
AI-Based Drug Discovery of TKIs
Targeting L858R/T790M/C797S-Mutant
EGFR in Non-small Cell Lung Cancer
Geunho Choi†*, Daegeun Kim† and Junehwan Oh

AI LAB, AllLive Healthcare Co.,Ltd., Seongnam, Korea

Lung cancer has a high mortality rate, and non-small cell lung cancer (NSCLC) is the
most common type of lung cancer. Patients have been observed to acquire resistance
against various anticancer agents used for NSCLC due to L858R (or Exon del19)/
T790M/C797S-EGFR mutations. Therefore, next-generation drugs are being
developed to overcome this problem of acquired resistance. The goal of this
study was to use artificial intelligence (AI) to discover drug candidates that can
overcome acquired resistance and reduce the limitations of the current drug
discovery process, such as high costs and long durations of drug design and
production. To generate ligands using AI, we collected data related to tyrosine
kinase inhibitors (TKIs) from accessible libraries and used LSTM (Long short term
memory) based transfer learning (TL) model. Through the simplified molecular-input
line-entry system (SMILES) datasets of the generated ligands, we obtained drug-like
ligands via parameter-filtering, cyclic skeleton (CSK) analysis, and virtual screening
utilizing deep-learning method. Based on the results of this study, we are developing
prospective EGFR TKIs for NSCLC that have overcome the limitations of existing
third-generation drugs.
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INTRODUCTION

Cancer is one of the leading causes of death worldwide (Sung et al., 2021). In the United States, cancer
is the second leading cause of death as of 2017–2018, accounting for 21% of the deaths. The mortality
rates according to the cancer type from 2014 to 2018 in the United States are as follows (rates are per
100,000 population). Lung and bronchus cancer was 38.5, breast cancer (female) was 20.1, prostate
cancer was 19.0, colon and rectum cancer was 13.7, liver and intrahepatic bile duct cancer was 6.6,
and Kidney and renal pelvis cancer was 3.6 (Siegel et al., 2021). Among many cancers, lung cancer
has a high mortality rate. Approximately 1.7 million people died from lung cancer in 2018, with non-
small cell lung cancer (NSCLC) being the cause of death in over 80% of these cases (Yuan et al., 2019).
Platinum-based doublet chemotherapy (e.g., cisplatin), which directly induces cancer cell apoptosis,
has been used to treat lung cancer since 2005. However, this treatment has drawbacks such as
inducement of normal cell apoptosis and achievement of only a short survival period of 10 months.
Since the discovery of genetic mutations related to epidermal growth factor receptor (EGFR) in 2004,
numerous targeted anticancer agents with fewer side effects compared to chemotherapy have been
developed. These agents have extended the survival period of patients with lung cancer to over
24 months (Li et al., 2019) (Jiao et al., 2018) (Yuan et al., 2019).
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Ongoing research on targeted anticancer agents has revealed
the mechanisms of various targetable pathways associated with
lung cancer (e.g., EGFR, PI3K/AKT/mTOR, RAS-MAPK, and
JAK/STAT). EGFR, a member of the HER family, is a
transmembrane glycoprotein that regulates cell regulatory
pathways involved in cell proliferation, differentiation, and
apoptosis. Since the discovery of EGFR overexpression in
patients with lung cancer, which revealed a correlation
between EGFR tyrosine kinase expression and tumor
formation, numerous agents with significant therapeutic
targets in NSCLC have been developed (Le and Gerber, 2019)
(Leonetti et al., 2019).

Gefitinib from AstraZeneca and Erlotinib from Roche, which
are first-generation reversible inhibitors of EGFR tyrosine kinase,
were approved in 2003–2013, respectively. Afatinib, a second-
generation irreversible inhibitor of EGFR tyrosine kinase from
Boehringer Ingelheim, was approved in 2013. These first- and
second-generation drugs are used as targeted agents for NSCLC
and have shown high efficacy for common activating EGFR
mutations such as the L858R point mutation and exon 19
deletion. However, after a treatment period of 1–2 years, the
second mutation called the “gatekeeper”, referring to the T790M-
mutation in EGFR exon 20, occurs in 50–60% of patients treated
with these agents, in addition to other mutations such as MET
amplification and RAS mutations. The “gatekeeper” mutation
reduces the effectiveness of the first- and second-generation
anticancer agents by inducing drug resistance. Thus, numerous
third-generation EGFR tyrosine kinase inhibitors (TKIs) sensitive
to TK domain mutations (T790M) have been developed.(Jett and
Carr, 2013) (Yuan et al., 2019) (Liu et al., 2018) (Grabe et al.,
2018).

Osimertinib (Tagrisso) is a major third-generation EGFR TKI
developed by AstraZeneca and approved by the Food and Drug
Administration (FDA) in 2015. Osimertinib covalently binds
(Ghosh et al., 2019) to the Cys797 residue of EGFR tyrosine
kinase and is thus highly selective (Zhai et al., 2020) (Klaeger
et al., 2017) and potent for the EGFR T790M mutation and other
activating EGFR mutations. In 2015, however, the use of
osimertinib as a third-generation EGFR TKI was shown to
lead to acquired resistance, resulting from the tertiary point
mutation C797S. Substitution of the Cys797 residue with
serine 797 led to the loss of covalent interactions and
significantly reduced drug efficacy. Consequently, fourth-
generation drugs with therapeutic effects against the EGFR
C797S-mutation are currently under development. (Jett and
Carr, 2013) (Leonetti et al., 2019) (Grabe et al., 2018).

Drug discovery costs are increasing and research and
development efficiency is decreasing (Mak and Pichika, 2019)
(Scannell et al., 2012) (Schuhmacher et al., 2016). Therefore,
increasing efforts have been undertaken to use artificial
intelligence (AI) in drug discovery (Chen et al., 2018) (Chan
et al., 2019). Unlike conventional drug discovery procedures, AI
based drug discovery does not incur high experimental costs and
requires only a small number of personnel.

Deep learning (Lecun et al., 2015) is artificial neural networks
that mimic the brain, a complex system. Deep learning has been
successfully applied to areas such as computer vision
(Voulodimos et al., 2018), speech recognition (Nassif et al.,
2019), and natural language processing (Young et al., 2018).
Recently, studies applying AI such as deep learning to drug
discovery are increasing. Researchers have developed a drug
generation model using variational autoencoder (Gómez-
Bombarelli et al., 2018), generative adversarial autoencoder
models (Kadurin et al., 2017). A drug generation model using
a recurrent neural network (RNN) architecture and
reinforcement learning (Popova et al., 2018) has also been
developed. Deep learning is highly sensitive to data quality
and quantity. A small dataset is a bottleneck in AI-aided novel
drug discovery and can be overcome by transfer learning (TL)
(Segler et al., 2018) (Gupta et al., 2018) (Moret et al., 2020) (Cai
et al., 2020). TL enables efficient learning even with a small
amount of data.

We adopted model (Li et al., 2020) using RNN(LSTM) and TL,
and conducted research with the aim of discovering 4th
generation new drug candidates as L858R (or Exon del19)/
T790M/C797S-mutation EGFR tyrosine kinase inhibitors
related to NSCLC.

MATERIALS AND METHODS

Data Curation and Analysis
We downloaded data for 1,961,462 compounds from ChEMBL
(Gaulton et al., 2012), a curated compound database, and
selected compounds whose names ended with ‘-tinib’ and
additionally selected Lazertinib, creating a list of 139
compounds (Figure 1). The reason why we specifically chose
‘−tinib’ structures as our base dataset molecules from ChEMBL
database is that ‘-tinib’ is an already known tyrosine kinase
inhibitor that exhibits certain pharmacological effects in
relation to various tyrosine kinases including our targeted
protein, EGFR TK and We aim to discover promising

FIGURE 1 | Overall process. Data preparation and generative model process.
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candidates as EGFR TKIs reflecting the structural,
physicochemical and biochemical features of these ‘-tinib’.
The data used in the paper are available at https://github.
com/cgh2797/AI_drug_discovery_EGFR. Data was input in
SMILES format using the open-source cheminformatics Rdkit
2020.03.1.0. We performed a 10-fold augmentation on the
‘-tinib’ dataset as it was not large enough to train a model
(Bjerrum, 2017). Additionally, we analyzed the structural
similarity between compounds by examining their cyclic
skeletons (CSKs) (Xu and Johnson, 2002).

LSTM TL
Since the dataset is small and SMILES is a string format, an RNN
(LSTM) TL model (Li et al., 2020) was selected. A training dataset
(Li et al., 2020) was used as a base dataset, and the dataset of
139 ‘-tinib’ compounds was used as a second dataset for TL
after 10-fold augmentation. The data preprocessing method
was selected from the previous study (Li et al., 2020). The
BasicLSTMCell function in TensorFlow was used for the two
LSTM layers of the deep learning model. A dropout was applied
to each LSTM layer. The keep probability was 0.8, and the
number of hidden layers was 512. For the loss function,
TensorFlow’s seq2seq.sequence_loss function optimized with
the Adam optimizer was used. The learning rate was set to

0.003. Model training was performed using TensorFlow-gpu
1.15.0. NVIDIA GeForce RTX 2080 SUPER was used for
computation.

Filtering
Of the generated molecules, invalid molecules whose
parameters could not be calculated by Rdkit were filtered
out. Next, parameters including molecular weight, LogP,
HBA, HBD, TPSA, and rotatable bonds were calculated using
Rdkit. The weighted mean of the quantitative estimates of
drug-likeness (QED) (Bickerton et al., 2012) was calculated
using Rdkit. The desirability functions (d) can be described
as asymmetric double sigmoidal (ADS) functions and are
expressed as shown in Eq. 1. a, b, c, d, e, and f in Eq. 1
denote the parameters of the ADS function. QED is
calculated by taking the geometric mean of the desirability
functions multiplied by their weights w and can be
expressed as shown in Eq. 2. Expanding the equation results
in Eq. 3: This material is from our original study (Bickerton
et al., 2012).

D(x) � a + b

[1 + exp( − x−c+d2
e )]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣1 − 1

[1 + exp( − x−c−d2
f )]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (1)

FIGURE 2 | Two-dimensional representation of ‘−tinib’ and AI-generated ligands using t-SNE.
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QEDW � exp(∑n
i�1wiln di∑n

i�1wi
) (2)

QEDW � exp
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

WMW ln dMW +WALOGP ln dALOGP +WHBA ln dHBA +WHBD ln dHBD
+WPSA ln dPSA +WROTB ln dROTB +WAROM ln dAROM +WALERTS ln dALERTS
WMW +WALOGP +WHBA +WHBD +WPSA +WROTB +WAROM +WALERTS

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (3)

The synthetic accessibility (SA) (Ertl and Schuffenhauer, 2009)
score was calculated as a combination of two components using
the Rdkit.

Sascore � fragmentScore − complexityPenalty (4)

The following screening filters were used for the parameters:
300 ≤MW ≤ 700, 2.0 ≤ LogP≤6.0, 2.0 ≤HBD≤6.0, 0 ≤HBA≤12.0,
HBA + HBD≤14.0, 60.0 ≤ TPSA≤140.0, and rotational
bond≤12.0. All filters were applied to obtain the desirable ligands.

AI Virtual Screening
In virtual screening, DeepDTA (Öztürk et al., 2018), a
convolutional neural network-based drug target affinity
prediction model, was used to predict the affinity of the
candidate compounds for L858R/T790M/C797S mutant EGFR
(PDB code: 6LUD). The output of the model is pKd (5), which
denotes the affinity between a protein and a drug.

PKd � −log 10(Kd

1e9
) (5)

pKd was predicted using Tensorflow 2.2.0, keras 2.4.3, and
NVIDIA GeForce RTX 2080 SUPER.

RESULTS

AI-Aided Drug Discovery
TL was used to compensate for the small quantity of ‘−tinib’ data
obtained from ChEMBL. The compounds generated via TL had
unique structures that were similar to the ‘−tinib’, but also
exhibited the characteristics of the compounds in the training
dataset. The compounds were vectorized using the Morgan
Fingerprint (Cereto-Massagué et al., 2015) in Rdkit and
visualized after dimensionality reduction into a two-
dimensional (2D) space using t-SNE (Maaten and Hinton,
2008) in scikit-learn (Figure 2). In the 2D space, compounds
with similar structures were clustered closer together, while
structurally dissimilar compounds were farther from one
another. The AI-generated compounds surrounded the ‘−tinib’
compounds in a ring shape. While the AI-generated compounds
were similar to the ‘−tinib’ compounds based on their small
distance between one another in the 2D space, they were still far
enough to be considered unique, and thereby avoided patent
infringement.

Parameter Filtering
Approximately 20% of 10,316 AI-generated ligand SMILES were
invalid SMILES that did not meet the encoding rules and were
thus removed. Following the removal, the remaining ligands were
screened by filtering based on MW, LogP, TPSA, HBA, HBD,

FIGURE 3 | Comparison parameter distribution of ‘−tinib’ and 6,283
ligands made by AI. The figure shows the parameter distribution, the ‘−tinib’
on the left and the AI generated ligands on the right. (A)Molecular Weight, (B)
LogP, (C)HBA, (D)HBD, (E)HBA + HBD, (F) tPSA, (G) Rotatable bond,
(H) QED, and (I) SA (Synthetic Accessibility) score.
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HBA + HBD, and rotatable bonds to ultimately remove
undruggable molecules. As a result of screening using
parameter filtering, we obtain 6,283 ligands out of 10,316.
After that, the distributions of parameters such as MW, LogP,
TPSA, HBA, HBD, HBA + HBD, rotatable bond, QED, and
SA were compared between the AI-generated and ‘−tinib’
compounds (Figure 3). The parameters showed highly
similar distributions between the two groups of
compounds. The physicochemical characteristics of the
existing drugs were well-reproduced by the AI-generated
compounds.

Structural Similarity Based on CSK
A scaffold is the core structure of a compound. CSK is an
abstract version of a scaffold. We examined pharmaceutically
meaningful structural similarities between ‘-tinib’ by computing
CSKs to select drug-like compounds. We created a hierarchical
figure by placing structures with a single ring in layer 1, those
with two rings in layer 2, and those with three rings in layer 3
(Figure 4).

Bridged-bicyclic rings and fused-bicyclic rings were the two
most commonly observed types of CSK, each, with a count of 100
and 70 (marked with yellow). To assess the reproducibility of

these results, we analyzed the CSKs of 6,283 molecules generated
from the training dataset of 139 ‘−tinib’ compounds using a
machine learning model. The 3,308 and 2,254 ligands had
bridged-bicyclic rings and fused-bicyclic rings, respectively,
and thus, the results were deemed reproducible. We confirmed
the structural similarities between the original and AI-generated
ligand groups based on CSKs.

AI Virtual Screening
We used DeepDTA, a machine learning-based model, for fast
virtual screening of druggable ligands based on their target
binding affinity for L858R/T790M/C797S mutant EGFR
(PDB code: 6LUD). Figure 5 shows the affinity distribution
predicted by DeepDTA. Ligands with high pKd score were
predicted to have high affinity for the L858R/T790M/C797S
mutant EGFR.

Screening Ligands Based on Stringent
Criterion
To extract ligands for docking simulation and non-clinical
experiments, we screened ligands using stringent criterion. As
a result, 360 ligands that we can calculate by docking program

FIGURE 4 | Most frequent CSK from ‘-tinib’.
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were selected. More information on 360 ligands is available at
https://github.com/cgh2797/AI_drug_discovery_EGFR.

DISCUSSION

In this study, we used AI-based drug discovery to overcome the
issues of high cost and low efficiency of drug research and
development at present. We used AI to discover drug-like
ligands resembling TKIs associated with EGFR in NSCLC and
screened the candidates through the following process.

We extracted 139 ligands associated with TKIs from
approximately 1.96 million compounds in ChEMBL. Next, we
performed deep learning using an RNN (LSTM) to generate
10,316 SMILES associated with TKI molecules. Through
parameter-filtering using in-house methods, we narrowed down
the SMILES to 6,283 drug-like ligands with affinity for L858R/
T790M/C797S mutant EGFR in NSCLC. To gain additional
understanding of the selected ligands, we analyzed their CSKs to
examine the structural similarity between the AI-generatedmolecules
and the existing ‘−tinib’ from ChEMBL. We used a deep learning
model such as DeepDTA to predict the binding affinities of these
compounds for L858R/T790M/C797S mutant EGFR. Finally, by
applying stringent criterion, 360 ligands were obtained.

However, there are several limitations to this study. First, it
is difficult to create only covalent ligands or determine if the
ligands are covalent, when generating various ligands through
AI methods. Since we based our results on Osimertinib, which
is a representative covalent TKI, obtaining covalently binding
ligands is also an ideal aim in this study. Thus, in a follow-up

study, we will select promising compounds by determining
directly based on scientific rationale whether the 360 ligands
are “covalent” or “noncovalent” ligands using an in silico
docking prediction method. Second, there are selectivity
issues, which should be addressed even within the tyrosine
kinase family. Since our research is in its early stage, our
primary goal of the research is to preferentially discovery
candidates as EGFR TKIs with notable efficacy (i.e., binding
affinity). After identifying promising candidates, a more
detailed research would be conducted to resolve the
selectivity issues. Finally, another limitation of this study is
that although new druggable ligands were found, experiments
such as in silico docking, synthesis in the laboratory, and
preclinical trials were not conducted. Hence, further studies
on improving the therapeutic potential of our selected ligands,
such as in silico docking prediction, synthesis in the
laboratory, and preclinical trials (e.g., efficacy and safety
trials), would be undertaken. Accordingly, a more detailed
research would also be conducted to resolve the
aforementioned tyrosine kinase selectivity issues (e.g., SAR
by structural modification).

We don’t put meaning to simply discover new druggable
ligands similar to existing ‘−tinib’ using AI. Since AI has
infinite potential for applications in drug discovery, our goal is
not only limited to drug discovery, but also includes the successful
development of drugs that can receive FDA approval.

Therefore, our next task is to discover new candidates with
good drug-like profiles (efficacy, toxicity, pharmacodynamics,
pharmacokinetics, etc.) and identify those eligible for drug
approval. We must also explore the possibility of using these
compounds in combination therapy. By presenting examples of
successful new drug development through these series of
processes, new drug development technology using AI will
become a new drug discovery paradigm.
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