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Lipids are a class of complex hydrophobic molecules derived from fatty acids

that not only form the structural basis of biological membranes but also regulate

metabolism andmaintain energy balance. The role of lipids in obesity and other

metabolic diseases has recently received much attention, making lipid

metabolism one of the attractive research areas. Several metabolic diseases

are linked to lipid metabolism, including diabetes, obesity, and atherosclerosis.

Additionally, lipid metabolism contributes to the rapid growth of cancer cells as

abnormal lipid synthesis or uptake enhances the growth of cancer cells. This

review introduces the potential drug targets in lipid metabolism and

summarizes the important potential drug targets with recent research

progress on the corresponding small molecule inhibitor drugs. The

significance of this review is to provide a reference for the clinical treatment

of metabolic diseases related to lipid metabolism and the treatment of tumors,

hoping to deepen the understanding of lipid metabolism and health.
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Introduction

Lipids are a class of hydrophobic or amphiphilic small molecules which can be divided

into eight types: 1) fatty acids, 2) glycerolipids, 3) sphingolipids, 4) sterols, 5)

saccharolipids, 6) prenols, 7) glycerophospholipids, 8) polyketides (Figure 1) (Fahy

et al., 2007). The diversity of lipids endows them with different biological functions.

As one of the three major human nutrients, lipids play an important role in nutrition and

health and are closely related to diseases. However, the incidence of abnormal lipid

metabolism has gradually increased with the improvement of people’s living standards

and changes in dietary habits and lifestyles in recent years. Abnormal lipid metabolism

plays an important role in metabolic dysfunction with a variety of diseases, including

cardiovascular diseases, diabetes, obesity, non-alcoholic fatty liver disease (NAFLD), non-

alcoholic steatohepatitis (NASH), neurodegenerative diseases and cancer (Lim et al., 2014;

Butler et al., 2020; Chew et al., 2020).
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Lipid metabolism with cardiovascular
diseases

Abnormal lipid metabolism is a big risk factor for

cardiovascular diseases (McGranaghan et al., 2021). Lipid

metabolism is closely related to the occurrence and

development of atherosclerosis. Atherosclerosis is a common

clinical disease closely related to coronary heart disease and

cerebral infarction (Pothineni et al., 2017). Although there

have been related therapeutic drugs (such as statins), their

clinical use is limited by their limited efficacy and side effects.

Therefore, the search for novel therapeutic drugs of the

cardiovascular diseases remains urgent.

Lipid metabolism with diabetes

Worldwide, about 537 million people suffer diabetes, and type

2 diabetes (T2D) accounts for 90% of diabetes patients, which has

become a serious health risk (Ahmad et al., 2022). Obesity is a

major risk factor for T2D (Kahn et al., 2006). In obese patients,

elevated triglyceride levels lead to increased levels of free fatty

acids, which can lead to insulin resistance and glucose intolerance

(Boden, 2003). The body metabolizes glucose inefficiently and

lipolysis increases, releasing free fatty acids and glycerol,

accompanied by an increase in fatty acid β-oxidation (FAO).

This leads to the accumulation of large amounts of ketones and

the production of large amounts of ketone bodies such as

acetoacetic acid, beta-hydroxybutyric acid, and acetone,

resulting in diabetic ketoacidosis (Dhatariya et al., 2020). In

addition, FAO (especially very long chain fatty acids) may

mediate the increase in diabetes-induced oxidative stress, which

leads to the development of diabetic complications (Giacco and

Brownlee, 2010). Conventional hypoglycemic drugs predispose

patients to a wide range of side effects, such as cardiovascular risk

and weight gain. In mice with pharmacological inhibition or

adipose-specific deletion of (adipose triglyceride lipase) ATGL,

hormone-sensitive lipase (HSL), or monoacylglycerol lipase

(MAGL), free fatty acids from adipose tissue lipolysis was

reduced, resulting in a significant increase in glucose tolerance

and improved insulin sensitivity (Roden and Shulman, 2019).

Intervening lipid metabolism may be a potential approach to

treating diabetes.

Lipid metabolism with NAFLD and NASH

NAFLD is a common chronic liver disease, affecting at least

1 in 4 adults worldwide (Pappachan et al., 2017). NASH is the

progressive stage of NAFLD, which can progress to cirrhosis and

even hepatocellular carcinoma (Wree et al., 2013). There are

currently no approved drugs to treat NASH. Potential drugs to

FIGURE 1
Eight types of lipids, each with a representative molecule.
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correct abnormal lipid metabolism related to NAFLD and NASH

include acetyl-CoA carboxylase (ACC) inhibitors, stearoyl-CoA

desaturase-1 (SCD1) inhibitors, fatty acid synthase (FASN)

inhibitors, and so on.

Lipid metabolism with cancer

Lipid metabolism dysregulation is one of the most prominent

metabolic changes in cancer. Enhanced lipid synthesis or uptake

contributes to the rapid growth of cancer cell and tumor formation

(Munir et al., 2019). Cancer cells use lipid metabolism to obtain

energy and membrane components needed for proliferation and

metastasis. FAO is the prefered energy source of cancer cell after

the presence of drug-resistance (Oren et al., 2021), and restricting

this process can inhibit cancer development. In recent years, the

research of small molecule drugs targeting lipid metabolism

pathway has become the trend of cancer therapy.

Lipid with neurodegenerative diseases

Much more studies have shown that lipid metabolism is

involved in the occurrence and development of a variety of

neurodegenerative diseases, especially in the pathogenesis of

Alzheimer’s disease (AD) and Parkinson’s disease (PD) (Nury

et al., 2020). But the mechanism that abnormal lipid metabolism

leads to neurodegenerative diseases has long been a mystery.

Targeting FASN, Diacylglycerol O-acyltransferase 1 (DGAT),

ATP-citrate lyase (ACLY) and maybe other important proteins

appears to alleviate neurodegenerative diseases to some extent.

Further research is urgently needed.

Nowadays, lipid research with health has become a research

hotspot at home and abroad. This review summarizes important

key proteins in the lipid metabolism process that can be developed

into drug targets, such as carnitine palmitoyl-transferase 1 (CPT1),

ACLY, FASN, and presents recent progress in the development of

potential small molecule drugs. These targets are involved in

processes such as lipid uptake, synthesis, oxidation and are

closely related to metabolic diseases. Given the important

physiological role of lipid metabolism, a growing number of

scientists and pharmaceutical companies are focusing on the

development of drugs that target lipid metabolism.

Drug targets in lipid uptake

Fatty acid uptake

Fatty acids are the simplest lipids and are essential

components of complex lipids. Mammals produce only a

limited number of fatty acids. Other fatty acids, especially

polyunsaturated, must be obtained from the diet (Dyall et al.,

2022). Fatty acids come from two sources: extracellular uptake

through specific proteins on the cell membrane and lipolysis of

intracellular lipid droplets (Grabner et al., 2021). Extracellular

fatty acids (long chain) uptake entering into cytosol must be

aided by several membrane proteins, like CD36 (Cluster of

Differentiation 36, also named fatty acid translocase), and

long-chain fatty acid transport proteins (FATP) (Ma et al., 2021).

CD36 and FATP

CD36 is overexpressed in various cancer cells and is critical for

cancer cell metastasis (Wang and Li, 2019). Blocking of

CD36 almost stops the migration of oral cancer cells in mouse

models, and some other cancer cell metastasis can also be impaired

(Pascual et al., 2017). A recent study implies that CD36-mediated

free fatty acid uptake is essential for hematopoietic stem cells

(HSC) in response to acute infection, which can switch HSC

metabolism from anaerobic glycolysis to fatty acid β-oxidation,
thereby satisfying energy demands from HSC expansion and

differentiation (Mistry et al., 2021). A study by the Memorial

Sloan Kettering Cancer Center shows that treatment with an

Inhibitor targeting FATP can block lipid transport into

melanoma cells, thereby reducing melanoma cell growth and

infection (Zhang et al., 2018). Descriptions of CD36 and FATP-

related small molecule inhibitors are summarized in Table1.

Another important source of fatty acids is lipid droplets.

Lipid droplets not only store energy but also participate in

catabolism for energy as needed. Lipolysis is a well-known

metabolic process that releases fatty acids through three

sequential catalysis by ATGL (the rate-limiting step of the

triglyceride lipolysis process), HSL, MAGL (Zimmermann

et al., 2004).

MAGL

Inhibition of MAGL significantly reduces the occurrence of

inflammation and neurodegeneration (Deng and Li, 2020). In

addition, the overexpression of MAGL is present in various

cancers such as breast cancer and is closely related to the

proliferation of cancer cells (Deng and Li, 2020). Therefore,

the development of small molecule inhibitors targeting MAGL

could serve as potential drugs for the treatment of neurological

disorders and cancer (Gil-Ordonez et al., 2018). Although many

MAGL inhibitors have been developed, there is still a lack of

inhibitors with few side effects and high selectivity (Table 1).

Cholesterol uptake

Cholesterol, amajor component of cell membranes, is involved

in the synthesis of steroid hormones and also has a variety of
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physiological roles (Huff et al., 2022). However, excessive

cholesterol intake has instead become a direct factor in the

increased incidence of hypercholesterolemia and an important

cause of diseases such as atherosclerosis and stroke (Reina et al.,

2015). Proper regulation of cholesterol levels is essential for human

health. Cholesterol uptake includes Niemann–Pick C1-like 1

(NPC1L1) -mediated small intestine cholesterol absorption and

low-density lipoprotein receptor (LDLR)-mediated low-density

lipoprotein—cholesterol (LDL-C) uptake (Luo et al., 2020).

There are three classes of the most important cholesterol-

lowering drugs available, namely statins (endogenous

cholesterol synthesis inhibitors, described later),

NPC1L1 inhibitors and proprotein convertase subtilisin/kexin

type 9 (PCSK9) inhibitors (Luo et al., 2020). The three classes

of drugs act on different parts of cholesterol metabolism to exert a

cholesterol-lowering effect.

NPC1L1

NPC1L1 plays a central role in intestinal cholesterol

absorption and can significantly affect the amount of

TABLE 1 Potential pharmacological targets and inhibitors targeting lipid uptake.

Drug
target

Notable
inhibitors

Inhibitor
description

IC50 Development
status

Related
diseases

Chemical structure References

FATP2 Lipofermata — 4.84 μM Preclinical Stage Melanoma Zhang et al.
(2018)

CD36 ABT-510 TSP-1 mimetic
drug

— Phase 2 Melanoma; Renal
cell carcinoma,
Lymphoma;
Glioblastoma;
Brain Tumor

Campbell et al.
(2010),

Markovic et al.
(2007), Nabors
et al. (2010)

MAGL ABX-1431 An first-in-class
irreversible
inhibitor

8 nM Phase 2 Neurological
disorders

Cisar et al.
(2018)

MAGL MJN110 Irreversible 9.1 nM Preclinical Stage Diabetes;
Neuropathy

Wilkerson et al.
(2016)

MAGL JNJ-42226314 Highly selective;
Non-covalent;
Reversible

1.13 nM
(Hela
cells)

Preclinical Stage Neuropathic and
inflammatory pain

Wyatt et al.
(2020)

MAGL JZL184 The first selective
MAGL inhibitor

8 nM Preclinical Stage T2D;
Glioblastoma

Taib et al.
(2019),

Walenna et al.
(2020)

NPC1L1 Ezetimibe a selective
inhibitor; Oral

— FDA approved Primary
hyperlipidemia;

Familial
cholesterolemia

Long et al.
(2021), Rocha
et al. (2022)

The chemical information of small molecules is collected from Pubchem database (https://pubchem.ncbi.nlm.nih.gov), and 2D structures in the above diagram were drawn by Chemdraw

software. IC50, half maximal inhibitory concentration.
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cholesterol absorbed by the intestine (Zhang et al., 2022). The

only NPC1L1 inhibitor currently on the market is ezetimibe

(Zhang et al., 2022). Ezetimibe reduces plasma cholesterol levels

by inhibiting NPC1L1 activity and decreasing cholesterol

absorption in the intestine. As cholesterol levels increase, the

sterol-sensing domain (SSD) of NPC1L1 can bind more

cholesterol, which in turn induces the formation of SSD

structural clusters. The binding of ezetimibe deforms the SSD

and disrupts the structural clusters, thus inhibiting

NPC1L1 function and lowering cholesterol (Hu M. et al., 2021).

LDLR-mediated endocytosis

LDL-C enters the cell through LDLR-mediated endocytosis.

PCSK9 binds to LDLR and promotes its degradation, reducing

the ability of hepatocytes to uptake cholesterol (Luo et al., 2020).

PCSK-9 inhibitors significantly inhibit PCSK-9 activity and

indirectly lower blood cholesterol levels. Cholesterol-lowering

drugs targeting PCSK9 have two mechanisms: blocking the

binding of PCSK9 to LDL-R, such as monoclonal antibodies,

and inhibiting the expression of PCSK9 molecules or interfering

with PCSK9 secretion, such as interfering RNA, antisense

oligonucleotides (ASO), and small molecule cyclic peptide

inhibitors (Rifai and Ballantyne, 2021).

Currently, there are three drugs marketed worldwide that

target the PCSK9 target, of which two are marketed as

evolocumab monoclonal antibody and alirocumab monoclonal

antibody, which target the binding of PCSK9 to LDL-R (Rifai and

Ballantyne, 2021). The other is Inclisiran, a long-acting

therapeutic agent developed by Novartis to inhibit

PCSK9 expression by means of RNA interference (RNAi)

(Samuel et al., 2022). These three PCSK9 inhibitors have the

advantages of high specificity and clear mechanism of action,

providing a new therapeutic option for cholesterol lowering.

Since most PCSK9 inhibitors that have been marketed and

are in clinical development are subcutaneous injections, they are

inconvenient to use. As a result, the development of novel oral

PCSK9 inhibitors is quite needed. There are several oral

PCSK9 inhibitors in the clinical stage, including AZD8233,

MK-0616 and NNC0385-0434. AZD8233 is an antisense

oligonucleotide that is used for inhibition of PCSK9 mRNA

translation and protein synthesis in hepatocytes (Gennemark

et al., 2021). Studies have shown that a single injection of

AZD8233 can reduce PCSK9 by more than 90% and LDL-C

by 70% in people with high cholesterol, and the feasibility of oral

administration of AZD8233 has been demonstrated (Gennemark

et al., 2021). MK-0616 is a 10 amino acid cyclic peptide

PCSK9 inhibitor developed by Merck Sharp & Dohme

(Tucker et al., 2021). Result of Clinical Phase 1 showed that

taking MK-0616 reduced blood levels of free PCSK9 protein by

more than 90%, and cholesterol levels were reduced by

approximately 65 percent when combined with a statin for

14 days. This drug is now in Phase II clinical study

(ClinicalTrials.gov NCT05261126). NNC0385-0434 is a small

molecule peptide PCSK9 inhibitor developed by Novo Nordisk

that has a similar structure to LDLR and inhibits PCSK9 binding

to LDLR. It is currently in Phase 2 clinical trials (ClinicalTrials.

gov Identifier: NCT04992065). In addition, two oral

PCSK9 inhibitors from China, CVI-LM001 (clinical phase 2,

ClinicalTrials.gov Identifier: NCT04438096) and DC371739

(clinical phase 1, ClinicalTrials.gov Identifier: NCT04927221),

have entered clinical studies. CVI-LM001 lowers cholesterol

indirectly by reducing the expression of the PCSK9.

Preliminary clinical data show that CVI-LM001 reduces the

expression level of the PCSK9 gene by 90% and exhibits good

pharmacokinetics (Xu et al., 2019). DC371739 impedes

pcsk9 expression by binding HNF-1α. Combination with the

statin atorvastatin may be a therapeutic strategy for statin-

intolerant patients (Wang J. et al., 2022).

Despite the effectiveness of oral PCSK9 inhibitors in lowering

cholesterol, their relative low bioavailability requires high doses

and daily dosing, resulting in high costs for patients. Future

optimization is still needed to better serve patients.

Drug targets in lipid synthesis

Mammalian lipid synthesis occurs mainly in liver and

adipose tissue. Acetyl-CoA from glycolysis and FAO enters

the TCA cycle to generate citric acid, which is shuttled into

the cytoplasm by mitochondrial citrate carrier solute carrier

family 25 member 1 (SLC25A1) and regenerate into acetyl-

CoA by ACLY. Acetyl-CoA is then carboxylated to form

malonyl-CoA under the catalysis of ACC (the rate-limiting

step in the fatty acid synthesis) (Ito et al., 2021). Malonyl-

CoA participates in a series of reactions that extend the FA

chain by two carbons at a time. Seven malonyl-CoA and one

acetyl-CoA are catalyzed to form palmitic acid, followed by chain

extension and desaturation.

Increased de novo synthesis of fatty acids is a hallmark of

cancer cell expansion (Mashima et al., 2009). Several key

enzymes involved in the de novo synthesis pathway, such as

ACLY, ACC, and FASN, are significantly up-regulated,

suggesting that these enzymes may be potential drug targets

for inhibiting cancer progression (Figure 2; Table 2).

SLC25A1

SLC25A1 is a channel transporter responsible for shuttling

citrate from mitochondrial matrix to cytosol. SLC25A1 is closely

linked to various diseases such as myasthenic syndrome (Balaraju

et al., 2020). CTPI-2 is the third-generation SLC25A1 inhibitor

following the first-generation inhibitor benzene-tricarboxylate

and the second-generation inhibitor CTPI-1. Results from
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in vitro studies have shown that CTPI-2 significantly reduces

obesity caused by a high-fat diet (Tan et al., 2020) and exhibits

antitumor activity (Fernandez et al., 2018), suggesting that CTPI-

2 is a novel SLC25A1 inhibitor that is expected to move towards

clinical research so far (Figure 2E; Table 2).

ACLY

ACLY is a key enzyme linking glucose metabolism and lipid

metabolism. After citrate is transported from the mitochondrial

matrix into the cytoplasm by SLC25A1, it is catalytically cleaved

FIGURE 2
Potential pharmacological targets and related inhibitors targeting fatty acid synthesis and storage, with related diseases are listed under the
respective structuremodel. (A)Homotetramer and single subunit structure of human ACLY. Citryl-CoA synthetase (CCS) module highlighted by dark
khaki color is the region targeted by most currently known ACLY inhibitors (Bempedoic acid, Hydroxycitric acid, SB-204990, NDI-091143). (B)
Human ACC filament structure and single subunit structure with two inhibitor targeting regions (BC domain and CT domain) highlighted.
Inhibitors ND-630 and Soraphen-A target the BC domain; TOFA and PF-05221304 targets CT domain. (C) Predicted structuremodel of human FASN
(from AlphaFold database) with substrate binding site labled. Well-known small molecule inhibitors of FASN (Cerulenin, C75, EGCG, Orlistat, TVB-
2640, IPI-9119, TVB3664) are listed on the right. (D) Human SCD1 structure, with 3 inhibitor small molecules (A939572, MK-8245, CAY10566)
targeting the catalytic pocket. (E) Predicted structure model of human SLC25A1 (CIC) from AlphaFold database with its two famous inhibitors (CTPI-
2, BTA). (F) Structure of human DGAT dimer with seven inhibitors towards the substrate binding pocket. (G) Human NPC1L1 structure, with FDA-
proved inhibitor ezetimibe targeting the cholesterol binding site.
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TABLE 2 Potential pharmacological targets and related inhibitors targeting fatty acid synthesis.

Drug
target

Notable
inhibitors

Inhibitor
description

IC50 Development
status

Related diseases Chemical st8ructure References

SLC25A1
(CIC)

CTPI-2 — 3.5 μM Preclinical Stage Steatosis, Obesity Tan et al. (2020)

SLC25A1
(CIC)

BTA First-generation
inhibitor

— Preclinical Stage Solid cancer Catalina-Rodriguez
et al. (2012)

ACLY Bempedoic
acid

An prodrug;
Converted to an

active drug in liver

29 uM FDA approved Hypercholesterolemia,
Mixed dyslipidemia,
Statin intolerance

Feng et al. (2020);
Masana Marin and
Plana Gil, (2021);
Ray et al. (2019)

ACLY Hydroxycitric
acid

Natural product
from Garcinia

— Phase 4 Obesity, Diabetes Jena et al. (2002)

ACLY SB-204990 — — Preclinical Stage Hypolipidaemic Feng et al. (2020);
Pearce et al. (1998)

ACLY NDI-091143 High-affinity 2.1 nM Preclinical Stage Thyroid cancer Huang et al. (2022);
Wei et al. (2019)

ACC ND-630
(Firsocostat)

Reversible, highly
specific

— Phase 1 Hepatic Steatosis;
Obesity

Alkhouri et al.
(2020)

ACC TOFA Allosteric inhibitor — Preclinical stage Ovarian cancer; Prostate
cancer

Guseva et al.
(2011); Li et al.

(2013); Wang et al.
(2009)

ACC PF-05221304 Liver-specific — Phase 2 NASH Ross et al. (2020)

ACC1 soraphen-A — — Preclinical stage Prostate cancer; High-
Fat Diet-induced Insulin
Resistance, Hepatic

Steatosis

Beckers et al.
(2007)

FASN Cerulenin Natural inhibitor
from

Cephalosporium
caeruleus

— Preclinical Stage Hepatic Steatosis; Solid
cancer

Currie et al. (2013);
Menendez and
Lupu, (2007)

FASN C75 Synthetic analog of
cerulenin

35 μM Preclinical Stage Prostate cancer Shimokawa et al.
(2002); Thupari
et al. (2002)

(Continued on following page)
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TABLE 2 (Continued) Potential pharmacological targets and related inhibitors targeting fatty acid synthesis.

Drug
target

Notable
inhibitors

Inhibitor
description

IC50 Development
status

Related diseases Chemical st8ructure References

FASN EGCG An phenolic
antioxidant from
plants such as

green tea

— Phase 2 A wild range of cancers Humbert et al.
(2021); Khan et al.

(2006)

FASN Orlistat The saturated
derivative of
lipstatin

— Phase 3 Obesity Pemble et al. (2007)

FASN TVB-2640
Denifanstat

Reversible 0.052 μM Phase 3 NAFLD; Solid
Malignant Tumors

Loomba et al.
(2021)

FASN IPI-9119 Selective and
Irreversible

0.3 nM Preclinical Stage Castration-resistant
prostate cancer

Zadra et al. (2019)

FASN TVB3664 Reversible 18 nM Preclinical Stage Colorectal cancer Wang et al. (2022a)

SCD1 A939572 Synthetic Inhibitor 37 nM Preclinical Stage Renal cell carcinoma Leung and Kim,
(2013); von

Roemeling et al.
(2013)

SCD1 MK-8245 Liver-selective
inhibitor

1 nM Phase1 clinical trials
(NCT00790556)

for T2D

Diabetes and
Dyslipidemia

Oballa et al. (2011)

SCD1 CAY10566 — 26 nM Preclinical Stage Breast cancer, Lung
cancer, Colorectal

cancer

Liu et al. (2007)

DGAT1 AZD-7687 Selective 80 nM Phase1 Type 2 Diabetes,
Obesity

Morentin Gutierrez
et al. (2019)

DGAT1 AZD3988 — 6 nM Preclinical stage Type 2 Diabetes,
Obesity

McCoull et al.
(2012)

DGAT1 PF-04620110 selective 19 nM Phase1 Type 2 Diabetes,
Obesity

Dow et al. (2011),
Lee et al. (2013)

(Continued on following page)
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by ACLY to generate acetyl-CoA, which is the substrate for de

novo synthesis of fatty acids and cholesterol (Feng et al., 2020).

Overexpression of ACLY has been reported to be closely related

to metabolic diseases such as atherosclerosis, hyperlipidemia

(Feng et al., 2020), and cancer (Granchi, 2022). Given the

important physiological functions of ACLY, the research on

small molecule inhibitors of ACLY has gradually become a

hot topic in recent years, especially since the tetrameric

structure of ACLY was solved (Wei et al., 2019). ACLY is

structurally composed of the Citryl-CoA synthetase (CCS)

domain and Citryl-CoA lyase (CCL) domain. Although ACLY

inhibitors have been studied for years, few can be used clinically,

mainly due to their poor biochemical properties or weak binding.

The inhibitors reported so far mainly bind to the CoA binding

site and citrate binding site of the CCS domain (Figure 2A;

Table 2) (Batchuluun et al., 2022). The former is represented by

the inhibitor Bempedoic acid, which was approved by the FDA in

2020 to reduce cholesterol levels in statin-resistant patients and is

the only ACLY inhibitor approved by FDA so far (Markham,

2020). The second class of ACLY inhibitors mainly bind to the

citrate binding site, represented by Hydroxycitric acid, SB-

204990, NDI-091143, and MEDICA 16. Hydroxycitric acid,

the first ACLY inhibitor discovered from a natural product,

binds competitively to the citrate binding site to inhibit ACLY

activity (Jena et al., 2002). However, off-target effects and poor

biochemical properties limit its clinical study. SB 204990

(prodrug of SB-201076) is a potent and specific inhibitor of

ATP citrate lyase (ACLY). (Pearce et al., 1998). SB-204990 has

shown promising efficacy in animal model experiments for the

treatment of dyslipidemia such as atherosclerosis (Pearce et al.,

1998), but no clinical study data have been performed to date,

possibly due to the poor tissue-specific distribution of SB-204990

in humans (Feng et al., 2020). NDI-091143 is a newly identified

small molecule inhibitor of ACLYwith strong binding properties.

It binds next to the citrate binding site of ACLY and prevents

citrate from binding to ACLY through allosteric regulation,

thereby inhibiting the activity of ACLY (Wei et al., 2019).

NDI-091143 represents a new type of inhibitor that is

different from previously reported, and has great potential for

drug development, although no relevant clinical research data

have been reported.

ACC

ACC is essentially the first enzyme involved in lipid synthesis,

containing two isoforms (ACC1 and ACC2) (Wakil and Abu-

Elheiga, 2009). ACC1 is located in the cytoplasm and mainly

catalyzes the formation of malonyl-CoA from acetyl-CoA for

subsequent lipid synthesis (Wakil and Abu-Elheiga, 2009).

ACC2 is located in the mitochondrial outer membrane, and

also can catalyze the production of malonyl-CoA, but it is

functionally biased to negatively regulate FAO (Wang Y.

et al., 2022). The reason may be that ACC2 is closer to CPT1.

Malonyl-CoA produced by ACC2 is a reversible inhibitor of

CPT1 and negatively regulates FAO, as previously described

TABLE 2 (Continued) Potential pharmacological targets and related inhibitors targeting fatty acid synthesis.

Drug
target

Notable
inhibitors

Inhibitor
description

IC50 Development
status

Related diseases Chemical st8ructure References

DGAT1 A922500 selective 9 nM Preclinical stage hyperlipidemia Cheng et al. (2020),
King et al. (2010)

DGAT2 PF-06424439 selective 14 nM Preclinical stage hyperlipidemia Futatsugi et al.
(2015)

DGAT2 PF-06865571
(Ervogastat)

well-tolerated — Phase1 NASH, NAFLD Calle et al. (2021)

DGAT2 JNJ DGAT2-A selective — Preclinical stage Type 2 Diabetes, Solid
cancer

Irshad et al. (2017)
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(Wang Y. et al., 2022). ACC is structurally composed of the

N-terminal biotin carboxylase (BC) domain, middle biotin-

containing carboxyl carrier protein (BCCP) domain, and

C-terminal carboxyl transferase (CT) domain (Hunkeler et al.,

2018).

Small molecule inhibitors developed for ACC include ND-

630, a representative inhibitor that binds to the N-terminal BC

domain, and PF-05221304, another representative inhibitor that

binds to the C-terminal CT domain (Figure 2B; Table 2)

(Alkhouri et al., 2020; Calle et al., 2021). ND-630 (also named

Firsocostat) is an ACC inhibitor developed by Nimbus

Therapeutics in the United States for NASH and is currently

in Phase II clinical research (Alkhouri et al., 2020). The

mechanism is similar to AMP-activated protein kinase

(AMPK) phosphorylation, which disrupts the dimer formation

of ACC subunits, while monomeric ACC cannot catalyze the

conversion of acetyl-CoA to malonyl-CoA. PF-05221304 is a

liver-preferred ACC inhibitor developed by Pfizer in the

United States and has completed a phase II clinical study

(Ross et al., 2020). Inhibitor MK-4074 developed by Merck in

NAFLD has completed the clinical phase I study (Goedeke et al.,

2019). But, no further clinical research has been carried out due

to possible side effects of inducing hypertriglyceridemia.

In addition to the above representative inhibitors that have

entered clinical research, ACC has some well-studied inhibitors in

preclinical research, such as TOFA and Soraphen A. The limitations

of TOFA are poor bioavailability and selectivity between ACC and

ACLY. Soraphen A, a natural product from soil myxobacterium

Sorangium cellulosum, has a similar mechanism of action to ND-

630, showing a strong inhibitory effect on eukaryotic (especially

fungal) ACC1 (Beckers et al., 2007). Unfortunately, Soraphen Awas

found to be teratogenic in subsequent studies. ACC, especially the

ACC1 isoform, plays an important role in cancer. Targeted

inhibition of ACC can exhibit anticancer effects, suggesting that

fatty acid synthesis is indispensable for cancer proliferation and

metastasis (Crunkhorn, 2016). Although studies have shown that

ACC inhibitors (such as CP-640186 of Pfizer Company,Monocyclic

derivate-1q of Takeda Company) have initially shown a good

inhibitory effect on cancer, no inhibitors have entered the

clinical research stage.

ACC inhibitors were shown to be effective in clinical studies,

but unexpectedly elevated plasma triglycerides pose a

cardiovascular safety risk (Goedeke et al., 2018). Merck Sharp

& Dohme’s ACC inhibitor MK-4074 achieved liver targeting but

was still discontinued early, likely due to the discovery of elevated

triglycerides, as described above. Malonyl-CoA is an

intermediate necessary for the synthesis of polyunsaturated

fatty acids (PUFA) (Santin and Moncalian, 2018). Inhibition

of ACC reduces Malonyl-CoA levels and affects PUFA synthesis,

which in turn leads to increased expression of the sterol response

element-binding protein-1 (SREBP1) gene and subsequently

stimulates very-low-density lipoprotein (VLDL) secretion and

elevated plasma triglyceride concentrations (Hannah et al., 2001;

Kim et al., 2017).

When using antisense oligonucleotides to inhibit the

expression of ACC1 and ACC2 in a rat model of NAFLD,

FIGURE 3
Potential pharmacological targets and related inhibitors targeting cholesterol synthesis and storage, with related diseases are listed under the
each structure model. (A) Homotetramer structure of human 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) and single sununit
structure highlighted with the HMG-CoA binding pocket. Statin inhibitors of HMGCR competitively occupy the HMG-CoA binding site and block
HMG-CoA from contacting the catalytic center. Several statin inhibitors that have been intensively studied mainly include Mevastatin,
Lovastatin, Pravastatin, Simvastatin, Fluvastatin, Rosuvastatin, Pitavastatin, Atorvastatin, Cerivastatin. (B)Dimer structure of human Acyl-coenzyme A:
cholesterol acyltransferase 1 (ACAT) with catalytic pocket highlighted. Notble inhibitors for ACAT include K-604, Nevanimibe, CI 976, Avasimibe, RP-
64477, Eflucimibe and Cyclandelate.
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TABLE 3 Potential pharmacological targets and related inhibitors targeting cholesterol synthesis.

Drug
target

Notable
inhibitors

IC50 Development
status

Corresponding
diseases

Chemical structure References

HMGCR Mevastatin 1 nM Upgraded to lovastatin Hyperlipemia; Coronary
Heart Disease

Glynn et al.
(2008)

HMGCR Lovastatin 3.4 nM FDA approved Hypercholesterolemia Mulder et al.
(2015), Zeller and
Uvodich, (1988)

HMGCR Pravastatin 5.6 μM FDA approved Cardiovascular Disease McTavish and
Sorkin, (1991)

HMGCR Simvastatin 95.6 μM FDA approved Hypercholesterolemia;
Hypertriglyceridemia

Gryn and Hegele,
(2015)

HMGCR Fluvastatin 8 nM FDA approved Hypercholesterolemia Scripture and
Pieper, (2001)

HMGCR Rosuvastatin 11 nM FDA approved Hypertriglyceridemia Davidson, (2004),
Olsson et al.

(2002)

HMGCR Pitavastatin 5.8 nM FDA approved Dyslipidemia;
Hypercholesterolemia

Chan et al.
(2019), Hoy,

(2017)

HMGCR Atorvastatin 154 nM FDA approved Hypercholesterolemia;
Dyslipidemias

Hu et al. (2021b)

HMGCR Cerivastatin 6 nM Withdrawn from the
market due to a high
risk of rhabdomyolysis

Hypercholesterolemia;
Dyslipidemia

Bischoff et al.
(1997), Furberg
and Pitt, (2001)

ACAT1 K-604
(selective)

0.45 μM for
ACAT1;

102.85 μM for
ACAT2

Phase 2 Completed Atherosclerosis Ikenoya et al.
(2007)

ACAT1 Nevanimibe
(selective)

52 nM Discontinued - Phase-II Adrenocortical Carcinoma;
Congenital adrenal

Hyperplasia; Cushing
syndrome

El-Maouche et al.
(2020), Long et al.

(2020)

(Continued on following page)
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inhibition of ACC1 reduced lipid synthesis and inhibition of

ACC2 increased mitochondrial FAO, resulting in reduced

hepatic steatosis (Savage et al., 2006). This may provide an

attractive treatment for NAFLD/NASH method.

Besides, sequence identity of two isoforms of ACC reaches

75%, but they play different roles in physiological functions (Kim

et al., 1998). Thus, combination with lipid-lowering drugs may be

the focus of subsequent clinical exploration of ACC inhibitors.

One concern is that none of the inhibitors reported so far in the

preclinical or clinical stage has reported selectivity for the two

isoforms, and may have some side effects. This also implies that

future research on ACC inhibitors may require more attention to

efficacy and selectivity.

FASN

FASN catalyzes the endogenous de novo synthesis of fatty

acids from acetyl-CoA and malonyl-CoA (Lupu and Menendez,

2006). Antitumor effects can be observed when its protein

expression is reduced or activity is inhibited by

pharmaceutical intervention (Humbert et al., 2021). Therefore,

in recent years, FASN has become a much-conceived drug target

for cancer therapy (Figure 2C; Table 2). The earliest discovered

FASN inhibitors include orlistat (Pemble et al., 2007; Chu et al.,

2021), natural product EGCG, cerulenin (Mullen and Yet, 2015),

and their synthetic derivatives such as C75, which are unsuitable

for clinical use due to their toxicity or poor bioavailability. Several

novel small-molecule FASN inhibitors have been developed that

inhibit the thioesterase domain. Orlistat inhibits FASN by

irreversibly binding to the thioesterase domain (Fako et al.,

2014). FASN inhibitors targeting the β-ketoreductase domain

have also been developed, and some have recently entered clinical

trials, including BI-99179 from Boehringer Ingelheim, and TVB-

2640 (also named Denifanstat) from Sagimet Biosciences. TVB-

2640 is the most well-studied drug candidate currently in clinical

research. Earlier studies have shown that TVB-2640 reduces de

novo fat acid synthesis by 90% in obese and insulin-resistant

individuals. Phase II clinical studies are currently underway in

patients with NASH. TVB-2640 is also an FASN inhibitor with

significant efficacy on colon cancer, lung carcinoma, breast

cancer and glioblastoma treatment (Syed-Abdul et al., 2020;

Falchook et al., 2021; Loomba et al., 2021; Batchuluun et al.,

2022).

The main side effects of FASN inhibitors are anorexia and

weight loss due to accumulation of the lipid metabolism

intermediate malonyl-CoA (Turrado et al., 2012). Weight loss

theoretically facilitates NASH control, but this effect may be a

central nervous system (CNS)-mediated response, which is of

great concern (Turrado et al., 2012).

SCD1

SCD1 catalyzes the production of monounsaturated fatty

acids (Lien et al., 2021). A recent study from the Massachusetts

Institute of Technology found that reducing SCD enzyme activity

in tumor cells or adopting a low-fat diet (especially unsaturated

fatty acids) can affect tumor growth (Lien et al., 2021). This

makes the development of SCD inhibitors in combination with

TABLE 3 (Continued) Potential pharmacological targets and related inhibitors targeting cholesterol synthesis.

Drug
target

Notable
inhibitors

IC50 Development
status

Corresponding
diseases

Chemical structure References

ACAT CI 976 0.073 μM preclinical Atherosclerosis;
Hyperlipidaemia

Krause et al.
(1993)

ACAT Avasimibe
(CI-1011)

3.3 μM Discontinued -
Phase-III

Atherosclerosis;
Hyperlipidaemia

Llaverias et al.
(2003), Schmidt
et al. (2021),

Zhou et al. (2022)

ACAT RP-64477 503 nM, in
human
hepatic
(HepG2)

phase II Hyperlipidemia Bello et al. (1996)

ACAT Eflucimibe 39 nM for
ACAT1;

110 nM for
ACAT2

Phase-II discontinued Atherosclerosis;
Hyperlipidemia

Lopez-Farre et al.
(2008)

ACAT Cyclandelate 80 μM (Rat
hepatic
ACAT)

Not approved in U.S. or
Canada; Approved in

Europe

Arteriosclerosis Heffron et al.
(1990)
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TABLE 4 Potential pharmacological targets and inhibitors targeting FAO.

Drug
target

Notable
inhibitors

Inhibitor
description

IC50 Development
status

Related
diseases

Chemical structure References

ACSLl Triacsin C An natural
inhibitor, from
Streptomyces
aureofaciens

6.3 uM Preclinical stage Lung cancer; Colon
cancer; Stomach

cancer; Brain cancer;
Breast cancer

Mashima et al.
(2005)

CPT1 Etomoxir Irreversible;
Malonyl-CoA

mimetic

5–20 nM
(rat liver)

Phase II clinical trial
stopped due to
hepatoxicity

Leukemia;
Glioblastoma

Bristow,
(2000);

Divakaruni
et al. (2018);
Lopaschuk
et al. (1988);
O’Connor
et al. (2018)

CPT1,
CPT2

Perhexiline
(Pexsig)

Inhibit CPT1; to
a lesser extent,

CPT2

77 μM
(rat heart
CPT1);
148 μM
(CPT1A)

Used primarily in
Australia and

New Zealand Adverse
effects: nausea,
hypoglycemia,
neuropathy, and

hepatitis

Severe angina
pectoris

Ashrafian et al.
(2007); Ren
et al. (2020)

CPT1 ST1326 (Teglicar) Amino-
Carnitine
derivative;

highly selective
for CPT1A;
Reversible

0.68 μM
(CPT1A)

Discontinued -
Phase-II for Type-2

diabetes

Diabetes;
Neurodegenerative
diseases including
Huntington’s

disease

Bertapelle et al.
(2022); Conti
et al. (2011)

CPT1 2-
tetradecylglycidate

(TDGA)

Glycidic acid
analog; An
oxirane

carboxylate
inhibitor

— Preclinical Stage,
(induce myocardial

hypertrophy)

Diabetes Obici et al.
(2003);

Schlaepfer and
Joshi, (2020);
Wolkowicz
et al. (1999)

CACT EN936
(SLC25A20-IN-21)

— — Preclinical Stage — Parker et al.
(2017a);

Parker et al.
(2017b)

VLCAD Avocadyne — — Phase 1 Acute Myeloid
Leukemia;

Hyperglycemia

Tcheng et al.
(2021a);

Tcheng et al.
(2022);

Tcheng et al.
(2021b)

TFPβ Ranolazine — — FDA approved (NDA
#021526)

Chronic Angina Samudio et al.
(2010); Sekine
et al. (2022)

TFP Trimetazidine — 75 nM Phase 2
(NCT03273387)

Precapillary
pulmonary

hypertension;
Muscle wasting

(cachexia)

Gatta et al.
(2017)
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low-fat-diet a potential cancer treatment strategy. Currently, no

SCD1 inhibitor has been approved (Figure 2D; Table 2).

DGAT

DGAT (two isoforms, DGAT1, and DGAT2) catalyzes the

last rate-limiting step in triglyceride synthesis, converting

diglycerides and acyl-CoA to triglycerides (Wilfling et al.,

2013). Reducing the expression of DGAT or inhibiting activity

can effectively reduce diet-induced obesity (Subauste and Burant,

2003). Therefore, the development of DGAT inhibitors has

become a research hotspot in terms of obesity. In particular,

structure of DGAT has recently been analyzed (Wang et al.,

2020), which lays the foundation for the development of

structure-based inhibitors. Currently reported DGAT

inhibitors include natural products represented by

Xanthohumol, AZD-7687, PF-04620110, PF-04620110,

A922500, PF-06424439, and PF-06865571 (Figure 2F;

Table 2). Although there are currently no FDA approved

FIGURE 4
Structure model, notble inhibitors and related disease summary of pharmaceutical target CPT1. (A) Structure model of human CPT1 with
catalytic pocket highlighted with a magnified view. (B) Four notble inhibitors (Etomoxir, Perhexipin, ST1326, TDGA) and physiological inhibitor
malonyl-CoA can impair FAO via blocking CPT1. Malonyl-CoA level can be regulated by AMPK-ACC axis. (C) Structure model for three isoforms of
CPT1 (from AlphaFold database), with related diseases are listed under the respective structure model. The liver isoform—CPT1A, the main
isoform involved in FAO; the muscle isoform—CPT1B; the brain isoform—CPT1C with little acyltransferase activity. All three isoforms consist of an
N-terminal regulatory domain, a C-terminal catalytic domain, and two transmembrane helices, and the catalytic pocket is highlighted by golden
color. CPT1C has an extra tail in structure compared to CPT1A and CPT1B, which may be the possible reason why CPT1C plays an important role in
neurological diseases.
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drugs against DGAT, it is promising to develop drugs for obesity

based on DGAT inhibitors. Besides, DGAT1 was first reported in

2020 as a novel target for glioblastoma (Cheng et al., 2020).

Glioblastoma is the most malignant tumor in central nervous

system, but there are few clinical treatment strategies (Cheng

et al., 2020). DGAT1 protects glioblastoma cells from damage

caused by excessive FAO by converting excess fatty acids into

triglycerides. A922500 is a highly specific, and orally bioavailable

inhibitor of DGAT1, with no effect on other acyltransferases.

Inhibition of DGAT1 by A922500 effectively prevents the

conversion of fatty acids to triglycerides and ultimately

inhibits glioblastoma (King et al., 2010; Cheng et al., 2020).

However, in-depth clinical data are still needed to determine

whether A922500 and other novel DGAT inhibitors have the

potential to be therapeutic options for glioblastoma.

Cholesterol synthesis

Acetyl-CoA is also a substrate for cholesterol synthesis,

which can be further processed into hormones, bile acids, and

vitamin D (Cerqueira et al., 2016).

HMGCR

(HMGCR) is the rate-limiting enzyme in cholesterol

biosynthesis, which converts HMG-CoA to mevalonate (Istvan

and Deisenhofer, 2001). HMGCR is upregulated in gastric cancer

(Chushi et al., 2016), glioblastoma (Qiu et al., 2016), and prostate

cancer (Ashida et al., 2017). Overexpression of HMGCR

promotes the expansion and migration of cancer cells, and

knockdown of HMGCR inhibits tumor growth. HMGCR

inhibitors have been used for the treatment of drug-resistant

solid cancers. Current HMGCR inhibitors in clinical use are

mainly statins (Figure 3A; Table 3). Seven FDA-approved drugs

include Lovastatin, Pravastatin, Simvastatin, Atorvastatin,

Rosuvastatin, Pitavastatin, and Fluvastatin (Omolaoye et al.,

2022). The first three inhibitors plus Mevastatin belong to the

first generation of statins, derived from fungal products. The

latter four plus cerivastatin belong to the second generation of

synthetic products. Cerivastatin was later recalled from the

market due to a risk of rhabdomyolysis (Furberg and Pitt,

2001). Similar to the substrate HMG-CoA, statins can

competitively inhibit HMG-CoA (Istvan and Deisenhofer,

2001). They are relatively safe to take in short term, but long-

FIGURE 5
Potential drug targets with related small molecule inhibitors in lipid metabolism. Potential drug targets are highlighted by red color.
Abbreviation: TAG, triacylglycerol; DAG, diacylglycerol; MAG, monoacylglycerol.
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term use of these drugs can lead to side effects such as

rhabdomyolysis and hepatotoxicity (Bjornsson et al., 2012;

Karahalil et al., 2017). Therefore, it is also necessary to

perform modifications to the drug based on the structure-

activity relationship to reduce the side effects.

ACAT

Besides DGAT, ACAT also belongs to the membrane-

bound O-acyltransferase (MBOAT) family (Long et al.,

2020). ACAT can catalyze excess cholesterol and long-chain

fatty acids in cells to synthesize cholesterol esters and store in

lipid droplets. ACAT plays an important role in the occurrence

and development of diseases such as atherosclerosis (Ohshiro

et al., 2011), Alzheimer (Hartmann et al., 2007), and cancer

(Yang et al., 2016; Jiang et al., 2019) by regulating cholesterol

metabolism. Inhibition of ACAT is expected to be a

therapeutic approach to atherosclerosis. In addition,

inhibiting ACAT shows a good inhibitory effect on tumor

growth (Goudarzi, 2019). Some ACAT inhibitors have entered

clinical studies and the results are worth looking forward to

(Figure 3B; Table 3).

Drug targets in lipid oxidation

FAO plays an important role in human metabolism by

decomposing fatty acids for energy supply. Long-chain acyl-

CoA must pass through the mitochondrial membrane to enter

the mitochondrial matrix through the carnitine-palmitoyl shuttle

system, which includes CPT1, carnitine palmitoyl transferase 2

(CPT2), and carnitine-acylcarnitine translocase (CACT)

(Virmani et al., 2015).

Acyl-CoA synthase (ACSL)

Free FAs is activated by ACSL to form Acyl-CoA. Cardiac

contraction depends on the oxidation of long chain fatty acids to

meet energy needs (Carley et al., 2014). Dysfunction of

ACSL1 can lead to the accumulation of toxic lipids that

endanger heart function. Overexpression of ACSL1 restores

normal activation and oxidation of LCFAs and may be a

potential option for the treatment of heart failure (Goldenberg

et al., 2019). ACSL converts long-chain FAs to fatty acyl-CoAs,

which play a key role in FAO, triglyceride, phospholipid, and

cholesterol ester synthesis. Triacsin C is a natural inhibitor of

ACSL family proteins (ACSL1, ACSL3, ACSL4, ACSL5) from

Streptomyces aureus (Kim et al., 2012). Structural of Triacsin C

and ACSL complex and in-depth clinical research are needed for

the development of Triacsin C-based drugs for ACSL1 related

lipid disorders (Table 4).

CPT1

CPT1 is a key enzyme in fatty acid metabolism, converting

fatty acyl-CoA to fatty acylcarnitine (Schlaepfer and Joshi, 2020).

The entry of fatty acids into mitochondria is dependent on CPT1,

whose activity is regulated by AMPK-ACC axis (Schlaepfer and

Joshi, 2020). Malonyl-CoA, catalyzed by acetyl-CoA carboxylase

(ACC), is a potent reversible inhibitor of CPT1 (Folmes and

Lopaschuk, 2007) (Figure 4A). CPT1 is considered as an ideal

drug target for decades. Scientists have been trying to develop

activators of CPT1 so that more fatty acids can enter the

mitochondria to participate in oxidative metabolism and

reduce the accumulation of fat (Dai et al., 2018). For other

diseases, small molecule inhibitors of CPT1 may have

promising applications. FAO consumes more oxygen than

sugar metabolism, so inhibition of FAO can reduce the

oxygen demand of cells in specific situations and perform cell

protection. Blocking CPT1 has been reported to inhibit the

proliferation of a variety of tumors (Wang et al., 2021). It has

been shown that inhibition of CPT1 reduces FAO efficiency,

which in turn weakens lymphangiogenesis in pathological states

such as cancer, while excess lymphangiogenesis favors cancer

metastasis (Wong et al., 2017; Li et al., 2021). Carboplatin-based

chemotherapy is currently one of the standard regimens for the

clinical treatment of cancer, but platinum resistance has been an

urgent clinical problem to be addressed for decades with no

effective therapeutic strategy established (Brown et al., 2019).

High-grade serous ovarian cancer (HGSOC) is themost common

and lethal form of ovarian cancer, often diagnosed at an

advanced stage, and most patients are platinum-resistant

(Cannistra, 2004; Matulonis et al., 2016). A recent study in

Cell Reports Medicine showed that targeting cpt1a with

platinum-based chemotherapy can improve platinum

resistance, although the molecular mechanism is currently

unclear (Huang et al., 2021).

Etomoxir is a classical inhibitor of CPT1 that blocks the

import of acyl-CoA into the mitochondrial matrix (O’Connor

et al., 2018). Phase 1 and Phase 2 clinical trials of Etomoxir were

conducted for the treatment of type 2 diabetes and heart failure

(Schmidt-Schweda and Holubarsch, 2000). However, etomixir

can cause high levels of hepatic transaminases after

administration, and can induce severe oxidative stress

(O’Connor et al., 2018). The risk of these side effects negates

the potential therapeutic benefit of this drug, and Clinical trials

have to be stopped due to toxicity and side effects (Table 4).

Perhexiline is an antianginal drug widely used in many

countries around the world (except the United States) in the

1970s (Ashrafian et al., 2007). Its principle of action is to target

and inhibit the fatty acid transport process (mainly inhibit CPT1,

partially inhibit CPT2), and change the energy metabolism

substrate of cardiomyocytes from fatty acids to sugars, which

can provide more ATP under the same and limited oxygen

content conditions (Chong et al., 2016). Although Perhexiline
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is effective in the initial treatment of angina pectoris,

neurotoxicity and hepatotoxicity have been found with long-

term treatment (Ren et al., 2020).

Another reversible inhibitor of cpt1a is the amino-carnitine

derivative, Teglicar (also known as ST1326), which was invented

by sigma-tau and started clinical studies for type 2 diabetes in

2007, and unfortunately ended in 2015 in Phase II clinical trial

(Giannessi et al., 2003). Teglicar differs from etomoxir in that it

has high selectivity against CPT1A and is reversible, while

etomoxir has no significant selectivity against CPT1A and

CPT1B and partially inhibits CPT2 (Giannessi et al., 2003).

Studies have shown that the combination of ST1326 and

ABT199 (Bcl-2 inhibitor) can enhance the anti-acute myeloid

leukemia (AML) effect of the latter, indicating that cpt1a may

become a potential drug target for the treatment of AML

(Ricciardi et al., 2015; Mao et al., 2021). Huntington’s disease

(HTT) is a severe neurodegenerative disease, and a Drosophila

HTT disease model was used to demonstrate that treatment with

the cpt1a inhibitor ST1326 can alleviate the symptoms of HTT

(Bertapelle et al., 2022). Although the relationship between

mitochondrial energy metabolism and HTT disease is still

unclear, the development of safe and effective CPT1 inhibitors

may be an effective strategy to slow down the development of

HTT disease.

The CPT1 family contains three members: CPT1A (liver

isoform), CPT1B (muscle isoform), and CPT1C (brain isoform)

(Figure 4B). Sequence identity between human CPT1A and

CPT1B reaches 63% overall and 82% near the active site

(Ceccarelli et al., 2011). These data suggest that CPT1A and

CPT1B may be less selective against small molecule inhibitors.

CPT1A has a much higher affinity for carnitine than CPT1B

(Ceccarelli et al., 2011). The sequence identity between CPT1C

and CPT1A is 55%, but CPT1C has minimal acyltransferase

activity (Ceccarelli et al., 2011; Casals et al., 2016). CPT1 plays a

crucial role in a variety of diseases, and using CPT1A as a drug

target has a very good prospect for drug development (Schlaepfer

and Joshi, 2020). Yet, the protein structures of CPT1A and other

members of the CPT1 family (CPT1B, CPT1C) are currently

unavailable. Therefore, it is urgent to obtain the complex

structure with substrate and clarify its catalytic mechanism to

provide more effective drugs for the treatment of related diseases.

It should be noted that the small molecule development for

CPT1 should pay more attention to selectivity as well as efficacy.

VLCAD

VLCAD catalyzes the first reaction in mitochondrial

oxidation of long-chain fatty acids. It is highly expressed in

acute myeloid leukemia (AML) patients and is critical for AML

cell survival (Tcheng et al., 2021b). Lentiviral knockdown or

inhibition of its activity with the specific inhibitor Avocadyne can

inhibit the survival and metastasis of AML, but has little effect on

the status of normal hematopoietic cells (Tcheng et al., 2021b).

Therefore, Avocadyne and its derivatives are likely to show fewer

side effects in clinical trials compared to other target inhibitors

due to their high selectivity, suggesting that VLCAD is a novel

therapeutic target for AML (Tcheng et al., 2021a; Tcheng et al.,

2022).

Mitochondrial trifunctional protein (TFP)

The TFP complex is responsible for the key last three steps in

FAO (Liang et al., 2018). Mutations such as HADHA

c.1528G>C in TFPα subunit can disrupt the oxidative

metabolism of long-chain fatty acids. The excessive

accumulation of long-chain fatty acids in mitochondria can

lead to diseases such as sudden infant death syndrome (SIDS)

(Miklas et al., 2019) and acute fatty liver of pregnancy (AFLP)

(Ibdah et al., 1999; Yang et al., 2002; Liu et al., 2017).

Clinicopathological analysis showed that HADHA was the

most frequently detected in malignant lymphoid tissue, and

lowering the expression of TFPα could inhibit the expansion

of malignant lymphoma cells, indicating that TFPα was a

potential therapeutic target for malignant lymphoma

(Yamamoto et al., 2020). TFPβ and TFPα form a complex

under physiological state. A recent study confirmed that TFPβ
is also highly expressed in malignant lymphoma cells, and

treatment with the TFPβ inhibitor ranolazine resulted in a

better inhibitory effect than HADHB knockdown (Sekine

et al., 2022). Trimetazidine, a potent antianginal drug, inhibits

both TFPα and TFPβ, but the specific mechanism still needs to be

determined (Kantor et al., 2000; Fould et al., 2010; Hossain et al.,

2015; Liang et al., 2018). In conclusion, targeting both TFPα and

TFPβ may provide an effective therapeutic strategy for the

clinical treatment of malignant lymphoma. More effective

inhibitors with higher selectivity need to be developed based

on the protein structure and the existing inhibitors for the clinical

treatment of malignant lymphoma and lipid disorders.

ABCD1

FAO can occur both in mitochondria and in peroxisome.

Medium and long-chain fatty acids are mainly oxidized in

mitochondria, whereas very long-chain FAs (VLCFAs, ≥ C22)

are partially metabolized by β-oxidation in peroxisome (Shi et al.,

2012). ATP-binding cassette sub-family Dmember 1 (ABCD1) is

a class of ABC transporters located on the peroxisomal

membrane, which can transport VLCFAs from the cytoplasm

to the peroxisome (Kemp et al., 2001). Dysfunction of

ABCD1 leads to metabolic stress caused by the accumulation

of VLCFAs in the cytoplasm, leading to X-chromosome-

associated adrenoleukodystrophy (X-ALD) (Kemp et al.,

2001). Recently, the structure of ABCD1 has been resolved
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(Le et al., 2022), with its substrate recognition and transport

mechanisms revealed, providing a better understanding of the

pathogenesis of X-ALD. X-ALD is a rare neurodegenerative

disease that primarily affects young children and rapidly leads

to progressive, irreversible loss of neurological function and

death. In 2021, Skysona received approval for the treatment of

patients with early-stage X-ALD carrying the ABCD1 gene

mutation and have no HLA-matched hematopoietic stem cell

(HSC) donors available (Keam, 2021). Skysona is a one-time gene

therapy that uses Lenti-D lentiviral vector transduction in vitro to

add a functional copy of the ABCD1 gene to the patient’s own

HSC cells (Keam, 2021). The effects of Skysona are expected to

last a lifetime and do not require the acquisition of a donor HSC

from another person. Skysona is the first gene therapy with

approval for the treatment of X-ALD (Keam, 2021). The

therapeutic goal is to halt the progression of X-ALD to

prevent further neurological decline and improve survival in

young patients, which is of great significance.

Conclusion and perspectives

Disorders in lipid metabolism, which can lead to obesity,

hyperlipidemia, atherosclerosis, cancer, and other diseases,

seriously threaten the health and have become a research

hotspot in recent years. At present, the understanding of the

mechanisms of lipid metabolism is still in its infancy. In recent

years, a number of anti-tumor drugs targeting lipid metabolism

have emerged clinically, and some of them have shown

significant anti-tumor effects. The main question now is how

to further improve the specificity of these inhibitors without

disturbing normal cellular metabolism. For example, CPT1, the

most important target of FAO pathway, has different functions

and tissue distribution among the three isoforms, and the two

isoforms of ACC localize differently in the cell and play different

physiological roles. In addition, safety is also an aspect that needs

special attention. Although some small molecule inhibitor drugs

show outstanding effects, their safety is poor (such as Etomoxir).

Therefore, the development of more specific and powerful small

molecule inhibitor drugs is a major direction of research in lipid

metabolism. This review summarizes research progress on a

number of important targets and their inhibitors in the lipid

metabolism process (summarized in Figure 5), including

marketed drugs, clinical research drugs, and a number of drug

candidates in the research stage. It is believed that more andmore

drugs targeting lipid metabolism will enter the clinic, providing

more options for the treatment of lipid metabolism-related

diseases and tumors.
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