).

2.2 Preparation process of Bufei Jianpi
granule

BJG was provided by the First Affiliated Hospital of Henan

University of Traditional Chinese Medicine and produced by

Jiangyin Tianjiang Pharmaceutical Co., Ltd. (batch no. 1905301,

China). The preparation process of BJG is an industrial production

process amplified proportionally according to the following single

feeding amount: Astragalus mongholicus Bunge [Fabaceae;

Astragalus mongholicus radix] 12 g, Codonopsis pilosula (Franch.)

Nannf [Campanulaceae; Codonopsis pilosula radix] 6 g,

Polygonatum kingianum Collett & Hemsl [Asparagaceae;

Polygonatum kingianum rhizoma] 12 g, Atractylodes

macrocephala Koidz [Asteraceae; Atractylodis macrocephalae

rhizoma] 9 g, Poria cocos (Schw.) Wolf [Poromycelidae; Poria]

9 g, Fritillaria thunbergii Miq [Liliaceae; Fritillariae thunbergii

bulbus] 6 g, Pheretima aspergillum (E. Perrier) [Lumbricidae;

Pheretima] 9 g, Magnolia officinalis Rehder & E. H. Wilson

[Magnoliaceae; Magnolia officinalis cortex] 6 g, Citrus reticulata

Blanco [Rutaceae; Citri reticulatae pericarpium] 9 g, Aster

tataricus L. f [Asteraceae; Asteris radix et rhizoma] 6 g,

Epimedium brevicornu Maxim [Berberidaceae; Epimedii folium]

6 g, and Ardisia japonica (Thunb.) Blume [Primulaceae; Ardisia

japonicae herba] 15 g.

After being crushed, Atractylodis macrocephalae rhizoma

was combined with Citri reticulatae pericarpium, six times the

volume of water was added, and the sample was hydrodistilled for

5 h. The volatile oil was collected. Then, the sample was filtered to

get decoction (I), and the residue was collected for later use.

Extract (I) was obtained as follows: Magnolia officinalis cortex,

Asteris radix et rhizoma, and Fritillariae thunbergii bulbus are

taken, six times the volume of 70% ethanol is added, the extract is

refluxed for 1.5 h, and the process is repeated three times. The

filtrates of three repetitions are combined, the sample is

decompressed to recover ethanol, and it is concentrated to a

relative density of 1.15 at 50°C to obtain extract (I). The residue

was collected for later use. Extract (II) was obtained as follows: we

combine the aforementioned drug residues, add eight times the

volume of water, and decoct the sample three times for 1 h. Then,

we filter and mix the filtrates with decoction (I), decompress the

sample, and concentrate it to a relative density of 1.15 at 50°C to

obtain extract (II). Dry powder (I) was obtained as follows: we

combine extract (I) with extract (II) to obtain the total extract,

20% dextrin is added, and after spray-drying, dry powder (I) is

obtained. Dry powder (II) was obtained as follows: the volatile oil

is mixed with 10 times its amount of β-cyclodextrin by the

grinding method to obtain the inclusion complex; after vacuum-

drying and crushing, dry powder (II) is obtained. We mix dry

powder (I), dry powder (II), and 10% honey of the total powder

weight uniformly and make granules; after drying, the granules

are formed (Li and Li, 2011).

2.3 Bufei Jianpi granule qualification

The quality of BJG was verified by HPLC detection

(Figure 1). Mullein isoflavone glucoside, naringin, hesperidin,

ononin, epimedoside A, icariin, nobiletin, tangeretin, and

honokiol were quantified for controlling the quality of the

granule, and their contents in the batch 1905301 sample were

0.071 mg/g, 0.172 mg/g, 0.028 mg/g, 0.017 mg/g, 0.021 mg/g,

0.343 mg/g, 0.047 mg/g, 0.018 mg/g, and 0.042 mg/g,

respectively. The chemical composition of BJG was described

in our previous study by the HPLC-QTOF-MS technology (Cui

et al., 2020). Based on this, the authenticity of these nine quality

control indicators was confirmed by comparing the retention

time, accurate mass number, isotope peak, and other information

of these chemical components (please refer to the Supplementary

Material for details of HPLC and HPLC-QTOF-MS).

2.4 Animals

Male Sprague–Dawley (SD) rats (200 ± 20 g) were purchased

from Liaoning Changsheng Biotechnology Co., Ltd. [number:

SCXK (Liao) 2020-0001]. All rats were acclimated for 1 week

after arrival and housed in a room under controlled temperature
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(22 ± 2°C) and humidity with a 12-h light/dark cycle and free

access to water and food. Apart from that, all experiments were

carried out following the approved animal protocols and

guidelines established by the Medicine Ethics Review

Committee for Animal Experiments of Liaoning University of

Traditional Chinese Medicine with approval number

2020YS013(KT)-013-01.

2.5 Pharmacological efficacy of BJG on
the COPD rat model

A total of 72 SD rats were randomly divided into six groups,

namely, the blank group, COPD model group, AMINOPH

(aminophylline) (0.0054 g/kg) positive control group, BJG

high-dose (2.36 g/kg) group, medium-dose (1.18 g/kg) group,

and low-dose (0.59 g/kg) group, with 12 rats in each

group. The medium dose of BJG is determined according to

the conversion of animal dose to human equivalent dose. For the

high dose, we used two times the medium dose, and for low dose,

we used two times below the medium dose, to investigate the

dose–effect relationship. Except for the blank group, for rats in

the other groups, the COPD model was established by

administering LPS combined with smoking according to the

method with minor modification (Shin et al., 2017; Mao et al.,

2022; Pelgrim et al., 2022). The administration intervention was

started in the 6th week, twice a day. The blank group and the

model group were given distilled water of equal volume, and the

whole process lasted for 6 weeks. During this period, the activity

and behavior changes of the rats such as hair, mental state,

activity ability, weight, death, and other physiological state

indicators were observed and detected. After the drug

intervention, the Buxco noninvasive animal airway detection

system was used to measure the lung function of rats (Luo

et al., 2021). The rats to be tested were placed into the

noninvasive animal airway detection cavity. After the rats’

breathing was stable, the minute ventilation volume (MV),

special airway resistance (sRaw), airway resistance (Raw),

functional residual volume (FRC), peak inspiratory flow rate

(PIF), peak expiratory flow rate (PEF), and expiratory flow rate at

50% ventilation (EF50) were measured continuously. In addition,

the contents of IL-6, IL-8, TNF-α, PGE2, MMP-9, and NO in the

serum and BALF were determined using ELISA kits.

2.6 Analysis of chemical components
absorbed into the blood

A total of 24 SD rats were randomly classified into the blank

group, blank administration group, model group, and model

administration group. In the model groups, the rat model of

COPD was established by administering LPS combined with the

smokingmethod (Shin et al., 2017;Mao et al., 2022; Pelgrim et al.,

2022), while in the administration groups, rats were gavaged with

2.36 g/kg solution of BJG, twice a day for 7 consecutive days. The

blank group and the model group were given the same amount of

normal saline. Then, 12 h before the last administration, fasting

without water was performed, followed by 60 min after the last

administration, blood being taken from the abdominal aorta into

centrifuge tubes with heparin sodium, and 30 min later, it being

centrifuged at 3,000 rpm for 15 min to separate the plasma.

Afterward, the supernatant was taken and kept in a

refrigerator at -80°C for later use.

2.7 Preparation of plasma samples

The plasma samples were thawed at room temperature, and

400 µl of plasma samples was accurately extracted, followed by

protein removal with 1,200 µl of methanol. After that, by

FIGURE 1
Fingerprint chromatogram of BJG. (A) Chromatogram of standard substances. 1: mullein isoflavone glucoside; 2: naringin; 3: hesperidin; 4:
ononin; 5: epimedoside A; 6: icariin; 7: nobiletin; 8: tangeretin; 9: honokiol. (B) Chromatogram of the sample.
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vortexing for 3 min and centrifugation at 13,000 rpm (4°C) for

10 min, the supernatant was taken, cryogenic freeze-dried,

redissolved in 50 µl of methanol, and vortexed for 3 min.

Furthermore, the supernatant was centrifuged again at

13,000 rpm (4°C) for 10 min and was directly detected by LC-

MS (Li et al., 2022; Wang et al., 2022).

2.8 Chromatography–mass spectrometry
analysis conditions

The positive ion mode is adjusted as follows: Agilent

Poroshell 120 SB-C18 (100 mm × 4.6 mm, 2.7 μm) is used;

the mobile phase consists of 0.1% formic acid water (A)–

acetonitrile (B); gradient elution conditions are 0–25 min,

5–40% B; 25–35 min, 40–75% B; 35–40 min, and 75–100% B;

the flow rate is 0.8 ml min−1; the column temperature is 30°C; the

injection volume is 1 μl; the electrospray ion source (ESI) is

detected in the positive ionmode; the drying gas flow is 13 L/min;

the drying gas temperature is 350°C; the capillary voltage (Vcap)

is 4,000 V; the neutralizer pressure is 45 psig; the fragmentor

voltage is 125 V; the skimmer voltage is 65 V; the mass scanning

range is 50–1,000 m/z; and the secondary MS collision voltage is

40 eV.

The negative ion mode is set as follows: Agilent Poroshell

120 SB-C18 (100 mm × 4.6 mm, 2.7 μm) is used; the mobile

phase consists of water (A)–acetonitrile (B); gradient elution

conditions are 0–30 min, 5–100% B; the flow rate is 0.8 ml min−1;

the column temperature is 30°C; the injection volume is 5 μl; the

drying gas flow is 11 L/min; the drying gas temperature is 250°C;

the Vcap is 3,500 V; the neutralizer pressure is 45 psig; the

fragmentor voltage is 125 V; the skimmer voltage is 65 V; the

mass scanning range is 50–1,000 m/z; and the secondary MS

collision voltage is 40 eV (Wang et al., 2021).

2.9 Data analysis

SPSS 19.0 software was adopted for statistical analysis. The

data were represented as mean ± standard deviation (mean ±

SD). Statistical comparisons were analyzed by one-way analysis

of variance (ANOVA). A value of p < 0.05 suggests a difference,

and p < 0.01 represents a significant difference (Chen et al., 2019;

Liu et al., 2021).

MS data processing was performed with MassHunter

software and the PCDL database, which contained extracted

ion chromatograms and calculations of elemental

compositions with mass errors within 10 ppm. The chemical

structures of all analytes were explained and verified based on

their elemental compositions, accurately measured mass values,

the elution order on a C18 column, retention time, fragmentation

behavior, and the comparison with authentic standards and

literature as far as possible (Lu et al., 2021).

3 Results

3.1 General state of rats in the
pharmacodynamic experiment

The rats in the blank group featured normal hair color and

luster, good mental state, flexible and frequent activities, stable

exhalation, and normal diet and water intake, while those in the

model group had dull and yellow hair, no luster, cough, phlegm

in the throat, mental fatigue, slow movement, reduced diet, and

weight loss. In the BJG high-dose group and the AMINOPH

group, cough was significantly relieved and phlegm and sound in

the larynx disappeared, with daily activities of rats being more

frequent. There was no significant difference in drinking water

compared with the blank group. Furthermore, compared to the

model group, the cough condition of rats in the BJG medium-

and low-dose groups was reduced and their mental state was

improved, while their water intake was reduced compared with

the blank group.

3.2 Body weight change and deaths of rats

Before the experiment, there existed no significant difference

in the weight of rats in each group. After the experiment, a

significant difference in the body weight existed between the

blank group and the model group (p < 0.01). In comparison with

the model group, the body weight in the BJG groups and the

AMINOPH group was obviously higher (p < 0.01) (Figure 2A).

Before and after the experiment, the weight of rats in each group

increased linearly. The weight growth rate of the blank group was

faster, and that of the model group was the slowest (Figure 2B).

Furthermore, during the whole experiment, there was no death in

the blank control group and BJG high-dose, medium-dose, and

AMINOPH groups, while deaths occurred in the model and BJG

low-dose groups, with mortality rates of 16.7% and 8.3%,

respectively.

3.3 Evaluation of lung function in rats

In comparison with the blank group, MV, PIF, PEF, and

EF50 in the model group were dramatically decreased, while

sRaw, Raw, and FRC were significantly increased (p < 0.01).

Compared with the model group, MV, PIF, PEF, and EF50 in the

BJG groups and the AMINOPH group were observably

increased, while sRaw, Raw, and FRC were obviously

decreased (p < 0.01) (Figure 2C). According to the results,

compared with the blank group, the model group had

increased airway resistance, decreased lung compliance,

restricted airflow, and airway obstruction. However, compared

with the model group, the indexes of each treatment group,

especially the BJG high-dose and AMINOPH groups, had
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improved, indicating that BJG can ameliorate airway obstruction,

enhance pulmonary ventilation, and exert a protective effect on

the pulmonary function of COPD rats. In addition, a certain

dose–effect relationship was observed.

3.4 Morphological changes in the lung
tissue of rats

The lung tissues of the blank control group were smooth,

shiny, soft, light red in color, and normal in size. In the

model group, the surface of lung tissue was rough, the whole

lung was white, luster was lost, and lung swelling was

obvious. Compared with the model group, the lung

volume of rats in each administration group was

significantly reduced, shiny, and soft. The color of the

BJG high-dose group and the AMINOPH group was close

to that of the normal group, and the volume was reduced

compared with the model group to a great extent. Moreover,

the color of the BJG medium- and low-dose groups was

lighter, and the volume was larger than that of the blank

group (Figure 3A).

FIGURE 2
Changes in body weight and lung function of rats in each group. (A) Changes in body weight at the beginning and end of the experiment. (B)
Changes in body weight of rats per week during treatment. (C) Changes in lung function indexes of rats in each group.
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3.5 Pathological changes in the lung tissue
of rats

Under the light microscope, the lung tissue structure of the

blank group was complete and the bronchial tube wall was not

thickened; other than that, there was no exudate in the lumen, the

cilia were arranged neatly, and no inflammatory cell infiltration

occurred. The size of the alveoli was normal, and the structure of

the alveolar septum was clear. Compared with the blank group,

the bronchial smooth muscle in the model group was

significantly thickened and the lumen was filled with a large

number of neutrophils. The alveolar septum was severely broken,

alveolar cells were fibrotic, neutrophils were denatured and

necrotic, cellulose was dissolved, alveolar walls were thinner,

alveolar cavities were significantly expanded, and some alveoli

fused to form pulmonary bullae. The pathological changes of the

abovementioned trachea and lung tissues were consistent with

those of COPD patients. Compared with the model group, the

lung tissue damage in each drug intervention group was less than

that in the COPD group and the lung tissue damage in the

AMINOPH and BJG high-dose groups was the least (Figure 3B).

3.6 Changes in inflammatory factors in the
rat serum and BALF

The contents of IL-6, IL-8, TNF-α, PGE2, MMP-9, and NO

in the serum and BALF of rats in each group are shown in

Figure 4. Compared to the blank group, the expression levels of

IL-6, IL-8, and TNF-α were increased in the model group and all

treatment groups, and compared to the model group, they were

lowered dramatically in all treatment groups (p < 0.01), especially

in the BJG high-dose group and the AMINOPH

group. Compared with the blank group, the expression levels

FIGURE 3
(A) Morphological changes in the lung tissue of rats. (B) Pathological changes in the lung tissue of rats [HE staining (magnification ×200)].
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of NO and MMP-9 factors in the model group and each

treatment group were increased, while compared with the

model group, they were decreased to a great extent in all

treatment groups (p < 0.01), especially in the BJG high-dose

group and the AMINOPH group. Moreover, compared with the

blank group, the expression levels of PGE2 in the model group

and each treatment group were increased, whereas compared

with the model group, they were noticeably decreased in all

treatment groups (p < 0.01), especially in the BJG high-dose

group and the AMINOPH group. These findings suggest that all

treatment groups could improve the inflammatory response in

COPD rats.

3.7 LC-MS analysis on plasma samples of
BJG under physiological and pathological
conditions

By comparing the profiles of positive and negative blank

plasma and drug-containing plasma, 13 different compounds,

FIGURE 4
Changes in inflammatory factors in the rat serum and BALF.
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including 10 prototype components and three metabolites, were

found in the pathological plasma in the positive ion mode. In

physiological plasma, it contains all pathological components,

but there is one prototypical component and one metabolite

more than that in the pathological state. In the negative ion

mode, eight different compounds, involving five prototypes and

three metabolites, were discovered in the pathological plasma. In

the physiological state, it contains all pathological components,

but there is one more prototypical blood-entering component

than that in the pathological state. The total ion-flow

chromatogram (TIC) of each group is shown in Figure 5,

while the retention time and molecular weight of each

component are displayed in Table 1.

3.8 Identification of chemical components
absorbed in rat plasma

In the positive ion mode, for compound P1 (1.829 min, m/z

118.0861) (C5H11NO2, M + H)+, the secondary fragment ions

were m/z 84.9595 (M + H-2OH)+ and m/z 58.0650

(M-C2H3O2)
+. After comparison with the betaine reference

substance, the fragment ion information was basically

consistent with that of betaine and it was determined to be

betaine. For compound P2 (3.022 min, m/z 268.1040)

(C10H13N5O4, M + H)+, the secondary fragment ions were m/

z 136.0616 (M + H-C5H8O4)
+, m/z 119.0349 (M + H-C5H8O4-

NH3)
+, and m/z 94.0400 (M-C5H8O4-NH3-CN)

+. After

comparison with the adenosine control substance, the

fragment ion information was in line with that of adenosine

and, finally, it was identified as adenosine. For compound P3

(5.427 min, m/z 254.1387) (C13H19NO4+H)+, the secondary

fragment ion was m/z 161.0580 (M + H-H2O-C3H9NO)+. In

addition, after comparison with the standard database

information and references, the fragment ion information is

roughly consistent with that of codonopsinol B. It was

speculated to be codonopsinol B. For compound P4

(11.245 min, m/z 342.1695) (C20H24NO4+H)+, the secondary

fragment ions were m/z 297.1130 (C20H24NO4-CH2O-CH3)
+, m/

z 282.0884 (C20H24NO4-CH2O-2CH3)
+, m/z 222.0670

(C20H24NO4-CH2O-2CH3-C2H4O2)
+, and m/z 191.0851

(C20H24NO4-CH2O-2CH3-C2H4O2-CH3O)
+. The fragment ion

information was in accordance with that of magnoflorine, by

comparison with that of magnoflorine, and it was detected as

magnoflorine. For compound P5 (15.924 min, m/z 428.3139)

(C27H41NO3+H)+, the secondary fragment ion was m/z 412.3205

(C27H41NO3+H-O)+. After comparison with the standard

database information, the fragment ion information was

roughly consistent with that of peimisine, so it was speculated

that it might be peimisine. For compound P6 (16.551 min, m/z

432.3460) (C27H45NO3)
+, the main secondary fragment ions

were m/z 414.3358 (C27H45NO3-H2O)
+, m/z 398.3054

(C27H45NO3-H2O-O)
+, and m/z 299.2351 (C27H45NO3-

H2O-O-C6H11O)
+. After comparison with the control

substance, the fragment ion information was basically in line

with that of the control substance and the fragment ion

FIGURE 5
Plasma TIC of rats in each group. (A)Drug-containing plasma
of healthy rats in the positive mode. (B)Drug-containing plasma of
COPD rats in the positive mode. (C) Blank plasma of healthy rats in
the positive mode. (D) Drug-containing plasma of healthy
rats in the negative mode. (E) Drug-containing plasma of COPD
rats in the negative mode. (F) Blank plasma of healthy rats in the
negative mode.

Frontiers in Pharmacology frontiersin.org09

Yang et al. 10.3389/fphar.2022.1090345

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1090345


information was determined to be peimine. In terms of

compound P7 (16.934 min, m/z 430.3308) (C27H43NO3+H)+,

the secondary fragment ion was m/z 412.3199 (C27H43NO3+H-

H2O)
+. After comparison with standard database information,

fragment ion information was roughly consistent with that of

zhebeinone, so it was speculated to be zhebeinone. As for

compound P8 (17.553 min, m/z 430.3301) (C27H43NO3+H)+,

the secondary fragment ions were m/z 412.3199 (C27H43NO3+H-

H2O)
+, m/z 396.2898 (C27H43NO3+H-H2O-O)

+, and m/z

175.1474 (C27H43NO3+H-H2O-O-C15H27N)
+. After

comparison with the control substance, it was confirmed that

it was peiminine. For compound P9 (19.934 min, m/z 432.3461)

(C27H45NO3+H)+, the main secondary fragment ion is m/z

414.3359 (C27H45NO3+H-H2O)
+. After comparison of the

fragment ion information with the standard database, it was

speculated to be zhebeinine. For compounds P10 (21.570min, m/

z 414.3359) and P11 (22.379 min, m/z 414.3357),

(C27H43NO2+H)+ was compared with standard database

information and fragment ion information, and it was

speculated to be ebeiedinone or zhebeirine. The specific

association needs to be further confirmed by a reference

substance. Compound PM1 with molecular ion peak m/z

169.0354 (C5H4N4O3+H)+, which is 32 Da more than the

hypoxanthine excimer ion peak 137 (C5H4N4O + H)+,

prompted that O is added continuously and two oxygenation

reactions occurred. Combined with the fragments m/z 152.0319

(C5H4N4O3+H-NH3)
+, m/z 141.0669 (C5H4N4O3+H-CO)+, and

m/z 125.9855 (C5H4N4O3+H-CONH)+, it is speculated to be

hypoxanthine oxidation products. Compound PM2 m/z

349.1822 (C16H12O7S + H)+, which was found to be 80 Da

more than the formononetin excimer ion peak 269

(C16H12O4+H)+, suggested that the compound is a sulfate

metabolite. Combined with fragment m/z 269.1024

(C16H12O4+H)+, which is the prototype component of

formononetin, it was speculated that the combination is

formononetin sulfate. Furthermore, for compound PM3 with

the molecular ion peak of m/z 565.2861, the main secondary

fragment ion is m/z 403.1357 (C21H22O8+H)+, which is the

excimer ion peak of nobiletin. The molecular weight of this

substance in primary mass spectrometry is 162 Da more than

that of nobiletin. It may be the product of glucuronidation and

demethylation of nobiletin. Compound PM4 with m/z 461.1066,

which is 176 Da more than that of calycosin excimer ion peak

285, demonstrated that the compound is a metabolite of

glucoaldehyde acidification and the corresponding molecular

formula is C22H20O11. Combined with fragments m/z

285.0753 (C16H12O5+H)+, m/z 270.0509 (C16H12O5+H-CH3)
+,

and m/z 125.9863 (C16H12O5+H-C9H4O3)
+, m/z 285.0753 is the

prototype component of the compound calycosin, so that the

compound is speculated to be glucuronized calycosin.

In the negative ion mode, for compound N1 (11.495 min, m/z

593.1872) (C28H34O14-H)
-, the secondary fragment ions were m/z

TABLE 1 Analysis on chemical components absorbed in healthy rat plasma.

Positive ion mode Negative ion mode

No. tR (min) Excimer ion MS (m/z) Source No. tR/(min) Excimer ion MS (m/z) Source

P1 1.829 118.0861 Prototype N1 11.495 593.1872 Prototype

*P2 3.022 268.1040 Prototype N2 14.287 301.0724 Prototype

P3 5.427 254.1387 Prototype *N3 17.067 283.0619 Prototype

P4 11.245 342.1695 Prototype N4 20.129 265.1250 Prototype

P5 15.924 428.3144 Prototype N5 21.497 265.1248 Prototype

P6 16.551 432.3460 Prototype N6 29.629 279.2328 Prototype

P7 16.934 430.3308 Prototype NM1 2.537 167.0215 Metabolites

P8 17.553 430.3301 Prototype NM2 6.666 273.0065 Metabolites

P9 19.934 432.3461 Prototype NM3 15.175 259.1026 Metabolites

P10 21.570 414.3359 Prototype

P11 22.379 414.3357 Prototype

*PM1 3.820 169.0354 Metabolites

PM2 8.417 349.1822 Metabolites

PM3 11.981 565.2861 Metabolites

PM4 15.796 461.1066 Metabolites

*Components that were not detected in the pathological state.
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510.2635 (C28H34O14-C4H4O2)
-, m/z 285.0783 (C28H34O14-

C12H21O7)
-, and m/z 96.9587 (C28H34O14-C20H25O12)

-. After

comparison with vanillin, the fragment ion information was

basically consistent and it was identified as vanillin. For

compound N2 (14.287 min, m/z 301.0724) (C28H34O14-H)
-, the

main secondary fragment ions were m/z 136.0171 (C28H34O14-

C20H26O12)
-, m/z 108.0223 (C28H34O14-C21H26O13)

-, and m/z

65.0039 (C28H34O14-C23H29O14)
-. After comparison with

hesperetin, the fragment ion information was consistent with that

of hesperetin. Therefore, it was identified as hesperetin. For

compound N3 (17.067 min, m/z 283.0619) (C16H12O5-H)
-, the

secondary fragment ions were m/z 239.0344 (C16H12O5-C2H5O)
-,

m/z 163.0039 (C16H12O5-C7H5O2)
-, m/z 135.0099 (C16H12O5-

C7H5O2-CO)
-, and m/z 110.0007 (C16H12O5-C7H5O2-CO-C2H5)

-.

After comparison with the control substance, the fragment ion

information was in line with that of wogonin. It was finally

determined to be wogonin. For compound N4 (20.129 min, m/z

265.1250) (C18H18O2-H)
-, the secondary fragment ions were m/z

249.0936 (C18H18O2-OH)
-, m/z 223.0771 (C18H18O2-C3H7O)

-, and

m/z 197.0617 (C18H18O2-C4H5O2)
-. After comparison with the

honokiol control substance, fragment ion information was

basically consistent with that of honokiol and it was identified as

honokiol. For compoundN5 (21.576min,m/z 265.1248) (C18H18O2-

H)-, the main secondary fragment ions were m/z 223.0767

(C18H18O2-H-C3H5)
-, m/z 204.0577 (C18H18O2-H-C3H5-OH)

-,

and m/z 119.0501 (C18H18O2-C9H7O2)
-. After comparison with

the reference substance, it was identified as magnolol. For

compound N6 (29.296 min, m/z 279.2328) (C18H32O2-H)
-, no

fragment ions were produced at 40 V. After comparison with the

linoleic acid reference substance, it was determined to be linoleic acid.

Themolecular ion peak of compoundNM1wasm/z 167.0215, which

is the methyl group, 14 Da more than protocatechuic acid. When

combined with the fragment m/z 122.4525 (C7H6O4-2O)
- and

according to the literature (Guo et al., 2019) as well as database

comparison, it was speculated as a methylated product of

protocatechuic acid. For compound NM2 with m/z 273.0065,

which increased by 94 Da (M + CH2+SO3) compared with caffeic

acid (C9H8O4), according to the comparison of literature studies and

databases, it was speculated that the compound was 3-methoxy-

caffeine-4-O-sulfate. Moreover, the basic ion peak of compound

NM3 was m/z 259.1026, 80 Da more than that of caffeic acid 179,

suggesting that M + SO3 was increased. Beyond that, the

corresponding molecular formula was C9H8O7S, and in

comparison with the characteristic ion of caffeic acid with m/z

179.0346, it was speculated to be caffeic acid-3-O-sulfate.

3.9 Difference of prototype components
from BJG under physiological and COPD
pathological conditions

According to Table 2 and Figure 6, betaine, codonopsinol B,

magnoflorine, peimisine, peimine, zhebeinone, peiminine,

zhebeinine, ebeiedinone, zhebeirine, vanillin, hesperetin,

honokiol, magnolol, and linoleic acid were all absorbed into

the blood as the prototype under physiological and pathological

conditions. Taking the variation of abundance greater than

1.5 times as the statistical standard, nine of the prototype

components increased in the blood, five decreased, and one

was not detected under the pathological state, while honokiol

and linoleic acid did not change.

3.10 Difference of metabolites from BJG
under physiological and COPD
pathological conditions

It can be seen from Table 3 and Figure 7 that there are seven

metabolic components that change under the pathological state

compared with the physiological state. Among them, five

components increase in the blood concentration under the

pathological state, while one metabolite decreases in the blood

concentration and hypoxanthine oxidation products are not

detected under the pathological state, which may not affect

the absorption of the aforementioned components under the

pathological state.

4 Discussion

COPD is a preventable and treatable lung disease

characterized by a persistent and progressive limitation of

airflow (Rong et al., 2020; Huang et al., 2022). Its airflow

restriction is associated with the enhanced chronic

inflammatory response of the airways and lung tissue to

harmful gases or particles such as tobacco smoke (Ono et al.,

2020). COPD is a common and frequently occurring disease

that poses a serious threat to human health (Li et al., 2020). The

LPS combined with the smoke-induced rat COPD model is a

classical and commonly used model to evaluate the drug

treatment of COPD, based on which this study investigated

the therapeutic effect of BJG on COPD from physiological,

pathological, biochemical, and other aspects, providing better

experimental data for its development into a new clinical drug

for COPD.

The mental state directly reflects the physiological or physical

state. In this study, the rats in the COPD model group were

listless and sluggish, with dull and yellow hair and cough and

throat phlegm sounds. Patients with advanced COPD tend to

lose weight (Pershina et al., 2019), while rats in the model group

presented an emaciated body type, and death occurs with a

mortality rate of 16.7%. After the BJG treatment with

different dosages, the state of the rats was improved by

different degrees. In particular, the rats in the BJG high-dose

group had more frequent daily activities, and the phlegm sounds

between the larynx disappeared. There was no difference in
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weight and water intake between the BJG high-dose and blank

groups, and no deaths occurred.

Airway resistance refers to the viscous resistance

generated by airflow, which is caused by the friction

between airflow and the airway wall as well as by airflow

itself when air flows through the airway during breathing.

COPD is characterized by airflow restriction that is not

completely reversible. Pulmonary function examination is

the main objective index to judge airflow restriction, and it

is an important index to diagnose COPD and evaluate the

therapeutic effect (Kilk et al., 2018; Liu et al., 2018). Airway

resistance is inversely related to the lung volume. In this

study, sRaw, Raw, FRC, and other pulmonary function

indicators reflecting airway resistance were significantly

increased in the model group, while MV, PIF, PEF, and

EF50 were significantly decreased, indicating that the

COPD model was successfully established. The primary

therapy for COPD is intended to reduce airway resistance

(James et al., 2019). All doses of BJG treatment groups can

significantly improve the phenomenon of increased airway

resistance, decreased pulmonary compliance, airflow

restriction, and airway obstruction in COPD rats,

especially in the high-dose group. These results indicated

that BJG possesses protective effects on lung function in

COPD rats and exerts a certain dose–effect relationship.

The main pathological changes of COPD are manifested by

chronic bronchitis and emphysema (Jia et al., 2020). In this study,

the lungs of rats in the model group showed obvious

histopathological changes. Increased lung size, dark color, and

scattered foci of necrosis were observed. Also, the number of

pulmonary alveoli decreased significantly, with damaged

structure, irregular expansion, and thinner walls. The alveolar

space narrowed, and some of it broke and fused to form large

vesicles, thus forming emphysema. In addition, there are a lot of

inflammatory cells infiltrating the pulmonary interstitium,

alveolar cavity, and vascular cavity and the lung tissue

presents obvious pathological damage. The damage of lung

tissue in each dose group of BJG was less severe than that in

the COPD group. No emphysema was formed, only a few

inflammatory cells were infiltrated, and the damage degree of

lung tissue in the BJG high-dose group was the least.

The results of inflammatory factor detection in the serum

and BALF of rats in each group showed that the levels of IL-6, IL-

8, and TNF-α in the model group were significantly increased

and the contents of NO and MMP-9 reflecting oxidative damage

and tissue damage were also significantly increased as well as

TABLE 2 Difference of prototype blood components.

No. Compound Physiological
state

Relative abundance of the
physiological state

Pathological
state

Relative abundance of the
pathological state

1 Betaine √ 1 √ ↓

2 Adenosine √ 1 - 0

3 Codonopsinol B √ 1 √ ↑

4 Magnoflorine √ 1 √ ↑

5 Peimisine √ 1 √ ↑

6 Peimine √ 1 √ ↑

7 Zhebeinone √ 1 √ ↑

8 Peiminine √ 1 √ ↑

9 Zhebeinine √ 1 √ ↑

10 Ebeiedinone/
zhebeirine

√ 1 √ ↑

11 Ebeiedinone/
zhebeirine

√ 1 √ ↑

12 Vanillin √ 1 √ ↓

13 Hesperetin √ 1 √ ↓

14 Wogonin √ 1 √ ↓

15 Honokiol √ 1 √ -

16 Magnolol √ 1 √ ↓

17 Linoleic acid √ 1 √ -
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those of PGE2, reflecting vasodilatation and vascular

permeability. The expression levels of the aforementioned

factors were significantly reduced in different doses of BJG

groups, manifesting that BJG can improve the vasodilation

and vascular permeability of COPD rats, improve the

inflammatory reaction, and reduce the oxidative damage and

tissue damage of COPD rats in a dose–effect relationship.

For proving that BJG possesses an established therapeutic

effect on COPD, the UPLC-QTOF-MS/MS technology was

adopted to analyze the differences in chemical component

metabolism in rats under physiological and pathological

conditions so as to explore the effective chemical components

of the prescription and the law of disease treatment. Based on the

preliminary study on the chemical components of 95 monomers

in BJG (Cui et al., 2020), 17 prototype monomers, namely,

betaine, adenosine, codonopsinol B, magnoflorine, peimisine,

peimine, zhebeinone, peiminine, zhebeinine, ebeiedinone,

zhebeirine, vanillin, hesperetin, wogonin, honokiol, magnolol,

and linoleic acid, were identified in the blood component of BJG.

Among them, 11 were discovered in the comparison of reference

materials and six in the secondary comparison; in addition, seven

metabolites, namely, hypoxanthine oxidation products, sulfated

formononetin, glucoaldehyde acidification and demethylation of

citrine, glucoaldehyde acidification of calycoflavone,

protocatechuic acid methylation, 3-methoxy-caffeine-4-O-

sulfate, and caffeine-3-O-sulfate, were confirmed in blood

components. The products were derived from hypoxanthine,

formononetin, citrine, calycosin, protocatechuic acid, and caffeic

acid. Through this experiment, the research group found the

tracks of 23 components in BJG in plasma and preliminarily

clarified the blood transfer components and metabolism rules of

the compound from in vitro to in vivo.

Through the comparative study on the blood components of

BJG in physiological and COPD pathological states, it was found

that 15 prototype components were detected in both

physiological and pathological states. Among them, nine

components increased in blood concentration in the

pathological state and six prototype components decreased in

blood concentration. Apart from that, seven metabolic

components were detected under physiological and

pathological conditions. Among them, five components

increased in blood concentration and two components

decreased in blood concentration. The aforementioned results

show that the absorption of most chemical components is

significantly enhanced when BJG is administered in the

pathological state compared to that in the physiological state,

and the structural types of these enhanced chemical components

are mostly alkaloids and fatty acids, while the absorption of

flavonoids and lignin is weakened. At the same time, it can be

seen from the metabolites that the reason for the weakening of

flavonoids and lignin components is related to the acceleration of

compound metabolism in the pathological state, which leads to

the decrease in peak time of components and the decrease in

content at the same time. Furthermore, it is found that the

physiological components include two more than the

pathological prototype blood-entering components, namely,

adenosine and wogonin, and the physiological components

include one more than the pathological metabolites, which is

hypoxanthine oxidation products. The reason is that, under

pathological conditions, either the body performs poor

FIGURE 6
Difference of prototype blood components. (A) Betaine. (B)
Adenosine. (C) Codonopsinol B. (D) Magnoflorine. (E) Peimisine.
(F) Peimine. (G) Zhebeinone. (H) Peiminine. (I) Zhebeinine. (J)
Ebeiedinone and Zhebeirine. (K) Vanillin. (L) Hesperetin. (M)
Wogonin. (N) Magnolol. 1 presents the physiological state, and
2 presents the pathological state.
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absorption of this compound or all of it is converted into related

metabolites after absorption.

By comparing the differences in blood-entering components

of the compound under pathological and physiological

conditions, it is observed that there are significant differences

in the metabolism of chemical components in BJG in rats under

pathological and physiological models. The absorption of

alkaloids and fatty acids in BJG under pathological conditions

is enhanced, while the absorption of flavonoids and lignin is

weakened. At the same time, it also objectively reflects the

difference between taking drugs with disease and taking drugs

without disease in traditional medicine. Thus, it provides data

and theoretical support for the study on the metabolic

mechanism of traditional Chinese medicine in different states.

Moreover, the chemical components absorbed in rat plasma

are related to acute lung injury, asthma, and pulmonary fibrosis

to varying degrees. There also exists a deeper relationship

between these active components and pharmacodynamic

indicators. Among the alkaloids, peimine and peiminine can

alleviate LPS- or bleomycin-induced acute lung injury in rats.

They can inhibit lung inflammation and pulmonary fibrosis,

resulting in their apparent inhibition of inflammatory factors

such as TNF-α, IL-6, IL-1β, and IL-17 (Du et al., 2020; Liu et al.,

2022). Betaine possesses anti-inflammatory activity, and it can

reduce the inflammatory factors of TNF-α and IL-6 in the body

(Detopoulou et al., 2008; Vinke et al., 2019). Ebeiedinone

possesses a tracheobronchial relaxation effect (Wu et al.,

2018). Most flavonoids possess potent anti-inflammatory

activity, and some show antioxidant activity. For example,

hesperetin can significantly reduce LPS-induced lung

pathological injury and reduce the number of neutrophils and

the levels of inflammatory cytokines TNF-α and IL-6 in vivo and

in vitro. Also, the effect is related to regulating the TLR4-MyD88-

NF-κB signaling pathway, affecting the miR-410/SOX18 axis,

and targeting the MD2 protein (Wang et al., 2019; Ye et al., 2019;

Dong et al., 2020). Wogonin can prevent LPS-induced acute lung

injury and inflammation and inhibit the production of

inflammatory cytokines such as TNF-α, IL-1β, and IL-6. The

mechanism is due to the regulation of the PPARγ-involved NF-

κB pathway and the reduction of p38 MAPK and JNK

phosphorylation (Yao et al., 2014; Wei et al., 2017).

Formononetin has significant anti-inflammatory and

antioxidant effects in a variety of diseases. In the study on

treatment of asthma, it can diminish the expression of IL-4,

IL-5, IL-13, IL-17A, IgE, CCL5, and CCL11, inhibit NF-kB- and

JNK-mediated inflammatory signaling, and reduce oxidative

damage through decreasing the activity of ROS and increasing

SOD (Yi et al., 2020). Calycosin has anti-inflammatory and

antioxidant properties. It can obviously reduce the

pathological damage to lung tissue and pulmonary edema in

rats. The mechanism is through inactivating the HMGB1/

MyD88/NF-κB pathway and the NLRP3 inflammasome (Chen

et al., 2021). Moreover, nobiletin and vanillin also exert anti-

inflammatory activity (He et al., 2019; Costantini et al., 2021).

Lignans are also related to anti-inflammatory and antioxidant

properties. Honokiol can inhibit TGF-β/Smad signaling, matrix

proteins, and the IL-6/CD44/STAT3 axis to reduce pulmonary

fibrosis, which exerts anti-inflammatory and antioxidant effects

(Pulivendala et al., 2020). Magnolol represents excellent

protective effects on LPS-induced acute lung injury in rats. It

can relieve lung tissue damage and downregulate the levels of

proinflammatory factors such as TNF-α, IL-1β and IL-6, which is
related to PPAR-γ-dependent inhibition of NF-kB activation (Ni

et al., 2012; Lin et al., 2015). Furthermore, caffeic acid can

decrease the suppression of TNF-α, NF-κB, ERK1/2, STAT3,
and JNK1/2 to play an anti-inflammatory role (Santos et al.,

2019). Protocatechuic acid also possesses anti-inflammatory

activity. Moreover, it can inhibit the inactivation of Smad2/

3 proteins to exert the effect of inhibiting asthma airway

remodeling (Lende et al., 2011; Liu et al., 2019).

In summary, as part of the research on the National Key R&D

Program of China, this study proved that BJG is positively

TABLE 3 Difference of metabolites in the blood.

No. Compound Physiological
state

Relative abundance of the
physiological state

Pathological
state

Relative abundance of the
pathological state

1 Hypoxanthine oxidation
products

√ 1 - 0

2 Formononetin sulfate √ 1 √ ↑

3 Nobiletin glucuronidation and
demethylation product

√ 1 √ ↓

4 Glucuronized calycosin √ 1 √ ↑

5 Methylated product of
protocatechuic acid

√ 1 √ ↑

6 3-Methoxy-caffeine-4-O-sulfate √ 1 √ ↑

7 Caffeic acid-3-O-sulfate √ 1 √ ↑
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effective for the treatment of COPD and revealed the active

components and their metabolism, which provide reliable

pharmacodynamic data for developing BJG into a Chinese

patent medicine preparation with a national brand for the

treatment of COPD. To achieve this, further research will be

carried out around the mechanism of BJG curing COPD and

evidence-based medicine.

5 Conclusion

BJG can improve the survival status of COPD rats, improve

lung function, reduce lung injury, vasodilation, and vascular

permeability, improve inflammatory reactions, reduce

oxidative damage and tissue damage, and possess a superior

protective effect on the lung function of COPD rats. There are

FIGURE 7
Difference of metabolites in the blood. (A) Hypoxanthine oxidation products. (B) Formononetin sulfate. (C) Nobiletin glucuronidation and
demethylation product. (D)Glucuronized calycosin. (E)Methylated product of protocatechuic acid. (F) 3-Methoxy-caffeine-4-O-sulfate. (G)Caffeic
acid-3-O-sulfate. 1 presents the physiological state, and 2 presents the pathological state.
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significant differences in the metabolism of chemical

components of BJG in rats under pathological and COPD

physiological states. Under pathological conditions, the

absorption of alkaloids and fatty acids in BJG is enhanced,

while the absorption of flavonoids and lignin is weakened.

The aforementioned research provides a scientific basis for the

development of BJG as a new clinical drug for the treatment

of COPD.
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