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Growing evidence suggests that oxidative stress due to amyloid b (Ab) accumulation is
involved in Alzheimer’s disease (AD) through the formation of amyloid plaque, which leads
to hyperphosphorylation of tau, microglial activation, and cognitive deficits. The
dysfunction or phenotypic loss of parvalbumin (PV)-positive neurons has been
implicated in cognitive deficits. Astaxanthin is one of carotenoids and known as a highly
potent antioxidant. We hypothesized that astaxanthin’s antioxidant effects may prevent
the onset of cognitive deficits in AD by preventing AD pathological processes associated with
oxidative stress. In the present study, we investigated the effects of astaxanthin intake on the
cognitive and pathological progression of AD in a mouse model of AD. The AppNL-G-F/NL-G-F

mice were fed with or without astaxanthin from 5-to-6 weeks old, and cognitive functions
were evaluated using a Barnes maze test at 6 months old. PV-positive neurons were
investigated in the hippocampus. Ab42 deposits, accumulation of microglia, and
phosphorylated tau (pTau) were immunohistochemically analyzed in the hippocampus.
The hippocampal anti-oxidant status was also investigated. The Barnes maze test
indicated that astaxanthin significantly ameliorated memory deficits. Astaxanthin
reduced Ab42 deposition and pTau-positive areal fraction, while it increased PV-
positive neuron density and microglial accumulation per unit fraction of Ab42 deposition
in the hippocampus. Furthermore, astaxanthin increased total glutathione (GSH) levels,
although 4-hydroxy-2,3-trans-nonenal (4-HNE) protein adduct levels (oxidative stress
marker) remained high in the astaxanthin supplemented mice. The results indicated that
astaxanthin ameliorated memory deficits and significantly reversed AD pathological
processes (Ab42 deposition, pTau formation, GSH decrease, and PV-positive neuronal
in.org March 2020 | Volume 11 | Article 3071
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deficits). The elevated GSH levels and resultant recovery of PV-positive neuron density, as
well as microglial activation, may prevent these pathological processes.
Keywords: astaxanthin, Alzheimer’s disease, amyloid b, parvalbumin-positive neuron, hippocampus,
hyperphosphorylated tau, glutathione, 4-HNE protein
INTRODUCTION

Alzheimer’s disease (AD) is the prevailing form of dementia, in
which memory loss is the first symptom reported by patients
(Jahn, 2013). The histopathologic features of the brain with AD
are senile plaques that are composed of aggregated b-amyloid
peptides (Ab) and associated proteins and neurofibrillary tangles
that are composed of phosphorylated tau (pTau) (Selkoe and
Hardy, 2016). There are two major forms of Ab: Ab40 and Ab42.
Ab42 is more neurotoxic due to its higher hydrophobicity, which
promotes oligomerization and aggregation (Blennow and
Zetterberg, 2018). Ab deposition also induces microglial
activation, which may ameliorate neurodegeneration due to Ab
accumulation (Deczkowska et al., 2018; Edwards, 2019).
Accumulating evidence suggests that oxidative stress is
implicated in AD; Ab generates reactive oxygen species leading
to mitochondrial dysfunctions in vitro (Lustbader et al., 2004;
Manczak et al., 2010). A human study on mild cognitive
impairment and AD reported that reduction of glutathione
(GSH) with anti-oxidative action was observed in the
hippocampus and frontal cortex, which was correlated with
cognitive deficits (Mandal et al., 2015), while 4-hydroxy-2,3-
trans-nonenal (4-HNE) protein adduct levels (a marker of lipid
peroxidation) were elevated in AD patients (Markesbery and
Lovell, 1998; Zarkovic, 2003).

A subclass of GABAergic interneurons co-expresses the
calcium-binding protein parvalbumin (PV). Fast-spiking PV-
positive neurons facilitate sensory and cognitive information
processing by controlling pyramidal neuron activity and
generating gamma oscillation (Bartos et al., 2007; Sohal et al.,
2009; Nguyen et al., 2011; Nakamura et al., 2015). PV-positive
neurons are sensitive to oxidative stress (Jiang et al., 2013; Kann
et al., 2014; Steullet et al., 2017), and number of PV-positive
neurons was reduced in the hippocampus of AD mouse models
as well as AD patients (Takahashi et al., 2010). Furthermore,
reduction of gamma oscillation associated with its dysfunction or
phenotype loss was reported in human AD patients (Stam et al.,
2002) and human amyloid precursor protein (hAPP) transgenic
mice (Verret et al., 2012), which may be implicated in cognitive
deficits in the hAPP mice and possibly in AD patients (Verret
et al., 2012).

Astaxanthin is one of the carotenoids, naturally distributed in
crustanceans, such as shrimps and crabs, and fish such as
salmons and sea bream (Miki et al., 1982; Matsuno, 2001), and
known as a highly potent antioxidant (Miki, 1991; Rodrigues
et al., 2012). Recent clinical studies reported that astaxanthin
may improve cognitive functions in aged individuals (Katagiri
et al., 2012) and that astaxanthin supplementation decreased Ab
and phospholipid peroxides in red blood cells in healthy senior
subjects (Nakagawa et al., 2011; Kiko et al., 2012). The previous
in.org 2
available data suggest that astaxanthin may have a therapeutic or
preventive effect on the progression of AD. Therefore, we
hypothesized that astaxanthin’s anti-oxidant effects may
contribute to the prevention of the onset of cognitive deficits
in AD through its effects on Ab accumulation, pTau, microglia,
and PV-positive neurons. In the present study, the effects of
astaxanthin intake on cognitive functions, histopathological
progression of AD, and PV-positive neurons were investigated
in a mouse model of AD with single App knock-in, which is free
from side effects due to overexpression of amyloid precursor
protein (APP) (Saito et al., 2014; Sasaguri et al., 2017; Hashimoto
et al., 2019)
MATERIALS AND METHODS

Experimental Schedule
Our previous study reported that cortical Ab deposition in
AppNL-G-F/NL-G-F mice (AppNL-G-F mice) used in this study
began by 2 months old and the AppNL-G-F mice developed
cognitive impairment at 6 months old, while microgliosis was
observed at 9 months old (Saito et al., 2014). In order to evaluate
preventive effects of astaxanthin on AD-related pathological
progression, administration of astaxanthin to AppNL-G-F mice
started before formation of Ab deposition, and the mice were
tested with a behavioral test for spatial memory (Barnes maze
test) at 6 months old (see below for the details). To analyze effects
of astaxanthin on histochemical and biochemical findings in the
brain including microgliosis, the mice were sacrificed at 9
months old (see below for the details). Thus, feeding of
astaxanthin-containing diet started after weaning at 5-to-6
weeks, and continued until sacrifice at 9 months old (see below
for the details), while the mice were subjected to the Barnes maze
test at 6 months old.

Animals and Diets
The original lines of AppNL-G-F mice were obtained from the
RIKEN Center for Brain Science (Wako, Japan) and back-
crossed onto a C57BL/6J background. After weaning at 5-to-6
weeks, male AppNL-G-F mice were divided into two diet groups
and fed normal chow (MF, Oriental Yeast Co. Ltd., Tokyo,
Japan) with or without 0.02% astaxanthin as free form (w/w),
which was derived from Haematococcus pluvialis (Fuji chemical
industries Co., Ltd, Toyama, Japan). Age-matched male wild
type (WT) C57BL/6J mice (Japan SCL Inc., Hamamatsu, Japan)
were fed normal chow without astaxanthin. Thus, three groups
of the mice were used in this study: (1) WTmice fed with normal
chow without astaxanthin (control-fed WT mice, n = 25), (2)
AppNL-G-F mice fed with normal chow without astaxanthin
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(control-fed AppNL-G-F mice, n = 23), and (3) AppNL-G-F mice fed
with normal chow with astaxanthin (astaxanthin-fed AppNL-G-F

mice, n = 24).
The AppNL-G-F and WT mice were socially housed with mice

on the same diet and the same genotype group in a constant
temperature environment (22 ± 1°C) with a 12/12-h light/dark
cycle (lights were turned on from 07:00 to 19:00). Food and water
were available ad libitum. All mice were tested with a Barnes
maze test at 6 months old and the same mice were sacrificed for
immunohistochemical analyses and biochemical assays at 9
months old (see below) (Figure 1A). All experimental
procedures were conducted according to the guidelines for care
and use of laboratory animals approved by the University of
Toyama and the National Institutes of Health’s Guide for the
Frontiers in Pharmacology | www.frontiersin.org 3
Care and Use of Laboratory Animals. This study was approved
by the Ethics Committee for Animal Experiments at the
University of Toyama (Permit No. A2013MED-53).

Barnes Maze Test
A total of 72 mice were tested with the Barnes maze test (control-
fed WT mice, n = 25; control-fed AppNL-G-F mice, n = 23;
astaxanthin-fed AppNL-G-F mice, n = 24). In an initial training
session, two trials per day were performed continuously for 9
days (Figure 1B). In the training session, each mouse was placed
in the center of a grey circular table (diam. = 1.0 m), which had
12 holes around the perimeter (Figure 1C). The circular open
table was 75 cm above the floor and illuminated with 1,080 W
lights. The mouse could escape into a black escape box (17 × 13 ×
Control or Astaxanthin feeding

Barnes
Maze

Sampling

5-to-6 weeks old 6 months old 9 months old

WT mice
AppNL-G-F mice

Training session (9 days)
Probe test

6 months old Day 9 Day 10
(24 h after the last 
training)

WT mice
AppNL-G-F mice

B Barnes maze test schedule

C Set up of Barnes maze

A Experimental schedule

FIGURE 1 | Experimental schedule and Barnes maze test. (A) Experimental schedule. (B) Barnes maze test schedule. (C) Set up of the Barnes maze test. Three
extramaze (distant) cues were placed over the maze.
March 2020 | Volume 11 | Article 307

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Hongo et al. Astaxanthin Ameliorates AD-Related Pathological Progression
7 cm) with paper bedding, which was located under one of the
holes. The location of the hole with the escape box (goal) was the
same in a given mouse but randomly different across individual
mice. After each trial, the maze surface and escape box were
cleaned with 70% ethanol. The maze was rotated daily, with the
spatial location of the goal hole consistent in reference to the
extra-maze room cues to prevent a bias according to intra-maze
local cues. Escape latencies to the goal hole in the training session
were measured by Time BCM (O'hara & Co., Tokyo, Japan).

One day after the last training day, each mouse was tested
with a probe test (PT) (Figure 1B). Each mouse was placed on
the table without the escape box for 3 min. In the PT, two
parameters were evaluated. The goal hole region was defined as a
belt-shaped area with a width of 4.7 cm around the goal hole
(diam. = 5.0 cm). The number of visits to the goal hole region
was defined as the number of times the center of gravity of a
given mouse image crossed the goal hole region during 3 min of
the PT. The goal hole time (sec) was defined as the time during
which the center of gravity of a given mouse image stayed in the
goal hole region. Data of the mice that fell off the table were
excluded from the analysis.

Sampling and Preparation of Brain
Specimens
Brain specimens were prepared from the mice used for the Barnes
maze test. Under deep anesthesia with a mixture of three different
anesthetics (medetomidine,midazolam, andbutorphanol; 0.75, 4.0,
and 5.0 mg/kg body weight, respectively; i.p.), the mice were
transcardially perfused with heparinized saline (0.9% NaCl). After
perfusion, the brain was removed from the skull. The 47 right
hemispheres were used for the measurements of biochemical
markers (4-HNE, GSH, and Ab42). The hippocampus and
prefrontal cortex (PFC) corresponding to the prelimbic and
infralimbic areas were dissected from the right hemisphere and
stored−80°C. The hippocampus andPFCwere sonicated in 50mM
Tris-HCl buffer, pH 7.6, 150 mM NaCl, and the protease inhibitor
cocktail (complete protease cocktail, Merck KGaA, Darmstadt,
Germany) and centrifuged at 200,000 × g for 20 min at 4°C. The
supernatant was collected as soluble fraction. The remaining pellet
was sonicated in 50 mM Tris-HCl buffer, pH 7.6, containing 6 M
guanidine–HCl and 150 mMNaCl, and centrifuged at 200,000 × g
for 20 min at 4°C. The supernatant was collected as insoluble
fraction. The protein content of each fraction was determined by
BCA assay kit (Thermo Fisher Scientific Inc., MA, USA). Soluble
and/or insoluble fractions were used for measurements of Ab42, 4-
HNE protein adduct, and total GSH (see below).

The 42 left hemispheres were used for PV immuno-
histochemistry, while 15 right and left hemispheres were used
for immunohistochemistry of Ab42, pTau, and Iba1 in the brain
sections. These hemispheres were fixed in 4% paraformaldehyde
dissolved in 0.1 M phosphate buffer (PB; pH 7.4) overnight, and
used for immunohistochemistry (see below).

Quantitative Measurement of Ab
Deposition (ELISA)
A total of 36 mice were used (control-fed WT mice, n = 14;
control-fed AppNL-G-F mice, n = 9; astaxanthin-fed AppNL-G-F
Frontiers in Pharmacology | www.frontiersin.org 4
mice, n = 13). The insoluble fraction samples were used to
measure the amounts of Ab42 by sandwich ELISA (Human b
Amyloid (1–42) ELISA Kit Wako, FUJIFILM Wako Pure
Chemical Corporation, Osaka, Japan).

Quantification of 4-HNE Protein Adduct
(Slot Blot)
A total of 32 mice were used (control-fed WT mice, n = 12;
control-fed AppNL-G-F mice, n = 10; astaxanthin-fed AppNL-G-F

mice, n = 10). The soluble and insoluble fraction samples were
loaded on the PVDF membrane (Immobilon P, Merck KGaA,
Darmstadt, Germany) using the slot blot manifold. For standard
4-HNE protein adduct, BSA at the concentration of 1 mg/ml was
treated with 100 mmol/L 4-HNE at 37°C for 4 h. Four-HNE
monoclonal antibody (clone HNEJ-2, JaICA, Shizuoka, Japan)
was used as the first antibody. Peroxide labeled-anti mouse IgG
antibody (SeraCare Life Sciences Inc., MA, USA) was used as the
secondary antibody. The amount of 4-HNE protein adduct was
quantified by a luminol reagent kit (ECL, GE Healthcare, Ill,
USA). The luminescence was detected by cooled CCD imager
(LAS400, GE Healthcare) and analyzed using ImageJ ver.1.8.0
(Rasband, W.S., ImageJ, NIH, Bethesda, USA, https://imagej.nih.
gov/ij/, 1997–2018.).

Quantitative Measurement of Total GSH
A total of 29 mice were used (control-fed WT mice, n = 10;
control-fed AppNL-G-F mice, n = 9; astaxanthin-fed AppNL-G-F

mice, n = 10). Sulfosalicylic acid (1% of final concentration) was
added to the soluble fraction. The mixture was centrifuged at
8000 × g for 10 min at 4°C. The 1 N NaOH was added to the
supernatant to 9% volume for deacidification. The sample was
reacted with 25 mg/ml DTNB (5-5'-dithiobis[2-nitrobenzoic
acid], Dojindo Laboratories, Kumamoto, Japan), 40 mg/ml
NADPH, and 1 U/ml GSH reductase (Oriental Yeast Co. Ltd.,
Tokyo, Japan) for 10 min at 37°C. Then, total GSH was measured
by colorimetric absorbance at 405 nm.

Immunohistochemistry and Analysis of
PV-Positive Neurons
A total of 42 mice were used (control-fed WT mice, n = 13;
control-fed AppNL-G-F mice, n = 14; astaxanthin-fed AppNL-G-F

mice, n = 15). PV-positive neurons were stained following the
same protocol described in our previous studies (Nguyen et al.,
2011; Urakawa et al., 2013; Nakamura et al., 2015; Jargalsaikhan
et al., 2017). Briefly, the fixed blocks of the left hemispheres were
cut into 40-mm-thick sections. Five serial sections were collected
for every 200 mm; one was used for PV staining, and one was
used for cresyl-violet staining. The sections were stained with
mouse monoclonal anti-PV antibodies (1:10,000 dilution in 1%
horse serum PBS, Sigma, St. Louis, MO, USA).

PV-positive neurons were analyzed according to our previous
studies (Nakamura et al., 2015; Jargalsaikhan et al., 2017). Briefly,
the brain sections were observed using an all-in-one fluorescence
microscope system (BZ-9000,KeyenceCorporation,Osaka, Japan).
PV-positive neurons were counted in the five sections in the
hippocampus at −1.60, −1.76, −1.92, −2.08, and −2.24 mm
posteriorly from the bregma based on the mouse brain atlas
March 2020 | Volume 11 | Article 307
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(Hof et al., 2000). The PV-positive neurons were counted using a
stereological technique with systematic random sampling
(StereoInvestigator v.7.53.1, MicroBrightField, Williston, VT,
USA) (Sterio, 1984; Nakamura et al., 2015; Jargalsaikhan et al.,
2017). The grid size for the analysis was set at 1741.60 × 719.55-mm,
while the size for the counting frames with inclusion and exclusion
lines was set at 200 × 200-mm. The software highlighted only PV-
positive cell bodies within the counting frame without contact with
the exclusion lines.We counted PV-positive objects in the counting
frame only if they came into focus within a predetermined 5-mm
thick optical dissector thatwas positioned 2mmbelow the surface of
the mounted section using the Z-axis microcator. The PV-positive
neuron density was computed in each mouse.

Immunofluorescent Staining and Analysis
of Ab42 and Iba1
A total of 15micewere used (control-fedWTmice, n = 5; control-fed
AppNL-G-Fmice, n = 5; astaxanthin-fedAppNL-G-Fmice, n = 5). Fixed
right hemispheres were embedded in paraffin. Immunofluorescent
staining was performed by Biopathology Institute Co., Ltd. (Oita,
Japan). Anti-b-amyloid (1–42) antibody (rabbit IgG, AB5078P,
MILLIPORE) and anti-Iba1 antibody (Goat IgG, ab5076, Abcam)
were used as the primary antibodies. Anti-rabbit Alexa-594 and anti-
goat Alexa 488 were used as the secondary antibodies. Finally, the
brain sections weremounted on glass slides usingmountmedia with
DAPI (SlowFadeGoldAntifadeReagentWithDAPI, ThermoFisher
Scientific Inc., MA, USA).

Microscopic images of Ab42 and Iba1 in the hippocampal
sections at −1.80, −2.12, and −2.44 mm posteriorly from the
bregma were captured under an identical, experimenter-blinded
condition, using a fluorescent microscope (BX52, Olympus
Corporation, Tokyo, Japan). The images were analyzed using
ImageJ. Area fractions of Ab42 of all images were estimated with
binary data with the same threshold level (17,926/65,536). Area
fractions of all Iba1 images were estimated with binary data with
the same threshold level (17,408/65,536), excluding fractions
below 19.6 mm2 particles.

Immunohistochemistry and Analysis of
Phosphorylated Tau (pTau)
A total of 15 mice were used (control-fed WT mice, n = 5;
control-fed AppNL-G-F mice, n = 5; astaxanthin-fed AppNL-G-F

mice, n = 5). Fixed hemispheres were embedded in paraffin.
Immunohistochemical staining was performed by Biopathology
Institute Co., Ltd. (Oita, Japan). MAPT/Tau (Ser198/Ser199/
Ser202/Thr205) antibody (LS-C48043-50, Life Span Bioscience,
Inc.) was used as the primary antibody. Then, the sections were
treated with a polymer constituted with Fab’ fragment of anti-
rabbit IgG antibody and peroxidase (Nichirei-histfine simple
stain Max PO, Nichirei bioscience Inc., Tokyo, Japan). pTau was
visualized with 3, 3'-diaminobenzidine and hydrogen peroxide.
Finally, the sections were stained with hematoxylin-eosin.

Microscopic images of pTau in the hippocampal sections at
−1.84, −2.16, and −2.48 mm posteriorly from the bregma were
analyzed using ImageJ to estimate the fraction of pTau-positive
areas. Stained regions of pTau were isolated by colorimetric
intensity adjustment and then binarized with the threshold level
Frontiers in Pharmacology | www.frontiersin.org 5
(37,266/65,536), excluding fractions below 19.6 mm2 particles.
Image processing and analyzing parameters were identical across
the sections.

Statistical Data Analysis
Data in the training session of the Barns maze test were
compared among the three groups using repeated measures
two-way ANOVA, followed by the Tukey post hoc test. The
other data were compared among the three groups using one-
way ANOVA, followed by the Tukey post hoc test. Additionally,
pTau data were compared using pairwise t-test with Bonferroni
adjustment (Figure 8D). The relationships between the two
parameters were analyzed using simple regression analysis
(Figures 9A–C, correlations between histological parameters
for Iba1, pTau, and Ab42; Figures 9D–F, correlations between
the behavioral parameter in the PT of the Barnes maze test and
histological parameters). P < 0.05 was considered statistically
significant. The statistical analyses were performed using R
ver.3.4.3 (R Core Team, 2017).
RESULTS

Barnes Maze Test
The Barnes maze test was used to assess the memory functions of
the three groups of mice at 6 months old (Figure 2). In the initial
training session, the average latency to escape to the goal hole
gradually decreased across the 9 days in the three groups of themice
(Figure 2A). The statistical analysis by repeatedmeasures two-way
ANOVA(group×day) indicated that therewas no significantmain
effect of group [F(2, 69) = 2.231,P= 0.115], nor interaction between
group and day [F(16, 552) = 1.175, P = 0.284].

To assess spatial referencememory after the training, the escape
box was removed in the PT 24 h after the last training day (Figure
2B). A comparisonof the number of visits to the goal region byone-
way ANOVA indicated that there was a significant difference in the
number of visits to the goal region among the three groups [F(2,
67) = 3.912, P = 0.0247]. Post hoc multiple comparisons indicated
that the number of visits to the goal regionwas significantly smaller
in the control-fed AppNL-G-Fmice than the astaxanthin-fed AppNL-
G-Fmice (Tukey test,P= 0.03603) and tended to be smaller than the
control-fedWTmice (Tukey test, P = 0.05397). On the other hand,
average goal hole time in the PT of the control-fedWT, control-fed
AppNL-G-F, and astaxanthin-fed AppNL-G-F mice were 32.96 ± 2.35
(mean ± SEM), 26.05 ± 2.50, and 27.44 ± 2.28 sec, respectively.
There was no significant difference among the three groups [F(2,
67) = 2.4152, P = 0.09709].

PV-Positive Neuron Density
Figure 3A shows examples of PV-stained hippocampal sections
in the three groups of mice at 9 months old. The mean densities
of PV-positive neurons in the three groups are shown in Figure
3B. The mean density of PV-positive neurons in the control-fed
AppNL-G-F mice was decreased to about 75% of those in the
control-fed WT mice and 70% of those in the astaxanthin-fed
AppNL-G-F mice. A statistical analysis using one-way ANOVA
indicated that there was a significant main effect of group [F(2,
March 2020 | Volume 11 | Article 307
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39) = 4.1877, P = 0.0225]. Post hoc tests indicated that the mean
cell density was significantly higher in the astaxanthin-fed
AppNL-G-F mice than in the control-fed AppNL-G-F mice (Tukey
test, P = 0.01922).

Quantification of Ab42 Levels by ELISA
The Ab42 levels in the hippocampus and PFC were quantified in
the AppNL-G-F andWTmice at 9 months old by ELISA (Figure 4).
In the hippocampus (Figure 4A), there was a significant
difference in Ab42 levels among the three groups [F(2.0, 12.8) =
36.811, P < 0.0001]. Post hoc multiple comparisons indicated that
Ab42 levels were significantly higher in the control-fed AppNL-G-F

mice (Tukey test, P < 0.0001) and astaxanthin-fed AppNL-G-Fmice
(Tukey test, P < 0.0001) than in the control-fed WT mice.
Furthermore, Ab42 levels were significantly higher in the
control-fed AppNL-G-F mice than in the astaxanthin-fed
Frontiers in Pharmacology | www.frontiersin.org 6
AppNL-G-F mice (Tukey test, P = 0.02925). In the PFC
(Figure 4B), Ab42 levels were also increased in the AppNL-G-F

mice. There was a significant difference in Ab42 levels among the
three groups [F(2.0, 12.8) = 17.298, P = 0.0002]. Post hoc multiple
comparisons indicated that Ab42 levels were significantly higher
in the control-fed AppNL-G-F mice (Tukey test, P = 0.00069) and
astaxanthin-fed AppNL-G-F mice (Tukey test, P = 0.00089) than in
the control-fed WT mice.

Oxidative and Anti-Oxidant Status in the
Hippocampus
Oxidative stress due to Ab42 accumulation was assessed by
quantifying 4-HNE bound to proteins (Figures 5A, B).
Examples of slot blot analyses of 4-HNE protein adduct in
three mice from each group are shown in Figure 5A. A
statistical analysis (one-way ANOVA) indicated a significant
difference among the three groups [F(2.0, 15.1)=11.722, P =
0.00084] (Figure 5B). Post hoc multiple comparisons indicated
that 4-HNE protein adduct levels were significantly higher in the
control-fed AppNL-G-F mice (Tukey test, P = 0.00350) and
astaxanthin-fed AppNL-G-F mice (Tukey test, P = 0.00960) than
in the control-fed WT mice.

To assess anti-oxidant status in the hippocampus, we
compared total GSH levels in the hippocampus among the
three groups of the mice (Figure 5C). A statistical analysis
(one-way ANOVA) indicated a significant difference among
the three groups [F(2, 26)=11.61, P = 0.00025]. Post hoc
multiple comparisons indicated that the total GSH levels in the
hippocampus were significantly lower in the control-fed AppNL-G-F

mice than that in the control-fedWTmice (Tukey test, P = 0.00020)
and astaxanthin-fed AppNL-G-F (Tukey test, P = 0.00767), and there
was no significant difference in the total GSH levels between the
control-fed WT and the astaxanthin-fed AppNL-G-F mice (Tukey
test, P = 0.32454).

Ab42 Deposition and Microglial
Accumulation
We analyzed the relationships between Ab42 deposition and
microglial accumulation (Figures 6 and 7). Triple staining was
performed using DAPI, antibody to Ab42, and antibody to Iba1 (a
marker of microgliosis) in the control-fed WT (Figure 6A),
control-fed AppNL-G-F (Figure 6B), and astaxanthin-fed AppNL-G-F

mice (Figure 6C). Ab42 deposition (red) in the hippocampus
colocalized with microglia (green) in the control-fed AppNL-G-F

mice. A statistical analysis of Ab42 deposition by one-way ANOVA
indicated a significant difference among the three groups [F(2,
12)=88.226, P < 0.0001] (Figure 7A). Post hoc multiple
comparisons indicated that b42 deposition increased more in the
control-fed AppNL-G-F mice than in the control-fed WT mice
(Tukey test, P < 0.0001) and astaxanthin-fed AppNL-G-F mice
(Tukey test, P < 0.0001). A statistical analysis of the microglial
accumulation (Iba1 staining) by one-way ANOVA also indicated a
significant difference among the three groups [F(2, 5.55)=52.963,
P = 0.00024] (Figure 7B). Post hoc multiple comparisons indicated
that Iba1 fraction was greater in the control-fed AppNL-G-F mice
(Tukey test, P < 0.0001) and astaxanthin-fedAppNL-G-Fmice (Tukey
test, P = 0.00566) than in the control-fed WT mice. Furthermore,
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Iba1-fraction was smaller in the astaxanthin-fed AppNL-G-F mice
than in the control-fed AppNL-G-F mice (Tukey test, P = 0.00033).
Finally, we analyzed the colocalization of Ab42 deposition and
microglia. A statistical analysis of area fraction ratio of Iba1 against
Ab42 by one-way ANOVA also indicated a significant difference
among the three groups [F(2, 12)=44.812, P < 0.0001] (Figure 7C).
Post hoc multiple comparisons indicated that fraction ratios of Iba1
were greater in the control-fed AppNL-G-F mice (Tukey test, P =
0.04796) and astaxanthin-fed AppNL-G-F mice (Tukey test, P <
0.0001) than in the control-fed WT mice. Furthermore, fraction
ratios of Iba1 were greater in the astaxanthin-fed AppNL-G-F mice
than in the control-fed AppNL-G-F mice (Tukey test, P = 0.00008).
These results indicated that microglia were more strongly
accumulated in the astaxanthin-fed AppNL-G-F mice than the
control-fed AppNL-G-F mice.

Phosphorylated Tau Accumulation
The deposits of Ab and the neurofibrillary tangles composed of
hyperphosphorylated tau protein (pTau) are the neuropathological
hallmarks of AD, and tauopathy is enhanced following Ab
amyloidosis (Hardy and Selkoe, 2002; Perrin et al., 2009;
Hashimoto et al., 2019). Therefore, we immunohistochemically
investigated the effects of astaxanthin on the tauopathy in the
control-fed WT (Figure 8A), control-fed AppNL-G-F (Figure 8B),
and astaxanthin-fed AppNL-G-F mice (Figure 8C). A statistical
Frontiers in Pharmacology | www.frontiersin.org 7
analysis of the pTau fraction using one-way ANOVA indicated
that the difference among the three groups tended to be significant
[F(2, 7.10)=3.6094,P=0.08285].Multiple comparisonsbypairwise t-
tests with Bonferroni correction indicated that pTau fraction tended
to be higher in the control-fed AppNL-G-F mice than the control-fed
WTmice (P=0.062) and that pTau fractionwas significantly smaller
in the astaxanthin-fedAppNL-G-Fmice than the control-fedAppNL-G-F

mice (P = 0.038) (Figure 8D).
Correlation Analyses
The above parameters in the AD pathology could be correlated
each other according to the amyloid cascade theory. The area
fraction of Ab42 was significantly and positively correlated with
Iba1 fraction [F(1, 13) = 30.0, P = 0.00011] (Figure 9A) and
pTau fraction [F(1, 13) = 12.9, P = 0.00333] (Figure 9B). Iba1
fraction was significantly and positively correlated with pTau
fraction [F(1, 13) = 10.2, P = 0.00696] (Figure 9C). Furthermore,
the relationships between spatial reference memory in the PT in
the Barnes maze test (number of visits to the goal region) and the
above parameters were analyzed. The number of visits to the goal
region was significantly and negatively correlated with Ab42
fraction [F(1, 13) = 10.7, P = 0.00607] (Figure 9D), Iba1 fraction
[F(1, 13) = 7.7, P = 0.01563] (Figure 9E), and pTau fraction [F(1,
13) = 11.9, P = 0.00431] (Figure 9F).
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DISCUSSION

Pathology in the Mouse AD Model
In the current study, we used a new mouse model of AD, the
AppNL-G-F mice that carries three App knock-in mutations
associated with familial AD. This knock-in approach allows to
express APP at a similar level to WT mice, and to generate
elevated levels of pathogenic Ab (Ab42). Thus, it is unlikely that
the potential artifacts due to APP overexpression occur in this
mouse model (Saito et al., 2014). In this mouse model, (1)
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cortical Ab deposition in the mice began by 2 months and was
almost saturated by 7 months old, (2) the microgliosis and
astrocytosis were observed at 9 months old, and (3) the
memory impairment occurred by 6 months old (Saito et al.,
2014). In the present study, astaxanthin supplementation to the
experimental mice started from 5-to-6 weeks old before Ab
deposition started, and the mice were sacrificed at 9 months
old so that the protective effects of astaxanthin on the onset and
progression of AD could be analyzed.

In this model, we observed mild memory decline,
accumulation of Ab42 in the hippocampus and PFC, a mild
increase in pTau fraction, and microglial accumulation (an
increase in Iba1 fraction) in the AppNL-G-F mice, which is
consistent with the previous studies (Saito et al., 2014; Masuda
et al., 2016; Hashimoto et al., 2019). These deficits in memory
Frontiers in Pharmacology | www.frontiersin.org 9
functions may not be ascribed to confounding effects outside the
brain such as deficits in visual acuity and locomotor activity in the
AppNL-G-F mice since a previous study reported that motor and
visual capabilities of AppNL-G-F and WT mice were comparable at
24 months old (Sakakibara et al., 2019). We further indicated that
4-HNE protein adduct levels (a marker of lipid peroxidation),
which were elevated in AD patients (Markesbery and Lovell,
1998; Zarkovic, 2003) and are toxic to normal cellular functions
(Csala et al., 2015), were increased in the AppNL-G-F mice. In
addition, total GSH levels were decreased in the AppNL-G-F mice,
consistent with human AD patients (Mandal et al., 2015). A
decrease in the PV-positive neuron density in the control-fed
AppNL-G-Fmice may be ascribed to these changes in oxidative and
anti-oxidant status due to Ab42 accumulation in the control-fed
AppNL-G-F mice. Consistently, oligomers of Ab42 have been
A

B

C

FIGURE 6 | Co-localization of Ab42 and Iba1 in AppNL-G-Fmice. Typical immunohistofluorescence images of Ab42 and Iba1 in the hippocampus of the control-fed WT
(A), control-fed AppNL-G-F (Ctrl) (B) and astaxanthin-fed AppNL-G-F (AX) (C)mice are shown. Red, green, and blue colors in each image indicate Ab42, Iba1, and DAPI,
respectively. The images on the right indicate enlarged images of the inset in the left images. Bars in the left and right panels represent 1,000 and 50 mm, respectively.
March 2020 | Volume 11 | Article 307

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Hongo et al. Astaxanthin Ameliorates AD-Related Pathological Progression
reported to generate reactive oxygen species, which further
induced membrane lipid peroxidation, intracellular Ca2+ entry
associated with pore formation in the membrane, a decrease in
membrane fluidity, and deficits in long-term potentiation
(Yasumoto et al., 2019). The correlational analyses indicated
Frontiers in Pharmacology | www.frontiersin.org 10
that Ab42 fraction was positively correlated with pTau and
Iba1 fraction, while memory functions (number of visits to the
goal region) were negatively correlated with Ab and pTau
fractions. These findings in this mouse AD model represent
characteristics of human AD pathological findings and support
the amyloid cascade theory of AD, in which accumulation of
pathogenic Ab induces amyloid plaques, hyperphosphorylation
of tau (tauopathy), and microglial activation (Hardy and Selkoe,
2002; Selkoe and Hardy, 2016; Sasaguri et al., 2017; Edwards,
2019; Hashimoto et al., 2019).

Protective Mechanisms of Astaxanthin
The present results indicated that astaxanthin decreased Ab42
deposition and prevented memory decline in the AppNL-G-Fmice.
Consistently, two recent studies reported that astaxanthin
reduced Ab40 levels in a 3xTg AD mouse model (Fanaee-
Danesh et al., 2019) and reduced Ab42 levels in rats with
intracerebroventricular injections of Ab42 (Rahman et al.,
2019). The present study further indicated that astaxanthin
decreased pTau and the Iba1 fraction, while it increased
hippocampal PV-positive neuron density and total GSH levels.
Furthermore, the correlation analyses showed that Ab42 and
pTau fractions were significantly negatively correlated with
hippocampus-dependent cognitive functions. On the other
hand, it is reported that astaxanthin crosses the blood-brain
barrier (Grimmig et al., 2017) and is detectable in brain tissues
after oral administration (Choi et al., 2011). These results provide
clues to discuss several mechanisms in which astaxanthin
suppressed the progression of AD in the AppNL-G-F mice.

First, astaxanthin increased the hippocampal PV-positive
neuron density in the astaxanthin-fed AppNL-G-F mice, which may
be attributed to an increase in total GSH in the astaxanthin-fed
AppNL-G-F mice. Previous studies reported that astaxanthin
increased GSH biosynthesis through the nuclear factor erythroid-
related factor 2 and the antioxidant responsive element (Nrf2-ARE)
pathway in the rat brain with subarachnoid hemorrhage (Wu Q.
et al., 2014), and also increased brain GSH levels in other brain
disorders due to chemical oxidative stress and amygdalar kindling
in rozdents (Wu W. et al., 2014; Lu et al., 2015). GSH is an
endogenous antioxidant that protects body tissues from oxidative
damages, while PV-positive neurons were sensitive to oxidative
stress (see Introduction). Therefore, elevated levels of GSH may
increase the PV-positive neuron density in the astaxanthin-fed
AppNL-G-Fmice. Second, PV-positive neurons play a critical role in
the generationof gammaoscillations (Bartos et al., 2007; Sohal et al.,
2009; Nguyen et al., 2011; Nakamura et al., 2015). In the ADmouse
model, as well as AD patients, reduction of gamma oscillations and
dysfunctions of PV-positive neurons were reported (Stam et al.,
2002; Verret et al., 2012). A recent study reported that optogenetic
or sensory induction of gamma oscillations resulted in reduction of
Ab peptides in the hippocampus of a mouse model of AD (5XFAD
mice), which was attributed to microglial activation and resultant
increase in microglial uptake of Ab (Iaccarino et al., 2016). Thus,
PV-positive neurons may reduce Ab levels through its effect on
microglia. In the present study, astaxanthin decreased Iba1 fraction
in the AppNL-G-F mice. Since microglia accumulate around Ab
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A
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C

D

FIGURE 8 | Comparison of area fraction of phosphorylated tau (pTau) in the hippocampus among the three groups of the mice. Typical images of pTau-positive
cells in the hippocampus of the control-fed WT (A), control-fed AppNL-G-F (Ctrl) (B), and astaxanthin-fed AppNL-G-F (AX) (C) mice are shown. The images on the right
indicate enlarged images of the inset in the left images. Bars in the left and right panels represent 1,000 and 50 mm, respectively. Arrowheads indicate pTau-positive
cells. (D) Comparison of pTau fraction in the hippocampus among the three groups of the mice. The area fraction of pTau was analyzed using ImageJ. WT, wild type
C57BL/6J mice; AppNL-G-F, AppNL-G-F/NL-G-F mice; Ctrl, control-fed group; AX, astaxanthin-fed group. †P < 0.1; *P < 0.05.
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deposition (Hellwig et al., 2015), a decrease in Iba1 fractionmay be
attributed to a decrease in Ab42 deposition in the astaxanthin-fed
AppNL-G-F mice. On the other hand, the fraction ratios of Iba1
against Ab42 were greater in the astaxanthin-fed AppNL-G-F mice
than the control-fed AppNL-G-F mice. This suggests that microglia
were more strongly activated and sensitive to Ab deposition in the
astaxanthin-fed AppNL-G-Fmice. This activation of microglia, which
may be attributed to gamma oscillation by PV-positive neurons (see
above),may decreaseAbdeposition in the astaxanthin-fedAppNL-G-F
Frontiers in Pharmacology | www.frontiersin.org 12
mice. Third, astaxanthin decreased pTau fraction in the
astaxanthin-fed AppNL-G-F mice compared with the control-fed
AppNL-G-F mice. In the present study, the pTau fraction was
positively correlated with Ab42 fraction, which is consistent with
the amyloid cascade theory. Thesefindings suggest that astaxanthin
decreased pTau levels through its effects on Ab42. Furthermore,
recent studies reported that astaxanthin promoted Nrf2/ARE
signaling in various experimental models (Li et al., 2013; Wu Q.
et al., 2014; Zhu et al., 2018), while Nrf2 signaling reduces pTau by
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FIGURE 9 | Relationships among Ab42 fractions, Iba1 fractions, and phosphorylated tau (pTau) fractions in the hippocampus and performance in the probe test
(PT) in the Barnes maze test across the three groups of the mice. (A) Significant positive correlation between Ab42 and Iba1 fractions. (B) Significant positive
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activating autophagy-mediated degradation of pTau in the mouse
brain (Jo et al., 2014). These findings suggest that astaxanthin may
also reduce pTau through its effects on autophagy.

It has been recommended that anti-Ab treatments should be
tested in and applied to patients in an early phase of AD, before
the formation of Ab plaque (i.e., patients without brain damage)
(Perrin et al., 2009; Sperling et al., 2011; McDade and Bateman,
2017). Since astaxanthin extracted from Haematococcus pluvialis
was widely supplied for human consumption as a safe natural
compound (Ambati et al., 2014), the present findings suggest that
astaxanthin could be applied to such aged people without
dementia or those with family risks of AD prior to the onset of
AD symptoms. Further studies are required to elucidate
mechanisms of astaxanthin effects on Ab pathology, and
translational research studies using human subjects are also
required to test the usefulness of astaxanthin in the prevention
of AD.

In the present study, the WTmice were fed only normal chow
without 0.02% astaxanthin, but not normal chow with 0.02%
astaxanthin. A previous study reported that feeding of 0.02%
astaxanthin-containing diet for 8 weeks did not affect adult
hippocampal neurogenesis in male WT C57BL/6J mice (Yook
et al., 2016). Other studies also reported that administration of
astaxanthin [80 mg/kg/day, oral gavage for 10 weeks (Yang et al.,
2019); 25 mg/kg/day, oral gavage for 10 weeks (4 day/week)
(Zhou et al., 2015)] did not affect spatial learning and memory in
a Morris water maze test in WT mice. However, a higher dose of
astaxanthin (0.5% astaxanthin-containing diet) for 8 weeks
enhanced neurogenesis and improved special memory in male
WT C57BL/6J mice (Yook et al., 2016). These findings suggest
that feeding of normal chow with 0.02% astaxanthin might not
affect spatial learning and memory in a Barnes maze test in WT
mice although normal chow with astaxanthin in doses higher
than 0.02% might enhance learning and memory even in WT
Frontiers in Pharmacology | www.frontiersin.org 13
mice. Further studies are required to investigate effects of
astaxanthin on learning and memory functions in WT mice.
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