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Background: The antitumor effect of doxorubicin (DOX) is limited by its acute and chronic
toxicity to the heart, which causes heart injury. Heat shock protein 22 (Hsp22) is a protein
proved to exert anti-apoptosis and anti-inflammatory effects in other diseases and
physical conditions. In this study, we aim to explore whether Hsp22 could exert a
protective role during cardiac injury in response to DOX.

Methods: The overexpression of Hsp22 was mediated via adenovirus vector to clarify the
role of Hsp22 in the cardiac injury caused by DOX. DOX-induced acute heart injury mouse
model was established by single intraperitoneal injection of DOX (15 mg/kg).
Subsequently, cardiac staining and molecular biological analysis were performed to
analyze the morphological and biochemical effects of Hsp22 on cardiac injury. H9c2
cells were used for validation in vitro.

Results: An increase in the expression level of Hsp22 was observed in DOX-treated heart
tissue. Furthermore, cardiac-specific overexpression of Hsp22 showed reduced cardiac
dysfunction, decrease in inflammatory response, and reduction in cell apoptosis in injury
heart and cardiomyocytes induced by DOX in vivo and in vitro. Moreover, the suppression
of Toll-like receptor (TLR)4/NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3)
was associated with the protective effect of Hsp22. Finally, the protective effect of Hsp22
cardiac function was almost abolished by overexpression of NLRP3 in DOX-treated mice.

Conclusion: In summary, Hsp22 overexpression in the heart could suppress cardiac
injury in response to DOX treatment through blocking TLR4/NLRP3 activation. Hsp22
may become a new therapeutic method for treating cardiac injury induced by DOX in
cancer patients.
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INTRODUCTION

Doxorubicin (DOX) is a highly effective chemotherapy drug used
to treat tumors, including solid and hematopoietic tumors.
However, many patients have to discontinue DOX
administration due to irreversible cardiotoxicity (Octavia et al.,
2012). Doxorubicin-related cardiotoxicity is a common adverse
drug reaction, which includes severe arrhythmia, myocardial
infarction, and left ventricular dysfunction. The incidence of
adverse drug reaction is approximately 30%–40% of the patients
who received DOX treatment (Ferreira et al., 2008). The acute
cardiotoxicity presents transient symptoms such as arrhythmias;
the chronic form can evolve into heart failure. The probability of
developing congestive heart failure after doxorubicin treatment is
estimated to be 1%–2%, which is significantly associated with
high mortality in cancer chemotherapy patients (Yeh and
Bickford, 2009; Plummer et al., 2019). So far, there is no
specific treatment for heart injury induced by DOX. Therefore,
it is urgent to find new ways to treat DOX-induced heart injury.

Hsp22 is a member of the small heat shock protein (SHSP)
family, which is widely expressed under various pathological
stimuli. Hsp22 presents high expression in a variety of normal
tissues, especially highly detected in heart and skeletal muscles
(Kappe et al., 2001). Hsp22 seems to play a critical role in the
maintenance of cardiac cell survival, anti-ischemia injury (Lizano
et al., 2013), anti-cardiac remodeling, and inflammatory reaction
(Hedhli et al., 2008). Hsp22 may be a new potential strategy of
cardiovascular diseases. However, whether Hsp22 could protect
the heart from DOX injury remains unknown. Recent studies
have found that Hsp22 can exert anti-apoptotic activity under
various pathological conditions. Hyo et al. found transduced Tat-
Hsp22 significantly attenuates oxidative stress-induced apoptosis
by regulation of apoptosis-related protein expression levels in
hippocampal neuronal cells (Kang et al., 2008). In addition, the
study of Chen et al. reported that Hsp22 plays a cardioprotective
role in ischemic myocardium, triggering an anti-apoptotic
response in advance by activating the survival pathway (Jo
et al., 2017). These studies suggest that Hsp22 may play a
protective role in DOX-induced cardiac injury.

Toll-like receptor 4 (TLR4) is an important pattern recognition
receptor, which is expressed on cell membrane and plays an
important role in infectious and non-infectious diseases. Studies
have found that TLR4 deficiency can alleviate DOX-induced cardiac
function injury andmyocardial injury (Chen et al., 2011). Therefore,
exploring the negative regulatory factors of TLR4 may find specific
drugs to protect against DOX-induced cardiac injury. In recent
years, Hsp22 has been considered as a new TLR4 ligand and may be
involved in the pathogenesis of rheumatoid arthritis (Riad et al.,
2008). Activation of TLR4 triggers activation of the downstream
NLRP3 inflammasome signal, which is involved in the
inflammatory response by processing the maturation of
interleukin (IL)-1b and IL-18 (Kang et al., 2016). Thus, we want
to investigate whether Hsp22 could play a cardioprotective role
against DOX toxicity via regulation of the TLR4/NLRP3 pathway.
Frontiers in Pharmacology | www.frontiersin.org 2
METHODS

Animals and Animal Model
All of the animal experimental procedures conformed to the
National Institutes of Health (NIH) Guideline and were
approved by the Ethics Committee of Union Hospital,
Huazhong University of Science and Technology. The male
C57BL/6 mice (aged 6–8 weeks and weighed 23–25 g) were
from the Institute of Laboratory Animal Science, Chinese
Academy of Medical Sciences (Beijing, China).

A random number table method was used for grouping. Mice
were injected with adeno-associated virus (AAV)-Hsp22 or
AAV-green fluorescent protein (GFP) (5 × 1010 viral genome
particles/mouse) through the tail vein. Mice were then subjected
to DOX (Sigma-Aldrich, St. Louis, MO, USA) injection (single
intraperitoneal injection, 15 mg/kg per mouse) at 4 weeks after
the AAV injection to establish the acute cardiac injury model.
Echocardiography and Hemodynamic
Analysis
A MyLab 30CV (Esaote) machine was used to perform
echocardiography as a previous study described (Du et al.,
2015). After being anesthetized with 1.5% isoflurane, mice
were detected using a 10-MHz linear-array ultrasound
transducer. A microtip catheter transducer (SPR-839, Millar
Instruments, Houston, TX, USA) was used to measure
hemodynamic data as previously described (Du et al., 2015). A
Millar Pressure–Volume System (MPVS-400, Millar
Instruments, USA) was used to analyze the results.
Western Blotting and Quantitative Real-
Time PCR
After treatment, protein (50 mg) from heart tissue and H9c2 cells
harvested from RIPA lysis buffer were separated in a 10% sodium
dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE).
A polyvinylidene fluoride (PVDF) membrane (Millipore) was
used to transfer protein. After blocking with 10% non-fat milk,
membranes were incubated with primary antibodies enclosing
Hsp22 (3059), t-p65 (4764), p-p65ser536 (3033), cleaved caspase-3
(9661), Bcl-2 (4223), Bax (5023), cytochrome C (4280), NLRP3
(13158), cleaved-caspase-3 (9579), and glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) (2118); all were
purchased from Cell Signaling Technology (Boston, MA,
USA). Antibodies against TLR4 (sc30002) were purchased
from Santa Cruz (Dallas, TX, USA). Membranes were
incubated with secondary antibodies then with enhanced
chemiluminescence (ECL) reagents (170–5061, Bio-Rad).
GAPDH protein was used as a reference.

TRIzol Reagent (Invitrogen) was used to isolate total RNA.
cDNA was synthesized using a commercial kit (Roche). SYBR
Green (Roche) was used to amplify. GAPDH RNA level was used
as a reference.
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Immunohistochemistry Staining
Tumor necrosis factor (TNF)-a and CD68 staining was performed as
previously described (Du et al., 2015). Anti-TNF-a, CD45, or anti-CD68
(Abcam)were used to stain. EnVisionTM+/horseradish peroxidase (HRP)
reagent and 3,3 -́diaminobenzidine (DAB) were used to visualize. A light
microscope (Nikon, Tokyo, Japan) was used to calculate.

Cell Culture
H9c2 cells were cultured in Dulbecco’s modified Eagle’s medium
(DMEM) with 10% fetal bovine serum (FBS). Before treatment,
cells were starved for 6–8 h. The in vitro cardiac injury model was
established by treating with DOX (1 mmol/L). Cell counting kit-8
(CCK-8) was used to detect cell viability.

Terminal Deoxynucleotidyl Transferase
dUTP Nick End Labeling Staining
Terminal deoxynucleotidyl transferase dUTP nick end labeling
(TUNEL) staining was performed as previously described (Gao
et al., 2015). TUNEL commercial reagent was used to detect
apoptosis cells (Millipore, USA). Cell nucleus was stained with
4′,6-diamidino-2-phenylindole (DAPI). An OLYMPUS DX51
Frontiers in Pharmacology | www.frontiersin.org 3
fluorescence microscope was used to get images (Tokyo,
Japan). Image-Pro Plus 6.0 software was used to calculate.

Statistical Analysis
SPSS 23.0 was used for analysis. Data were expressed as mean ±
standard error of mean (SEM). Unpaired Student’s t-test was used to
compare differences between two groups. Multiple comparisons
among ≥3 groups were performed using one-way ANOVA. One-
way ANOVA followed by the post hoc least significant difference test
was used to analyze differences among multiple groups when
ANOVA found a significant value of F and no variance in
homogeneity; otherwise, Tamhane’s T2 post hoc test was used. P <
0.05 was considered statistically significant.
RESULTS

Hsp22 Improved Cardiac Dysfunction
Induced by DOX
Hsp22 expression pattern was evaluated in acute cardiac injury
induced by DOX. As shown in Figures 1A, B, Hsp22 protein and
A B C

D E F G
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FIGURE 1 | Heat shock protein 22 (Hsp22) improved cardiac function in mice with doxorubicin (DOX)-induced toxicity in vivo. (A) Representative Western blot
bands and quantitative results of protein levels of Hsp22 in DOX-induced cardiac injury in C57BL/6 mice treated with DOX. (B) The mRNA level of Hsp22 in the
C57BL/6 mice treated with DOX. (C) Representative Western blot bands of protein level of Hsp22 in mice injected with adeno-associated virus (AAV)-Hsp22.
(D) Body weight of the four groups (n = 9–12). (E) Heart weight of the four groups (n = 9–12). (F) Statistical results of the heart weight (HW)/tibia length (TL) (n = 9–
12). (G) Statistical results of the lung weight (LW)/TL (n = 9–12). (H) Ejection fraction (EF) of mice in the indicated groups (n = 9–12). (I, J) Hemodynamic analysis of
mice with or without Hsp22 treatment (n = 7–11). (K) Heart rate of mice with or without Hsp22 treatment. *P < 0.05 versus NS + Ad-GPF, #P < 0.05 versus DOX +
Ad-GPF. For panels (A, B), P < 0.05 versus NS.
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mRNA levels were lower in DOX-treated mice compared with
control mice. Thus, we established Hsp22-overexpressing mice
by delivering AAV, and the expression efficiency of Hsp22 is
shown in Figure 1C. C57BL/6 mice were injected with AAV-
Hsp22 or AAV-GFP through the tail vein and then subjected to
DOX injection 4 weeks later.

The pathophysiological characteristics of the mice were
detected. The body weight, heart weight (HW), and the ratio of
HW and tibia length (TL) was higher in Hsp22 overexpression
group than those in the control group after DOX injection
(Figures 1D–F). However, the ratio of lung weight (LW) and
TL showed no difference between the four groups (Figure 1G).
Functionally, echocardiographic measurements showed a
decreased ejection fraction (EF) in DOX-treated mice when
compared with control mice. Conversely, left ventricular ejection
fraction (LVEF) in Hsp22-overexpressing mice was higher than in
AAV-GFP-injected mice (Figure 1H). A significant reduction in
maximal rate of the increase of left ventricular pressure (+dP/dt)
and the maximal rate of the decrease of left ventricular pressure
(-dP/dt) in DOX-treated mice. While +dP/dt and -dP/dt were
Frontiers in Pharmacology | www.frontiersin.org 4
higher in Hsp22 overexpression group than AAV-GFP-injected
group after DOX treatment (Figures 1I, J). There are reports that
heart rate is affected by DOX (Robison et al., 1985); however, no
significant difference in heart rate was observed among the
four groups.

Hsp22 Inhibited Inflammatory Responses
in Acute Cardiac Injury Mice Model
Inflammation plays an important role in DOX-induced cardiac
injury. So first, we examined the effect of Hsp22 on DOX-induced
inflammatory response. As shown in Figures 2A–C, Hsp22
overexpression markedly decreased the number of CD45-labeled
leukocyte infiltration, CD68-labeled macrophage, and the protein
level of TNF-a in the DOX-treated group. Consistently, the pro-
inflammatory cytokines, including TNF-a, IL-1, and IL-6, were
increased in the DOX-treated group. And the inflammatory
response induced by DOX was suppressed in Hsp22
overexpression group compared with mice injected with AAV-
GFP (Figure 2D). Nuclear factor (NF)-kB is an essential molecule
in inflammation during cardiac injury; thus, we evaluated NF-kB
A B

C
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G

FIGURE 2 | Heat shock protein 22 (Hsp22) suppressed inflammation responses in doxorubicin (DOX)-treated mice. (A–C) Immunohistochemistry analysis of CD45,
CD68, and tumor necrosis factor (TNF)-a in DOX-treated hearts. Representative images and quantification (n = 6, 10+ fields per heart) are shown. (D) PCR analysis
of inflammation markers [TNF-a, interleukin (IL)-1, IL-6] in DOX-treated hearts (n = 6). (E) Representative images of p-P65 immunofluorescence in mice with or
without Ad-Hsp22 transfection (n = 4). (F, G) Western blot and quantitative results (n = 6). *P < 0.05 versus NS + Ad-GPF, #P < 0.05 versus DOX + Ad-GFP.
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activation level (Hayden and Ghosh, 2008). An increase in NF-kB
nucleus translocation was observed in the DOX-treated group,
while it decreased in the Hsp22 overexpression group after DOX
treatment (Figure 2E). Consistently, the protein expression of
activated NF-kB was decreased in the AAV-Hsp22 group after
DOX treatment (Figures 2F, G).

Hsp22 Inhibited Cell Apoptosis in Acute
Cardiac Injury Mice Model
Cardiomyocyte apoptosis is a central mechanism underlying
cardiac injury induced by DOX. Thus, we evaluated cell
apoptosis. As shown in Figure 3A, DOX caused increased cell
apoptosis in the heart; Hsp22 overexpression reduces these
increased cell apoptosis. Simultaneously, we investigated the
effect of DOX on the cardiomyocyte viability by measuring the
release of lactate dehydrogenase (LDH). The activity of LDH was
increased significantly after DOX stimulation, while Hsp22
overexpression could reduce the release of LDH (Figure 3B).
Apoptosis-associated protein Bax and Bcl-2 were also detected,
as a result, Hsp22 increased the protein level of Bcl-2 but reduced
the level of Bax thus decreased the release of cytochrome C
Frontiers in Pharmacology | www.frontiersin.org 5
(Figures 3C–F). Moreover, we used cleaved caspase-3 (c-
caspase-3) stain to solidify our evidence and found that Hsp22
attenuated the level of c-caspase-3 in mice heart treated with
DOX (Figure 3G).

Hsp22 Regulated the Expression of NLRP3
and TLR4 Both In Vitro and In Vivo
It was reported that TLR4 and downstream signal NLRP3 were
crucial in cardiac injury; thus, the activation levels of TLR4 and
NLRP3 were detected. Our data showed that NLRP3 and TLR4
protein expression were both increased by DOX and were
significantly decreased in Hsp22-overexpressing mice (Figures
4A, B). We solidify our evidence in vitro by using the H9c2 cell
line. As a result, the increased NLRP3 and TLR4 levels induced
by DOX treatment were reduced by overexpression of Hsp22
(Figures 4C, D).

Hsp22 Exerted a Protective Effect by
Regulating NLRP3 Signaling
To assess the role of NLRP3 on Hsp22-mediated protection, we
coinfected H9c2 cells with Ad-Hsp22 plus Ad-NLRP3, followed
A B

C D E

F G

FIGURE 3 | Overexpression of heat shock protein 22 (Hsp22) exhibited anti-apoptosis effect in doxorubicin (DOX)-induced cell death. (A) Representative images of
terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and the quantitative results in DOX-treated hearts (n = 4). (B) The level of lactate
dehydrogenase (LDH) in the indicated groups (n = 6). (C–F) Western blot and quantitative results in the indicated groups (n = 6). (G) Cleaved caspase-3
(c-caspase-3) immunofluorescence (n = 4). *P < 0.05 versus NS + Ad-GFP, #P < 0.05 versus DOX + Ad-GFP.
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by the addition of DOX for 12 h. As shown in Figure 5A, the
increased pro-inflammatory cytokines by DOX treatment were
reduced by Hsp22 overexpression. Interestingly, we observed
that suppression of pro-inflammatory cytokines by
overexpression of Hsp22 was blocked by increased NLRP3
expression. Then, we evaluated the severity of DOX-induced
cardiomyocyte apoptosis. Hsp22 decreased DOX-induced cell
loss in vitro, as indicated by TUNEL staining and cell viability.
But overexpression of NLRP3 attenuated the protective effect of
Hsp22 on apoptosis (Figures 5B–D). DOX treatment decreased
Bcl-2, but increased Bax and cytochrome C in cardiomyocytes
protein level, while these were reversed in Hsp22-overexpressing
cells. Whereas overexpression of NLRP3 undermined the protective
Frontiers in Pharmacology | www.frontiersin.org March 2020 | Volume 11 | Article 26
effect of Hsp22 (Figures 5E, F). The above findings demonstrate
that the beneficial role of Hsp22 in DOX-induced cardiomyocyte
apoptosis is dependent on the regulation of NLRP3.
DISCUSSION

Although no consensus has been reached, the progressive
elucidation of the molecular mechanisms by which Hsp22
promotes cardiac protection is still encouraging. Our study is the
first to find that DOX can increase the protein expression level of
Hsp22 in C57BL/6 mice, and the overexpression of Hsp22 can
reduce the cardiac dysfunction induced by DOX, the mechanism of
A

B

C

D

FIGURE 4 | Heat shock protein 22 (Hsp22) regulated the expression of NOD-, LRR-, and Pyrin Domain-Containing Protein 3 (NLRP3) and Toll-Like Receptor
(TLR)4 both in vitro and in vivo. (A) Representative Western blot and analysis of NLRP3 in doxorubicin (DOX)-treated hearts (n = 6). (B) Representative Western
blot and analysis of TLR4 in DOX-treated hearts (n = 6). (C) Representative Western blot and analysis of NLRP3 in DOX-treated H9c2 cells (n = 6).
(D) Representative Western blot and analysis of TLR4 in DOX-treated H9c2 cells (n = 6). For panels (A, B), *P < 0.05 versus NS + Ad-GFP, #P < 0.05 versus DOX
+ Ad-GFP. For panels (C, D), *P < 0.05 versus PBS + Ad-GFP, #P < 0.05 versus DOX + Ad-GFP.
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which is related to downregulating the inflammatory response and
reducing the apoptosis of cardiomyocytes. Further studies revealed
that these protective effects were mediated by inhibition of TLR4/
NLRP3 in C57BL/6 mice and in H9c2 cells, while overexpression of
NLRP3 can eliminate Hsp22-mediated cardiac protection. Our
research provides a new method for the treatment of cardiac
injury caused by DOX.

As one of the important molecular chaperones, the protective
effects of Hsps on ischemia/reperfusion injury and other stress
stimuli have been studied comprehensively and systematically (Fan
et al., 2005; Li et al., 2013); however, there has not been much
Frontiers in Pharmacology | www.frontiersin.org 7
concern about their protective effect on DOX-induced
cardiotoxicity and underlying mechanisms. We noted a recent
published study showing that increased levels of Hsp27 in
cardiomyocytes resulted in more resistance to DOX-induced cell
death, and therefore, DOX-induced cardiac dysfunction and animal
mortality were significantly reduced (Bernard et al., 2011). Other
studies further demonstrated that Hsp20 could reduce DOX-
triggered oxidative stress and cardiotoxicity through regulating the
AKT pathway (Fan et al., 2008). Consistent with the previous
studies, our present study found that Hsp22 protein level was
decreased after DOX treatment in C57BL/6 mice; there is some
B

A

C

D E

F

FIGURE 5 | Heat shock protein 22 (Hsp22) inhibited doxorubicin (DOX)-induced inflammation and cell loss via inhibition of the activation of the NOD-, LRR-, and
Pyrin Domain-Containing Protein 3 (NLRP3). (A) The mRNA levels of inflammation-related genes in the indicated groups (n = 4). (B, C) Terminal deoxynucleotidyl
transferase dUTP nick end labeling (TUNEL) staining and the quantitative results in the indicated groups (n = 4). (D) Cell viability after the treatment with DOX in the
indicated groups (n = 4). (E, F) Representative Western blot and analysis of Bcl-2, Bax, and cytochrome C in the indicated groups (n = 4). *P < 0.05 versus PBS +
Ad-NC group, #P < 0.05 versus the DOX + Ad-GFP group.
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potential for Hsp22 to be a defender in the treatment of DOX-
induced cardiomyopathy.

One of the main mechanisms of DOX-induced cardiac injury is
excessive inflammation. DOX treatment can activate the cardiac
NF-kB signaling pathway, which promotes the activation of
inflammatory cells and the release of pro-inflammatory factors,
leading to cascade amplification of inflammation and ultimately
induce cardiac dysfunction (Liu et al., 2009). A study has found that
in human leptomeningeal smooth muscle cells and human brain
astrocytes, Hsp22 could increase the level of IL-8, soluble
intercellular adhesion molecule 1 (ICAM-1), and monocyte
chemoattractant protein 1 (Bruinsma et al., 2011). Therefore, in
this study, we also explored the effect of Hsp22 on DOX-induced
cardiac inflammation. Our results show that Hsp22 can reduce the
activation of NF-kB in cardiomyocytes and its nuclear translocation
in cardiomyocytes of C57BL/6 mice, thereby diminishing the
synthesis and release of pro-inflammatory factors, which might
ultimately reduce the inflammatory response of the cardiomyocytes.

In addition, TLRs are involved in the activation of innate
immunity and also the important components in the cardiac
stress response. TLR4 is the first and very important mammalian
Toll protein to be identified (Yousif and Al-Amran, 2011). A
growing number of studies suggest that TLR4 plays a role in
heart damage caused by DOX. Riad et al. (2008) found that
deletion of TLR4 significantly improves DOX-induced cardiac
dysfunction. TLR4 deficiency could protect against DOX-induced
cell apoptosis, which exerts a cardioprotective function (Yao et al.,
2012). In line with previous studies, we found that TLR4 was
elevated after DOX treatment in both mice heart and
cardiomyocytes. NLRP3, a multi-protein complex, has been
reported to be a target of TLR4. Studies showed that NLRP3
deficiency reduces the inflammatory response and protects against
DOX-induced cardiac injury (Kobayashi et al., 2016). Our study
found that NLRP3 was activated during DOX treatment, and
overexpression of NLRP3 completely abolished the inhibition
effect of Hsp22 on the pro-inflammatory cytokines. Our work
implies that Hsp22 could suppress DOX-induced cardiac injury
via regulating TLR4/NLRP3.

Cell apoptosis is the main feature of DOX-induced cardiac
injury. It has been found that Hsp22 possesses anti-apoptosis
activities in melanoma, glioblastoma, or breast cancer cells
(Shemetov et al., 2008). Furthermore, it has been suggested in
ischemic myocardium that Hsp22 reduces cardiac ischemic injury
Frontiers in Pharmacology | www.frontiersin.org 8
by pre-activation of the heart’s anti-apoptotic pathway and adaptive
metabolic changes (Depre et al., 2006). Consistent with these
reports, we demonstrated that Hsp22 inhibited DOX-induced cell
loss in C57BL/6 mice and in H9c2 cells. Our present study showed
that overexpression of NLRP3 almost completely abolished Hsp22-
mediated anti-apoptosis effect, further implying the key role of
TLR4/NLRP3 in cardioprotection by Hsp22.

This study demonstrates that Hsp22 improves acute DOX-
induced cardiac injury by reducing cardiac inflammation and
cardiomyocyte apoptosis in mice and H9c2 cells. Certainly, more
experimental data are needed to accurately explain the
cardioprotective effect of Hsp22. Altogether, our observations
provide a novel potential therapeutic target for cardiac injury
caused by DOX.
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