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Asiatic acid (AA) has been shown to induce apoptotic death in a range of cancers, but the
mechanisms whereby it can inhibit tongue cancer growth have yet to be clarified. Herein,
we explored the effects of AA on tongue cancer cells and found that it induced their
apoptotic death in vitro and in vivo, while additionally impairing xenograft tumor growth in
vivo. From a mechanistic perspective, AA treatment was associated with increases in
levels of calcium and the calcium- dependent protease calpain, and it further induced
endoplasmic reticulum (ER) stress and consequent Grp78-related IRE1α and JNK
phosphorylation, ultimately driving caspase-3 activation and apoptotic death. Together,
these results highlight AA as a promising tool for the therapeutic treatment of tongue
cancer in clinical practice.
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INTRODUCTION

Tongue cancer is the most common form of oral cancer in the world and canmanifest along the back,
base, and edge of the tongue in affected individuals. This type of malignancy is associated with a poor
prognosis owing to its high recurrence rates and tendency to exhibit aggressive growth (Xie et al.,
2014; Taghavi and Yazdi, 2015), with approximately half of affected patients initially presenting with
advanced disease. While a range of surgical, radiotherapeutic, and chemotherapeutic regimens have
been formulated to treat tongue cancer, it still has the potential to recur or metastasize, with patients
exhibiting a relatively persistent 5-year survival rate of 50% (Enomoto et al., 2018; Su et al., 2020). It is
thus essential that novel therapeutic tools capable of treating tongue cancer be developed so as to
improve patient outcomes.

Asiatic acid (AA) is a five-ring triterpenoid compound derived from Centella asiatica
extracts. AA exhibits a range of pharmacological properties, including anti-inflammatory,
antibacterial (Huang et al., 2011), antioxidant, cardioprotective, and neuroprotective
activities (Nagoor Meeran et al., 2018). AA treatment has been shown to suppress the
growth of breast (Hsu et al., 2004) and lungcancer cells (Wu et al., 2017), without inducing
substantial toxicity in non-malignant cells (Siddique et al., 2017). As our preliminary studies
have suggested that AA is additionally capable of inhibitingtongue cancer cell growth, we
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conducted the present study in an effort to better understand
the mechanistic basis for the anti-cancer activity of this
promising therapeutic compound.

The endoplasmic reticulum (ER) represents a key site of cellular
protein, lipid, and carbohydrate biosynthesis, and it additionally
sequesters intracellular calcium ions and controls their availability
(Iurlaro and Muñoz-Pinedo, 2015). The disruption of ER
homeostasis under a range of pathophysiological conditions can
induce substantial ER stress, whereupon the unfolded protein
response (UPR) is initiated in an effort to alleviate such stress and
to restore homeostaticnormalcy. The ER stress response serves as an
important mediator of cell survival or apoptosis under specific
conditions (Schwarze et al., 2008). Briefly, low-level induction of
this ER stress response can enhance cell survival under adverse
conditions, whereas high-intensity or prolonged UPR induction
can instead induce apoptotic cell death associated with a failure to
restore homeostasis via the calpain (Cubillos-Ruiz et al., 2017) and
IRE1α/ JNK signaling pathways (Urano et al., 2000). However,
excessive ER stress can lead to a breakdown of cell homeostasis,
thereby triggering apoptotic cell death. There are three ER-resident
sensor proteins - IRE1α, PERK, and ATF6. These sensors transduce
information regarding the protein folding status of the ER to the
cytosol and nucleus to restore the protein folding capacity. Under ER
stress conditions, these sensors are activated by BiP dissociation and/
or direct misfolded protein binding. Activated IRE1α can activate the
JNK, p38, ERK, and NF-kB pathways, thus modulating diverse
cellular pathways in an XBP1-independent manner. Activated
PERK can activate the downstream protein p-eIF2α, in turn
inducing the upregulation of CHOP, which plays an important
role in promoting cell apoptosis. ATF6 is transported to the Golgi
apparatus under ER stress conditions, where it is processed by S1P
and S2P, releasing its cytosolic domain fragment as a transcription
factor. ATF6 activates genes encoding protein chaperones, ERAD
components, and XBP1. In addition, ER stress is usually
accompanied by intracellular calcium overload. Calpain is a
protease that participates in altering calcium content levels, with
rising calcium levels having the potential to promote calpain
activation. Activated calpain can cleave pro-caspase-12 to caspase-
12, thus triggering ER stress-mediated apoptosis.

Many recent studies have found that ER stress induction-
related apoptosis is closely tied to the pathogenesis of a range of
cancers. Asiatic acid also induces glioblastoma multiforme cell
apoptosis via ER stress(Kavitha et al., 2015). As such, we herein
explored the impact of AA treatment on tongue cancer growth
in vitro and in vivo, and explored the association between such
activity and ER stress induction.

MATERIALS AND METHODS

Cell line and reagents
AA was obtained from the National Institute for Food and
Drug Control (Nanjing Jingzhu, China). Antibodies specific
for calpain, cleaved caspase-3, JNK, p-JNK, Grp78, Bax, and
Bcl-2, and actin were from Cell Signaling Technology
(Shanghai, China), while Beyotime Biotechnology
(Shanghai, China) was the source of BCA kits, Fluo-4AM

fluorescent dye, SDS-PAGE gel preparation kits, secondary
HRP goat anti-rabbit IgG, HRP-goat anti-mouse IgG, anti-
IRE1α, and anti-P-IRE1α. The human Tca8113 tongue cancer
cell line was obtained from the Cell Bank of the Chinese
Academy of Science (Shanghai, China).

MTT assay
Tca8113 cells were seeded in 96-well plates (8×104/well) and
allowed to adhere, after which cells were treated with AA (0, 10,
20, 30, 40, 50, 80, or 100°μM) for 24°h, after which MTT reagent
was added to each well (20°μL/well) for 4°h at 37oC. Media was
then removed from each well and replaced with 150°μL of DMSO.
After 10°min of constant agitation, absorbance at 570°nm in each
well was assessed via microplate reader.

Colony Formation Assay
Tca8113 cells were added to 6-well plates (5×102/well) for 24°h,
after which AA (40°μM) was added. Following a 1-week
treatment period, colonies were stained using 0.5% crystal
violet and imaged.

Calcium Ion Detection
Tca8113 cells were added to 24-well plates (6×104/well) for 24°h,
after which they were treated for 6° h with AA (40°μM). Next, each
well was treated with Fluo-4AM (1°μM) for 20°min. Cells werethen
washed with PBS, incubated for 25°min to facilitate Fluo-4AM
conversion to Fluo-4, and imaged via fluorescent microscopy.

Immunofluorescent staining
When cells were 80% confluent, they were rinsed in PBS, fixed for
15°min with 4% paraformaldehyde (PFA), permeabilized for
20°min with Triton X-100 (0.5%), washed thrice with PBS,
and blocked for 30°min with 2% BSA. They were then probed
overnight with anti-Grp78 (1:250) at 4°C, after which they were
probed with appropriate fluorescently-conjugated secondary
antibodies for 1°h at room temperature. DAPI was then
applied for 5°min to counterstain nuclei, after which cells were
imaged by confocal microscope.

Assessment of Cell Apoptosis
Tca8113 cells in 6-well plates were treatedwith AA (40°μM) for 24°h,
after which cells were stained with Hoechst 33342, after which
apoptotic cells were observed via fluorescence microscope
(Olympus, Tokyo, Japan). In addition, cells were stained with
Annexin V and PI to confirm differences in apoptotic death
among treatment groups. Briefly, following a 12°h AA treatment
(40°μM), cells were harvested, rinsed, centrifuged at 2000°rpm for
5°min, and resuspended in 400°μL binding buffer containing 5°μL
Annexin V-FITC and 10°μL propidium iodide (PI) for 10°min. Cells
were then evaluated via flow cytometry within 1°h to establish the
percentages of cells in theearly and late stages of apoptotic death.

Western Blotting
Following A treatment, cells were lysed with a buffer containing
protease inhibitors (Roche). Equal amounts of protein from each
sample (40°μg) were then separated via SDS-PAGE and transferred
to PVDF membranes, which were blocked for 1°h using 2% BSA
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prior to being probed overnight with appropriate primary antibodies
(1:1000) at 4°C, followed by probing for 1°h with secondary HRP-
conjugated anti-mouse or anti-rabbit IgG (Cell Signaling, Shanghai,
China). An enhanced chemiluminescence ECL Plus system
(Beyotime Institute of Biotechnology, Shanghai, China) was then
used to detect protein bands, with band densitometry subsequently
being analyzed with a scanning densitometer (Bio-Rad) and
associated analytical software.

Animals
Male BALB/cANNCjr nu/nu mice (20-25°g) were obtained from
Beijing Vital River Laboratory Animal Technology Co., Ltd.,
Beijing, China and were housed in a climate-controlled facility
(22- 24°C, 12°h light/dark cycle) with free food and water access.
Animals were allowed to acclimate to laboratory conditions for at
least 1°week prior to experimental use. All animal studies were
approved by the Experimental Animal Ethics Committee of
Jinzhou Medical University, and were performed in a manner
consistent with the NIH Guide for the Care and Use of
Laboratory Animals published (Publication, 8th Edition, 2011).

Xenograft tumor models
Mice (8-weeks-old) were subcutaneously implanted with 2×106
Tca8113 cells in the flank region. Once tumors had grown to a
volume of ∼100°mm3, animals were intraperitoneally injected
once per day with AA in 0.1% DMSO (15°mg/kg/d) or with an
equivalent volume of 0.1% DMSO. Vernier calipers were used to
assess tumor volume as follows: length×width2/2. Following a 4-
week monitoring period, mice were euthanized via pentobarbital
sodium injection (75°mg/kg), at which time tumors were
collected, weighed, and imaged.

TUNEL Staining
On day 28 post-AA treatment, mice were euthanized and tumor
tissue samples were collected, paraffinized, and cut to yield 4-μm-
thick sections. Apoptotic death in these sections was evaluated using
an In situ Cell Death Detection Kit (Roche, IN, United States) based
on provided directions. The TUNEL staining of these sections was
first performed, after which DAB was applied to detect the labeled
apoptotic cells, and hematoxylin was applied for nuclear
counterstaining. Numbers of TUNEL-positive nuclei in five
random fields of view from each tissue section were assessed in a
blinded fashion, with the results being expressed as a fraction of the
total nuclei visible in a given field.

Statistical Analysis
Data are means ± SD, and were compared via one-way ANOVAs
with Bonferroni/Dunn tests. p < 0.05 was the significance
threshold for this study.

RESULTS

AA Inhibits Tongue Cancer Cell Viability and
Proliferation
We began by assessing the impact of AA on tongue cancer cell
viability via an MTT assay, which revealed that AA application

significantly suppressed the viability of these cells with an IC50
value of approximately 40°μM (Figure 1A). Consistent with this,
AA treatment (40°μM) significantly suppressed the colony
forming activity of Tca8113 cells (Figure 1B).

AA Induces Tongue Cancer Cell Apoptotic
Death
The apoptotic death of these tongue cancer cells was next evaluated
via Hoechst 33342 stainingand flow cytometry. In Hoechst 33342
staining analyses, AA was found to cause the cells to shrinkand the
fluorescence to increase, consistent with the increased apoptosis of
Tca8113 cells relative to control treatment (Figure 1C), and this was
confirmed via flow cytometry (Figure 1D, E).

AA Treatment Alters Apoptosis-Related
Protein Levels In Tongue Cancer Cells
To confirm the induction apoptosis in tongue cancer cells
following AA treatment, mitochondrial apoptotic pathway
related-protein levels were next assessed via Western blotting.
AA treatmentwas associated with significant reductions in the
levels of anti-apoptotic Bcl-2 and with increases inpro-apoptotic
Bax and cleaved caspase-3 levels (Figure 2B). This suggests that
AA can induce Tca8113 cell apoptosis via the mitochondrial
pathway.

AA Treatment Increases Calcium Ion Levels
and Calpain Expression in Tongue Cancer
Cells
Calcium and the calcium-dependent protease calpain are important
regulators of apoptotic death. We therefore used the Fluo-4AM
probe to assess calcium levels in Tca8113 cells, revealing that AA
treatment (40°μM) for 6°h was associated with a significant increase
in intracellular calcium ion levels relative to control treatment
(Figure 3A). Western blotting further revealed that calpain levels
rose in a time-dependent fashion following AA treatment
(Figure 3B, C), suggesting that AAcan increase intracellular
calcium levels and calpain expression in tongue cancer cells,
thereby driving their apoptotic death.

AA Treatment Promotes the Activation of
the Grp78/ Ire1α/Jnk Pathway
The ER stress marker protein Grp78 and downstream IRE1α/JNK
signaling are closely linked to the induction of apoptotic cell
death under adverse conditions. We therefore assessed Grp78
levels in Tca8113 cells via immunofluorescent staining and
Western blotting, revealing significant increases in Grp78
levels following AA treatment (Figure 4A-C). The activation
of IRE1α and JNK was further assessed via Western blotting,
revealing that AA treatment significantly increased P-IRE1α and
P-JNK levels in these tongue cancer cells in a time-dependent
fashion without increasing overall IRE1α and JNK protein levels
(Figure 5A-D), indicating that AA can activate the Grp78 IRE1α/
JNK pathway
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AA Suppresses Tongue Cancer Tumor
Growth in Vivo by Inducing Apoptotic Tumor
Cell Death
Nude mice were next implanted with Tca8113 tumors to
evaluated the in vivo impact of AA treatment of tongue cancer
tumor growth. This analysis revealed AA treatment to be
associated with significant reductions in tumor volume and
tumor weight relative to control treatment (Figure 6A-C).
TUNEL staining of collected tumor tissue sections revealed
that there were significantly more apoptotic tumor cells in
mice treated with AA relative to control mice (Figure 6D, E),
suggesting that AA suppresses tongue cancer growth by inducing
the apoptotic death of these tumor cells.

DISCUSSION

Several studies have shown that Asiatic acid exhibits antiproliferative
effects when used to treat various tumor cell types including
hepatoma (HepG2)(Lu et al., 2016), ovarian cancer (SKOV3 and
OVCAR-3)(Ren et al., 2016), and Cholangiocarcinoma (KKU-156
and KKU-213) cells(Sakonsinsiri et al., 2018). Despite its robust

antitumor properties, no prior studies have yet to define the
mechanism whereby AA can suppress tongue cancer cell growth.
Herein, we began by exploring the impact of AA on tongue cancer
cell viability, revealing that it significantly impaired tongue cancer cell
growth and induced the apoptotic death of these cells in a time-
dependent fashion.Similarly, AA treatment of mice bearing xenograft
tumors was sufficient to impair tumor growth and to increase the
frequency of apoptotic tumor cells, suggesting that AA can inhibit
tongue cancer by driving these tumor cells to undergo apoptosis.

The two primary signaling mechanisms that induce apoptotic
cell death are the mitochondrial and the death receptor signaling
pathways. Bcl-2 family proteins include Bcl-2, which inhibits
mitochondrial apoptotic signaling pathway activation, and Bax,
which counteracts Bcl-2 activity in cells (Ashkenazi et al., 2017).
When apoptotic signaling cascades are initiated in cells, Bax and
other Bcl-2family proteins rapidly localize to the mitochondrial
membrane where they can form membrane poreswhich facilitate
the release of mitochondrial cytochrome c into the cytoplasm
(Germain et al., 2002). To assess the mechanism whereby AA
administration promoted tongue cancer cell apoptosis, we
assessed Bcl-2, Bax, and cleaved caspase-3 levels in treated
cells. These experiments revealed that AA induced
mitochondrial apoptotic pathway activation, as evidenced by

FIGURE 1 | AA inhibits tongue cancer cell viability and proliferation. (A) AA treatment (40°μM) inhibited Tca8113 cell viability as measured via MTT assay. *p < 0.01
vs. untreated. (B) AA (40°μM) suppressed Tca8133 cell colony formation activity over a 6-day period. (C) AA treatment (40°μM) induced the apoptotic death of Tca8113
cells as measured via Hochest 33342 staining. Apoptotic nuclei are marked with arrows. (D) AA treatment (40°μM) induced the apoptotic death of Tca8113. cells as
measured via flow cytometry. *p<0.01 vs. 0°h.
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Bcl-2 downregulation and upregulation of both Bax and cleaved
caspase-3 levels following treatment.

Apoptotic signaling can be regulated by a range of mechanisms,
including the ER stress response. The release of calcium ions from
the ER into the cytoplasm is a hallmark of such ER stress, and
calpain upregulation has previously been linked to apoptosis and
the activation of caspases including caspase-12 and caspase-3 in the

context of disrupted calcium homeostasis (Bahar et al., 2016; Zhang
et al., 2017). Herein, we found that AA treatment was associated
with a significant increase in intracellular calcium ion levels and
calpain expression in tongue cancer cells. As such, AA-induced
apoptosis is likely at least partially associated with this calcium-
mediated calpain pathway. The ER stressmarker protein Grp78 and
associated IRE1α /JNK signaling can also regulate ER stress-
induced apoptosis. The type I transmembrane protein IRE1α
exhibits a cytoplasmic serine/threonine kinase domain (Hetz and
Papa, 2018). In normal physiological contexts, IRE1α binds to the
ER chaperone Grp78. When cells are faced with ER stress, however,
the accumulation of unfolded proteins results in Grp78 dissociation
from IRE1α, which enables this receptor to interact with TRAF2
and ASK1, generating the IRE1α-TRAF2-ASK1 complex, that can
activate JNK signaling (Nishitoh et al., 2002; Hu et al., 2006; Sano
and Reed, 2013), thereby triggering mitochondrial apoptosis
pathway activation via suppressing Bcl-2 expression and
enhancing Bax expression (Yamamoto et al., 1999; Bassik et al.,
2004; Puthalakath et al., 2007). This, in turn, results in the release of
cytochrome C into the cytosol wherein it can bind to caspase-9,
activate caspase-3, and thereby drive apoptotic cell death. Overall,
we determined that AA treatment resulted in an increase in Grp78
expression and associated enhancement of IRE1α and JNK
phosphorylation in tongue cancer cells, indicating that AA
induces the apoptotic death of these tumor cells via the
activation of the ER Grp78/IRE1α/JNK signaling
pathway.Although we found that AA induced ER stress and
activated the Grp78/IRE1α/JNK and Calpain pathways to inhibit
tongue cancer growth. However, there are certain limitations to this
study. CHOP and caspase-12 play an important role in the ER stress
induced-cell death (Cheng andDong, 2018). As such, it is important
that the roles of CHOP and caspase-12 in AA-induced tongue
cancer cell death be confirmed. Furthermore, a reticular stress
inhibitor compound such as salubrinal should be used to verify

FIGURE 2 | AA treatment reduces Bcl-2 expression and enhances
cleaved caspase-3 and Bax levels in tongue cancer cells. (A) The impacts of
AA treatment (40°μM) on Bcl-2, Bax, and cleaved caspase-3 were assessed
via Western blotting. (B) AA treatment (40°μM) for 3°h significantly
reduced Bcl-2. expression and increased cleaved caspase-3 and Bax levels.
*p<0.05 vs. 0°h, **p<0.01 vs. 0°h.

FIGURE 3 | AA treatment increases calcium ion levels and calpain expression in tongue cancer cells. (A) Fluo-4AM staining revealed significant increases in calcium
ion levels in tongue cancer cells following AA treatment. (B)Western blotting revealed significant increases in calpain protein levels in tongue cancer cells following a 1°h
treatment with AA relative to baseline levels. *p<0.01 vs. 0°h.
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that AA induces ER stress in tongue cancer cells. These topics will be
a focus for our future research.

In conclusion, we found that AA exhibits effective antitumor
properties, suppressing Tca8113 tongue cancer cell growth and

activating proteins related to the IRE1α/JNK signaling pathways
under conditions of ER stress, suggesting that this may be one
mechanism whereby Asiatic acid induces apoptosis. Owing to the
complex, multi-level regulation of ER stress responses, however,

FIGURE 4 | AA increasesGrp78expression in tongue cancer cells. (A)Western blottingwas used to assess the impact of AA treatment (40°μM)onGrp78 levels after 0, 1, 3,
6, and 12°h. (B) AA treatment significantly increased Grp78 protein levels after 1°h relative to baseline. *p<0.05 vs. 0°h, **p<0.01 vs. 0°h. (C) Immunofluorescent staining of Grp78
levels in tongue cancer cells revealed. significant increases in these levels upon AA treatment. Experiments were repeated in triplicate.

FIGURE 5 | AA promoted increased IRE1α and JNK phosphorylation. (A)Western blotting was used to assess the impact of AA on IRE1α phosphorylation after 0,
1, 3, 6, and 12°h. (B) AA treatment was associated with significantly increased IRE1α phosphorylation following a 1°h treatment relative to control. *p<0.05 vs. 0°h,
**p<0.01 vs. 0°h. (C) Western blotting was used to assess the impact of AA on JNK phosphorylation after 0, 1, 3, 6, and 12°h. (D) AA treatment was associated with
significantly. increased JNK phosphorylation following a 1°h treatment relative to control. *p<0.05 vs. 0°h, 369 **p<0.01 vs. 0°h.
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further research will be essential to fully elucidate the
mechanisms whereby AA induces and modulates ER stress
responses in these cancer cells. Even so, our data suggest that
AA holds great promise for the treatment of tongue cancer, and
future studies of the underlying pathways thus have the potential
to identify novel therapeutic avenues to the treatment of this
deadly disease.
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FIGURE 6 | AA inhibits tongue cancer growth and induces tumor cell apoptotic death in vivo. (A) Tongue cancer growth in xenograft model nude mice following AA
or DMSO vehicle control treatment (n � 4/group). (B) AA treatment was associated with significant reductions in tumor weight relative to DMSO control. *p <0.01. (C) AA
treatment was associated with significant reductions in tumor volume relative to DMSO control. *p <0.01. (D) TUNEL staining of vehicle (A) and AA (B) treated tongue
cancer samples. (E) AA treatment induced significantly more tongue cancer cell apoptosis relative to DMSO treatment. *p<0.01.
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