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Introduction: Various methods have been implemented to detect adverse drug reaction
(ADR) signals. However, the applicability of machine learning methods has not yet been
fully evaluated.

Objective: To evaluate the feasibility of machine learning algorithms in detecting ADR
signals of nivolumab and docetaxel, new and old anticancer agents.

Methods:We conducted a safety surveillance study of nivolumab and docetaxel using the
Korea national spontaneous reporting database from 2009 to 2018. We constructed a
novel input dataset for each study drug comprised of known ADRs that were listed in the
drug labels and unknown ADRs. Given the known ADRs, we trained machine learning
algorithms and evaluated predictive performance in generating safety signals of machine
learning algorithms (gradient boosting machine [GBM] and random forest [RF]) compared
with traditional disproportionality analysis methods (reporting odds ratio [ROR] and
information component [IC]) by using the area under the curve (AUC). Each method
then was implemented to detect new safety signals from the unknown ADR datasets.

Results: Of all methods implemented, GBM achieved the best average predictive
performance (AUC: 0.97 and 0.93 for nivolumab and docetaxel). The AUC achieved by
each method was 0.95 and 0.92 (RF), 0.55 and 0.51 (ROR), and 0.49 and 0.48 (IC) for
respective drug. GBMdetected additional 24 and nine signals for nivolumab and 82 and 76
for docetaxel compared to ROR and IC, respectively, from the unknown ADR datasets.

Conclusion: Machine learning algorithm based on GBM performed better and detected
more new ADR signals than traditional disproportionality analysis methods.
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INTRODUCTION

Pharmacovigilance based on spontaneous reporting systems
(SRSs) have been implemented for the early detection of rare
or unknown adverse drug reactions (ADR) that were undetected
in clinical trials. Various data-mining techniques have been
developed and successfully implemented for post-marketing
drug safety surveillance using medical databases (Arnaud
et al., 2017). Disproportionality analysis (DPA) methods such
as reporting odds ratio (ROR) and information component (IC)
were frequently used to analyze the strength of association
between a drug and an adverse event from SRSs (Pham et al.,
2019).

However, these methods simply calculate indices based on a
2 × 2 contingency table to determine safety signals (Bate et al.,
1998; Bate and Evans, 2009; Raschi et al., 2019), ignoring the
influence of confounders in the analysis, whichmay lead to biased
and inaccurate signals (Van Puijenbroek et al., 2002; DuMouchel
et al., 2013; Candore et al., 2015). Furthermore, these methods
apply identical thresholds for determining safety signals to
different databases, which may lead to the under-detection of
adverse drug reactions (ADRs) (Matsushita et al., 2007; Harpaz
et al., 2013). To overcome these limitations, a signal detection
study was conducted by applying machine learning algorithm to
SRS data; however, ROR and IC achieved better area under the
curve (AUC) scores (ROR: 0.67, IC: 0.69) than machine learning
algorithms (random forest [RF]: 0.52, Monte Carlo logistic
regression: 0.58) (Pham et al., 2019). However, the study
evaluated predictive performance without separating entire
data into a training set and a test set, which limited the
interpretation of the findings. There remains a gap in
knowledge regarding the feasibility of machine learning
algorithms to generate potential ADR signals from post-
marketing surveillance data.

To fill that gap, we aimed to compare the predictive
performance of machine learning algorithms in detecting
safety signals of two anti-cancer agents, namely nivolumab
and docetaxel, from SRS data with that of traditional DPA
methods.

MATERIALS AND METHODS

Study Scheme
Figure 1 presents the overall scheme of developing and
implementing a machine learning signal detection (MLSD)
model to predict potential safety signals. We used supervised
learning algorithm, which represents a process of training the
model with a subset of drug label data. We detected safety signals
using the MLSD model via the following steps. First, all AEs
associated with study drugs were extracted from SRS data and
matched with label information based on the reference set. Then,
we selected 23 features that could explain the occurrence of AEs
and created novel input datasets that consisted of values for each
AE. The novel input datasets were divided into gold standard
datasets, which consisted of label-positive and label-negative
ADRs, and unknown ADR datasets to implement machine

learning algorithms. The algorithms were trained with 75% of
gold standard data and the predictive performance of machine
learning algorithms was evaluated with remaining 25% of the
data. The algorithm that performed the best in the evaluation step
was selected to develop the MLSD model. We then determined
the optimal probability threshold that led to the best predictive
performance of MLSD. By applying the optimal probability
threshold, MLSD was implemented to detect signals from
unknown ADRs, which were neither label-positive nor label-
negative ADRs.

Selection of Study Anticancer Agents
Nivolumab is one of the latest anticancer agents in the class of
immune checkpoint inhibitors. The safety evaluation of the agent
has become increasingly important with the rapid expansion of
indications, but its safety profile is yet to be confirmed due to its
relatively short history of use (Friedman et al., 2016; Martin-
Liberal et al., 2017; Clarke et al., 2018). The number of AE reports
and safety issues related to the liver, the lung, and the endocrine
system has increased with the growing use of nivolumab;
however, only a few post-marketing safety studies have been
performed (Ji et al., 2019; Raschi et al., 2019). Therefore, we
examined the safety profiles of nivolumab and six other agents,
which were used as comparator drugs for nivolumab in clinical
trials: dacarbazine, carboplatin, cisplatin, paclitaxel, docetaxel,
and ipilimumab (Larkin et al., 2015; Rizvi et al., 2015; Weber
et al., 2015; Horn et al. 2017).

Docetaxel, a traditional anticancer agent with proven safety
profile, was selected as a second study drug to examine the
validity of our study scheme. In contrast to nivolumab,
docetaxel’s labels list updated and appropriate safety
information, because many post-marketing safety studies have
already been conducted (United States Food and Drug
Administration, 2019). We selected eight comparator drugs for
docetaxel based on the same criteria as for nivolumab:
mitomycin, vinblastine, fluorouracil, doxorubicin,
cyclophosphamide, vinorelbine, cisplatin, and mitoxantrone
(Nabholtz et al., 1997; Fossella et al., 2000, Fossella et al.,
2003; Tannock et al., 2004; Martin et al., 2005; Vermorken
et al., 2007; Jones et al., 2009).

Data Source
We used the Korea Institute of Drug Safety and Risk
Management-Korea adverse event reporting system database
(KIDS-KD) from 2009 to 2018. A computerized AE reporting
system was established in Korea in 2012 to effectively manage AE
reports and subsequently incorporated all spontaneous AE
reports filed since 1988. The KIDS-KD includes information
on the general characteristics of the patients, suspected drug
code, ADR code, serious adverse event case, report type, reporter,
and reporting institution. We extracted AE reports of nivolumab
and its comparator drugs from January 2015 to December 2018,
and for docetaxel and its comparator drugs from January 2009 to
December 2018. Drugs were coded according to the World
Health Organization’s anatomical therapeutic chemical
classification system (ATC). Suspected AEs were coded by the
preferred term, which is one of four classification levels of the
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World Health Organization-Adverse Reactions Terminology
(WHO-ART) version 092 (World Health Organization-
Uppsala Monitoring Centre, 2017).

Constructing Novel Input Datasets
To implement machine learning algorithms for signal detection,
we constructed the novel input datasets for study drugs that
included label information and statistical, organ-specific, and
covariate feature data specifically selected for machine
learning. Machine learning algorithms are designed to accept
novel input data and produce the probability that a specific AE is
a potential ADR signal.

Labeled Data
Labeled data is comprised of gold standard data and unknown
ADR data. The gold standard represents if each AE associated
with a drug from SRS data is actually listed in the drug label and is
used as the orientation for training and testing machine learning
algorithm. In contrast, an unknown ADR refers to an identified
AE that may be linked with the drug. Each algorithm used
unknown ADR dataset to detect the potential ADR signals for
study drugs.

To construct labeled data, a reference set was first created by
extracting labeling information for all study drugs from the Korea
Ministry of Food and Drug Safety, the United States Food and
Drug Administration, and the European Medicines Agency. We

created labeled data by identifying AEs from the KIDS-KD for
each study drug and designating AEs into three ADR categories
based on the reference data: label-positive, label-negative, and
unknown ADRs. Label-positive ADRs were defined as the AEs
that were listed in the labels of the study drug. Label-negative
ADRs were defined as the AEs that were not listed in the labels of
the study drug and other drugs in the same therapeutic class.
These two categories of label-positive and label-negative ADRs
constituted gold standard data whereas unknown ADR data
denotes drug-AE pairs that were neither label-positive nor
label-negative ADRs (Wahab et al., 2013; Harpaz et al., 2014;
Hoang et al., 2018).

We assigned the drugs that shared the first five codes of ATC
and the same mechanism of action with a study drug to the same
therapeutic class with the study drug. For nivolumab, we selected
pembrolizumab, atezolizumab, durvalumab, and avelumab as
drugs of the same class, which are coded as L01XC and
inhibit programmed cell death 1 (PD-1)/PD-L1. For docetaxel,
we determined paclitaxel, and cabazitaxel to be in the same class,
which are coded as L01CD and inhibit the process of cell division.

Feature Data
Feature data represents quantifiable properties and characteristics
of AEs, which can be used to improve the performance of
machine learning algorithms. The quality of features in a
dataset has a key impact on the integrity of the analysis.

FIGURE 1 | Overall scheme, performance evaluation, and application of machine learning signal detection.
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To enhance applicability of our model to other spontaneous
reporting system databases, we considered variables related to the
least required information that must be included in spontaneous
reporting such as suspicious drug information, AE information,
patient information, reporting information. Among the variables,
we selected 22 features used in previous signal detection studies
(Soukavong et al., 2016; Ran et al., 2019). Features were comprised
of statistical and covariate features. We selected four statistical
features (a, b, c, d) that have been used in traditional signal
detection methods. Feature a is the number of reports of a
specific AE associated with a particular study drug. Feature b is
the number of reports of other AEs related with the study drug.
Features c and d are the number of reports of a specific AE and
other AEs, respectively, for the comparators (Table 1).

Covariate features represent the confounding factors that may
affect signal detection results and included the patient’s sex, age,
serious adverse events, report type, reporter’s occupation, and
reporting institution. Age was divided into three groups based on
groupings used in previous post-marketing surveillance studies;
0–17, 18–64, and 65 years of age and older (Ji et al., 2019; Raschi
et al., 2019). Report types included AEs reported to the SRS, post-
marketing surveillance study report, and the literature. There
were five reporter occupation categories (physician, pharmacist,
nurse, other health professional, and consumer) and three
reporting institution types (regional pharmacovigilance center,
medical institution, and drug manufacturer). The frequency of
AE reports was calculated by each feature category.

As ADRs are manifested in specific organs, we also considered
organ-specific features of AEs associated with study drug. Organ-
specific features were grouped into system organ classes (SOCs)
according to the WHO-ART version 092. SOCs are groupings of
medical events by etiology (e.g., infections and infestations),
manifestation site (e.g., gastrointestinal disorders), or purpose
(e.g., surgical and medical procedures). All 23 features used in our
study are listed and described in Supplementary Table S1.

Statistical Analysis
Algorithms for Signal Detection
For signal detection, we used the gradient boosting machine
(GBM) and random forest (RF), which are widely used machine
learning algorithms for classification, and then compared the
results with those obtained from two traditional DPA methods:
ROR and IC.

GBM
Our MLSD model was developed by using GBM algorithm (Shai
and Shai, 2014), which is a learning method that corrects the
errors of its predecessor while learning weak learners sequentially
and has a proven outstanding performance in classification (Liu
et al., 2017; Hoang et al., 2018; Rahimian et al., 2018). Boosting is a
generally used method to boost the accuracy of any learning
algorithm by fitting a series of models and then combining these
models into an ensemble, which performs better than any single
model. GBM algorithm starts with fitting data with a simple decision
tree, which in general performs slightly better than random guessing.
The GBM algorithm proceeds to train another decision tree by using
gradient descent of the loss function in order to reduce errors in the

previous tree. This sequential process continues iteratively until it
produces a model that fits the training set with minimal errors.
Through this process, GBM optimizes criteria that can be applied to
classify drug-AE pairs as either label-positive ADRs or label-
negative ADRs.

RF
The RF is another ensemblemethod that combinesmultiple decision
trees by bagging, which is a general method of aggregating learners
trained by bootstrap samples (Shai and Shai, 2014). Each decision
tree is at once trained by using bootstrap samples and their features,
all of which are randomly drawn from the original training set. This
makes each decision tree create independent criteria to classify drug-
AE pairs as either label-positive ADRs or label-negative ADRs. Then,
RF aggregates all decision trees and determines the classes of drug-
AE pairs by amajority vote, whichmakes RF have generalizability to
other datasets.

DPA
ROR and IC are traditional DPA methods, frequently used to
detect ADR signals. ROR represents the odds of a specific AE
occurring in the patient exposed to a specific drug divided by the
odds of occurrence of an AE specific to comparative drugs. We
calculated ROR for each AE and determined that it is a signal, based
on the following parameters; We used a multivariable logistic
regression model to estimate ROR and 95% credibility interval
(CI) adjusted for sex, age, cases of serious adverse event, report
type, reporter’s occupation, reporting institution, and SOC. Safety
signals were considered significant when the lower limits of the
corresponding CI for the adjusted ROR are ≥1 (Harpaz et al.,
2013). IC is a logarithmic metric of the value calculated by
dividing the probability of drug use and a specific AE by the
product of the probability of drug use and probability of a specific
AE occurring when drug use and the occurrence of the specific AE are
independent. The criterion for signal detection was an IC025 of >0
where IC025 is the lower end of a 95%CI for the IC (Bate et al., 1998).

Training Machine Learning Algorithms
The Synthetic Minority Over-sampling Technique (SMOTE) was
applied to the gold standard datasets to adjust for an imbalance in
the distribution of labels in the dataset between label-positive and
label-negative ADRs. The dataset was then randomly divided into
a training set and a test set (75% and 25%, respectively). We fitted
GBM and RF with hyperparameters tuned on the training set by
using a stratified five-fold cross-validation, which is a resampling
technique to evaluate machine learning models on a limited data
sample by dividing data into five subsets (Table 2). In the first
iteration, the first fold is used as test set and the remaining groups
serve as training sets. This process was repeated until each fold of
the five folds was used as the test set.

TABLE 1 | Statistical features contained in a 2 × 2 contingency table.

Number of reports Specific adverse event Other adverse events

Study anticancer agents Feature a Feature b
Comparators Feature c Feature d
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Evaluating Signal Detection Algorithms
To evaluate the predictive performance of GBM and RF, which
are based on supervised learning with a subset (training set) of
gold standard data, we used the remainder of the data (test set).
However, the performance of ROR and IC was assessed by
using entire gold standard data. Performance was measured as
the AUC of the receiver operating characteristic curve
obtained by plotting the true positive rate against the false
positive rate at various threshold settings. The true positive
rate is also known as sensitivity and false positive rate is
calculated as 1 - specificity.

Then, we selected the machine learning algorithm with best
performance and determined the optimal probability
threshold that led to the best predictive performance of the
selected algorithm to develop MLSD. To determine the
optimal probability threshold, we calculated the AUC score
on a given threshold probability by varying it from 0.0 to 1.0
with an increment of 0.01. If several threshold values achieved
the same AUC score, we selected the highest value as the
optimal threshold. The values of accuracy, sensitivity,
specificity, positive predictive value, and negative predictive
value on the optimal threshold were calculated for each study
drug. Accuracy was the proportion of true results among the
total number of cases examined. Sensitivity was the proportion
of label-positive ADRs in gold standard data that were
predicted as signals by MLSD. Specificity was the
proportion of label-negative ADRs in gold standard data
that were predicted as non-signals by the model. A positive
predictive value was the probability of predicting ADR signals
as label-positive ADRs. Conversely, a negative predictive value
was the probability of predicting non-signals as label-
negative ADRs.

Signal Detection
Based on the verified optimal probability threshold in
performance evaluation, machine learning algorithms were
implemented to determine whether each AE in the unknown
ADR dataset was a potential ADR signal. We compared the
signals obtained by MLSD with those by DPA, by presenting the
signals detected by each algorithm on a scatter plot. The y-axis
and the x-axis indicate the optimal probability threshold of
MLSD and each DPA, respectively. The AEs detected as
signals by both MLSD and DPA were presented in the first
quadrant; those detected as non-signals by both methods were

in the third quadrant; signals detected by either method were in
the second and fourth quadrants.

All statistical analyses were performed using Python software
version 3.7.5 (Python Software Foundation, Wilmington, DE,
United States), SAS software version 9.4 (SAS Institute Inc., Cary,
NC, United States), and Microsoft Office 365 ProPlus (Microsoft
Corp., Redmond, WA, United States). This study was approved
by the institutional review board of Sungkyunkwan University
(2019-04-020-001), which waived informed consent, as only
deidentified data were used in this study.

RESULTS

Characteristics of Novel Input Datasets
We identified a total of 136 and 485 suspected AEs for nivolumab
and docetaxel, respectively, from the novel input datasets
(Table 3). Among the 136 AEs for nivolumab, 51% were
label-positive, 11% label-negative, and 38% unknown ADRs.
Among the 485 AEs for docetaxel, 55% were label-positive,
15% label-negative, and 30% unknown ADRs. Male patients
reported most of the AEs for nivolumab (74.7%), while
females did most of AEs for docetaxel (87.8%) (Figure 2).
Most of AEs (72.9%) for nivolumab but only 16.5% of AEs for
docetaxel were serious. While physicians reported most (84.2%)
of AE cases for docetaxel, physicians (36.9%) and other health
professionals (37.2%) reported nearly the same number of AEs
for nivolumab. AEs for nivolumab were most commonly
manifested as vision disorders, myo-, endo-, pericardial, and
valve disorders, and general and male reproductive disorders
and those for docetaxel as gastrointestinal system disorders, white
cell and reticuloendothelial disorders, and skin and appendages
disorders (Figure 3).

Developing an MLSD Model
Among the four algorithms implemented, GBM achieved the
highest predictive performance in detecting ADR signals from the
test datasets (AUC scores: 0.9728 and 0.9270 for nivolumab and
docetaxel, respectively; Figures 4A,B. Feature b, feature c, feature
d, SOC, and reporting by other health professionals had the
greatest influence on signal detection for nivolumab in the
probability calculation using GBM (Figure 5A). The most
prominent features for docetaxel were SOC, feature b, feature
c, feature d, and the number of serious AEs (Figure 5B). GBM
yielded the highest AUC score of 0.9643 for nivolumab and
0.8626 for docetaxel at the optimal probability threshold value of
0.57 and 0.55, respectively (Figure 6).

Predicting Signals From the Unknown ADR
Dataset
Among the 51 unknown ADRs identified for nivolumab, MLSD
generated 31 (61%) potential signals, which were mainly
manifested as respiratory system disorders, psychiatric
disorders, and gastrointestinal system disorders (Table 4;
Figure 7A). Among the 148 unknown ADRs identified for
docetaxel, MLSD detected 93 (63%) potential signals, which

TABLE 2 | Hyperparameters defined for machine learning signal detection in the
nivolumab and docetaxel training sets.

Parameter Dataset

Nivolumab Docetaxel

Eta 0.01 0.01
Num_boost_rounds 100 100
Max_depth 4 6
Min_child_weight 1 1
Colsample_bytree 0.4 0.7
Gamma 0 0
Random_state 200 200
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were mostly manifested as skin and appendages disorders,
gastrointestinal system disorders, and musculo-skeletal system
disorders (Table 4; Figure 7B). The signals in the second
quadrant of each scatter plot in Figure 8 represent potential
ADR signals detected by MLSD but undetected by DPA. MLSD
detected additional novel 24 and nine signals (Figures 8A,B) for
nivolumab and 82 and 76 signals (Figures 8C,D) for docetaxel,
compared with ROR and IC, respectively.

DISCUSSION

Our signal detection study based on large SRS data was designed
to evaluate the predictive performance of machine learning

algorithm and the ability to detect unknown safety signals,
compared to traditional DPA methods. Our novel machine
learning algorithm, MLSD, outperformed ROR and IC in
predicting signals for both nivolumab and docetaxel and
detected a greater number of unknown ADR signals than ROR
and IC. Although the traditional DPA methods perform well in
some cases, the accuracy of signal detection may be limited by
noise (resulting in false positives) and missing of some important
relationships (resulting in false negatives). These limitations are
attributable to the simplicity with which these methods calculate
signal indices and the application of a uniform threshold
regardless of the different characteristics of databases.

To overcome these limitations, we developed MLSD, a
machine learning framework for signal detection based on

TABLE 3 | Distribution of labels for two input data.

Study drugs Suspected ADRs Gold standard Unknown ADRs‡

Label-positive ADRs* Label-negative ADRs†

Nivolumab 136 (100%) 70 (51%) 15 (11%) 51 (38%)
Docetaxel 486 (100%) 267 (55%) 71 (15%) 148 (30%)

ADR, adverse drug reaction.
*Label-positive ADRs are defined as the adverse events (AEs) of respective drug that were listed in the labels of the Ministry of Food and Drug Safety, U. S. Food and Drug Administration,
and European Medicines Agency.
†Label-negative ADRs are defined as the AEs not listed in the labels of the target drug and any other drugs in the same therapeutic class and considered unlikely to be ADR signals by
experts.
‡Unknown ADRs are drug-AE pairs neither label-positive ADRs nor label-negative ADRs.

FIGURE 2 | Comparison of covariate features between nivolumab and docetaxel input datasets.
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FIGURE 3 | Comparison of organ-specific features between nivolumab and docetaxel input datasets.

FIGURE 4 | (A) The prediction performance of signal detection for classifying adverse events for nivolumab in the gold standard dataset using two different machine
learning algorithms and two different disproportionality analysis methods. (B) The prediction performance of signal detection for classifying adverse events for docetaxel
in the gold standard dataset using two different machine learning algorithms and two different disproportionality analysis methods.
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FIGURE 5 | (A) The relative importance of features in detecting signals in nivolumab bymachine learning. (B) The relative importance of features in detecting signals
in nivolumab by machine learning.

FIGURE 6 | The prediction performance of machine learning signal detection on the optimal probability threshold.

Frontiers in Pharmacology | www.frontiersin.org January 2021 | Volume 11 | Article 6023658

Bae et al. Machine Learning in Signal Detection

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


GBM. The first key step in the process was the creation of the
novel input data set by collating statistical, organ-specific, and
covariate features. Using the comprehensive set of variables and
drawing on subtle differences in features between label-positive and
label-negative drug-AE pairs, MLSD calculated signal indices.
Among the algorithms examined, MLSD attained the highest
accuracy in detecting true ADRs while filtering out ADRs with
spurious association. MLSD performed remarkably well in signal
detection, considering that the accuracy of the gold standard
diagnostic tool of prostate cancer and breast cancer was only 0.8
in previous studies (Martin et al., 2004; Pisano et al., 2005).

MLSD’s outperformance can be explained by its several
underlying strengths. First, MLSD utilized a large number of
features when calculating signal indices. A signal detection study,
using the Food and Drug Administration’s adverse event
reporting system (FAERS) database, showed that adjustment
for confounders enhanced the predictive performance of
logistic regression models (Harpaz et al., 2013). This indirectly
explains the good performance of our MLSD. Second, unlike
DPA methods, MLSD can calculate the effects of each feature on

signal prediction differently depending on the datasets. In our
analyses, the magnitude of the influence of each feature and the
optimal probability threshold were different between nivolumab
and docetaxel. MLSD may have improved its predictive
performance by applying different weightings to feature
variables depending on the characteristics of each dataset.
Lastly, MLSD can generate safety signals with enhanced
accuracy by fitting a model to different data and modifying
the optimal probability threshold accordingly. In our study,
the optimal probability thresholds which led to the highest
AUC score were 0.57 and 0.55 for the nivolumab and
docetaxel test sets, respectively. The difference suggests that
determining the optimal probability threshold fitted to
respective input data sets is important to elevate the predictive
performance of machine learning algorithms.

Consistent with our finding that MLSD performed better than
traditional DPA methods, a signal detection study using the
Australian medication dispensing data demonstrated that
GBM achieved the best performance in detecting ADR signals
among the six widely used machine learning methods (Hoang
et al., 2018). Several other empirical studies confirmed the
superiority of the gradient boosting classifier over the RF
classifier (Caruana and Niculescu-Mizil, 2006; Caruana et al.,
2008). Consistent results were found in the additional analyses by
using different parameters (Supplementary Figure S1).

Our MLSD detected new potential ADRs that were undetectable
by DPA methods. MLSD detected 24 and nine more signals for
nivolumab than ROR and IC, respectively. Among these signals,
seven including cholecystitis and bronchiolitis were detected by
MLSD only. A case-series study showed that immune checkpoint
inhibitors including nivolumab can result in a clinical condition

TABLE 4 | The number and percentage of signals detected by machine learning
signal detection and traditional methods.

Study drug Number
of unknown ADRs

Number of signals

MLSD ROR IC

Nivolumab 51 (100%) 31 (61%) 9 (18%) 37 (73%)
Docetaxel 148 (100%) 93 (63%) 14 (9.6%) 28 (19%)

ADR, adverse drug reaction; MLSD, machine learning signal detection; ROR, reporting
odds ratio; IC, information component.

FIGURE 7 | (A) Distribution of signals detected by machine learning signal detection by manifestation site in nivolumab. (B) Distribution of signals detected by
machine learning signal detection by manifestation site in docetaxel.
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similar to typical acute cholecystitis, which should be managed as
such, in a minority of patients (Abu-Sbeih, et al., 2019).
Bronchiolitis was also reported as a pulmonary complication of
nivolumab by several clinical studies and one meta-analysis study
(Gounant et al., 2016; Cadranel et al., 2019; Verzoni et al., 2019).
The results of these studies indicated that nivolumab may have
caused organizing bronchiolitis syndrome and deaths. Combined
with these previous studies, our findings suggested that MLSD can
produce potential ADR signals of clinical significance that cannot be
detected by DPA methods.

MLSD can be used as a potential strategy to detect rare AEs of
newly marketed drugs. It is challenging to identify rare AEs of a
drug at the time of its approval when only limited safety data are
available. Therefore, it is important to detect rare AEs through
post-marketing surveillance studies. However, traditional
methods are not sensitive enough to detect rare AEs, resulting
in false negatives (Sardella and Lungu, 2019). Hence, several
regulatory authorities recommend that DPAs be complemented
with other appropriate methods to identify rare safety signals
(Kimura et al., 2011; Jos, 2015; Hesha, 2018). To assess the
robustness of our MLSD model, we conducted a sensitivity
analysis by adding a feature indicating whether an AE is rare
or not. The result confirmed the robust predictive performance of
MLSD, suggesting that MLSD detect potential signals of rare AEs

with few errors (Supplementary Table S2). Nonetheless, it
should be noted that MLSD cannot replace other forms of
reporting, particularly for rare events and designated medical
events (DME). For the signal detection of such events, the
absolute number of reports can be more relevant than DPA
methods and therefore, quantitative approaches should be used in
combination with the results of qualitative methods.

Our study has several strengths. First, we used a nationwide
spontaneous reporting database for all anti-cancer agents from
2009 to 2018. Second, this study is the first to apply GBM to detect
safety signals from SRS data. Our MLSD model based on GBM
performed the best in signal detection among the four algorithms
implemented. Third, we empirically evaluated the predictive
performance of MLSD and the ability to detect unknown
signals compared to traditional DPA methods, to verify the
feasibility of this novel approach in post-marketing safety
surveillance. Finally, safety information on the label of
nivolumab remained unchanged throughout the study period,
which therefore circumvented publication bias.

Our study also has some limitations. First, passive surveillance
data are inherently subject to potential selection bias and
underestimation of AE reports (Alvarez et al., 1998). Another
potential bias may arise from the selection of anti-cancer agents,
because the generally poor prognosis of cancer patients may

FIGURE 8 | (A) Comparison of signals detected by machine learning signal detection (MLSD) and reporting odds ratio (ROR) in nivolumab. (B) Comparison of
signals detected byMLSD and information component (IC) in nivolumab. (C)Comparison of signals detected byMLSD and ROR in docetaxel. (D)Comparison of signals
detected by MLSD and IC in docetaxel.
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influence the frequency of AE reports. Tominimize the bias, we used
two study drugs that have differential quantities of accumulated
safety information; nivolumab with less information due to a short
duration of use and docetaxel with more information due to a long
duration of use. Second, our findings can be affected when WHO-
ART, used for defining AEs in KIDS-KD, is replaced by medical
dictionary for regulatory activities (MedDRA), widely used in other
SRS databases. However, as one WHO-ART term matches multiple
MedDRA terms, we judged selecting one particular MedDRA term
may introduce additional bias in our case study (Elliot, 2002). Third,
“impure” gold standard can adversely affect the assessment of
performance (Hauben et al., 2016). Assigning reference events to
wrong classes may introduce a bias to performance metrics.
However, we attempted to minimize this misclassification by
reviewing labeling information from three regulatory authorities.
We also applied the SMOTE to adjust class imbalance, another
source of bias, and to minimize its influence. Fourth, our findings
may have limited generalizability, because the performance ofMLSD
greatly depends on the features of training data (Hoang et al., 2018).
To enhance the applicability ofMLSD to other databases, we selected
features from the most commonly reported information by other
SRS databases. In addition, we applied stratified five-fold validation
and hyperparameter tuning techniques to prevent the machine
learning algorithms from over-fitting to training datasets. These
techniques reduced the dependency of MLSD on the features of
training sets.

In conclusion, MLSD, our novel machine learning algorithm
based on GBM, achieved a better performance and detected more
new ADR signals than traditional DPA methods. Our MLSD
model could provide regulatory authorities with new and reliable
insights into generating drug safety information from large SRS
data. However, our machine learning algorithm is a preliminary
attempt to introduce machine learning in the signal detection
area and has not yet to be validated by any regulatory authorities.
In addition, we assessed the performance of MLSD in two drugs
only. Further post-marketing surveillance studies applyingMLSD
to other drugs may confirm the generalizability of our findings.
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