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Proton pump inhibitors (PPIs), H+/K+-ATPase inhibitors, are the most commonly
prescribed drugs for the treatment of gastroesophageal reflux and peptic ulcer diseases;
they are highly safe and tolerable. Since PPIs are frequently used in cancer patients,
studies investigating interactions between PPIs and anticancer agents are of particular
importance to achieving effective and safe cancer chemotherapy. Several studies have
revealed that PPIs inhibit not only the H+/K+-ATPase in gastric parietal cells, but
also the vacuolar H+-ATPase (V-ATPase) overexpressed in tumor cells, as well as the
renal basolateral organic cation transporter 2 (OCT2) associated with pharmacokinetics
and/or renal accumulation of various drugs, including anticancer agents. In this mini-
review, we summarize the current knowledge regarding the impact of PPIs on the
efficacy and safety of cancer chemotherapeutics via inhibition of targets other than the
H+/K+-ATPase. Co-administration of clinical doses of PPIs protected kidney function in
patients receiving cisplatin and fluorouracil, presumably by decreasing accumulation of
cisplatin in the kidney via OCT2 inhibition. In addition, co-administration or pretreatment
with PPIs could inhibit H+ transport via the V-ATPase in tumor cells, resulting in lower
extracellular acidification and intracellular acidic vesicles to enhance the sensitivity of the
tumor cells to the anticancer agents. In the present mini-review, we suggest that PPIs
enhance the efficacy and safety of anticancer agents via off-target inhibition (e.g., of
OCT2 and V-ATPase), rather than on-target inhibition of the H+/K+-ATPase. The present
findings should provide important information to establish novel supportive therapy with
PPIs during cancer chemotherapy.

Keywords: proton pump inhibitor, drug repositioning, drug interaction, organic cation transporter 2, vacuolar
H+-ATPase

INTRODUCTION

Proton pump inhibitors (PPIs) inhibit gastric acid secretion by interaction with the H+/K+-ATPase
in gastric parietal cells. Because PPIs have high safety and tolerability, they are the most commonly
prescribed drugs for the treatment of gastroesophageal reflux disease and peptic ulcer disease
(Zimmermann and Katona, 1997; Sachs et al., 2006; Shin and Kim, 2013). Interestingly, it has
been estimated that approximately 20% of cancer patients are treated with PPIs to alleviate the
symptoms of gastroesophageal reflux (Smelick et al., 2013). In clinical studies, many investigators
have reported that co-administration of PPIs affect the development of side effect and the efficacy
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of anticancer agents (Suzuki et al., 2009; Santucci et al., 2010;
Reeves et al., 2014; Ikemura et al., 2016, 2017). Therefore, the
effect of PPIs on the efficacy and safety of anticancer agents needs
to be investigated thoroughly.

Drug repositioning, the process of finding novel indications
of previously approved drugs, is of growing interest to academia
and industry because it reduces the time and costs associated
with drug development (Ashburn and Thor, 2004). Several
reports revealed that PPIs inhibited not only the H+/K+-
ATPase in gastric parietal cells, but also the vacuolar H+-ATPase
(V-ATPase) overexpressed in tumor cells (Luciani et al., 2004; De
Milito and Fais, 2005; Lee et al., 2015). In addition, very recent
evidence has indicated that PPIs are potent inhibitors of renal
drug transporters, including human organic anion transporters
(hOATs) and human organic cation transporters (hOCTs) that
are associated with pharmacokinetics and/or renal accumulation
of various drugs, including anticancer agents (Nies et al., 2011;
Chioukh et al., 2014; Hacker et al., 2015; Ikemura et al., 2016).
Therefore, co-administration of PPIs could represent novel
supportive therapies during cancer chemotherapy to improve the
efficacy and safety of anticancer agents via inhibition of targets
other than the H+/K+-ATPase.

In this mini-review, we summarize the current knowledge
regarding the impact of PPIs on the efficacy and safety of cancer
chemotherapeutic drugs.

PROTECTIVE EFFECT OF PPIs ON
CISPLATIN-INDUCED NEPHROTOXICITY
BY INHIBITION OF OCT2

In the renal proximal tubules, membrane transport proteins
expressed in the apical or basolateral membranes are responsible
for the urinary secretion of diverse drugs. The structures and
functions of hOATs and hOCTs encoded by SLC22A genes have
been characterized (Sweet and Pritchard, 1999; Inui et al., 2000;
Sekine et al., 2000). OAT1 (SLC22A6) and OAT3 (SLC22A8)
expressed in the basolateral membrane of the proximal tubules,
transport various organic anions using opposite α-ketoglutarate
as a driving force (Sweet and Pritchard, 1999). In contrast,
OCT1 (SLC22A1) and OCT2 (SLC22A2) were reported to be
driven by inside-negative membrane potentials (Busch et al.,
1996; Okuda et al., 1996), mediating basolateral uptake of diverse
organic cations. Moreover, at the brush-border membranes,
multidrug and toxin extrusion 1 (MATE1/SLC47A1) mediates
the extrusion of organic cations from the cells into the tubular
lumen using the transmembrane H+ gradient as a driving
force (Yonezawa and Inui, 2011a), and is considered to be
responsible for the final step of urinary excretion of cationic
drugs.

Cisplatin (CDDP) is a chemotherapeutic drug widely used
for the treatment of various solid tumors, including lung,
ovarian, and esophageal cancers (Go and Adjei, 1999). The
major side effects of CDDP include nephrotoxicity, ototoxicity,
myelosuppression, and peripheral neuropathy (Arany and
Safirstein, 2003). Because CDDP-induced nephrotoxicity is a
dose-limiting side effect that restricts its clinical application

(Pabla and Dong, 2008), the development of renal protective
strategies for CDDP chemotherapy is an urgent matter that
requires a solution.

Cisplatin is known to accumulate specifically in the kidney
compared to its accumulation in other organs or in plasma
(Litterst et al., 1976). As shown in Figure 1, OCT2 is
predominantly responsible for the accumulation of CDDP in the
kidney (Yonezawa and Inui, 2011b). Therefore, CDDP-induced
nephrotoxicity is expected to be ameliorated by reduction or
inhibition of OCT2 activity in the kidney.

Hacker et al. (2015) demonstrated that PPIs (lansoprazole and
pantoprazole) inhibited OCT2-mediated transport of metformin
(a typical substrate of OCT2) at a clinical dose. In addition, these
PPIs were tested for clinical drug interactions with metformin
in patients and healthy subjects (Ding et al., 2014; Kim et al.,
2014). Therefore, co-administration of PPI may inhibit the renal
accumulation of CDDP via OCT2 (Figure 1).

Recently, we retrospectively investigated the effect of
co-administration of PPI on nephrotoxicity in 133 patients
who received CDDP and fluorouracil (5-FU) therapy for the
treatment of esophageal or head and neck cancer (Ikemura et al.,
2017). The rate of nephrotoxicity in patients receiving PPI (12%,
n = 33) was significantly lower than that in patients not receiving
PPI (30%, n = 100). Severe nephrotoxicity was not observed
in patients receiving PPI, whereas the rate of hematological
toxicity was comparable between patients with and without
PPI treatment. These findings indicate that co-administration
of clinical doses of PPI ameliorates nephrotoxicity without
exacerbation of hematological toxicity in patients receiving
CDDP and 5-FU therapy. Although it remains unclear whether
PPI directly inhibits OCT2-mediated uptake of CDDP in the
kidney, co-administration of PPI during CDDP chemotherapy
should be a novel approach to minimize the nephrotoxicity of
CDDP using OCT2 drug interactions.

On the other hand, MATE1 is also responsible for CDDP-
induced nephrotoxicity (Nakamura et al., 2010; Oda et al.,

FIGURE 1 | Schematic diagram of the protective effect of PPIs for
CDDP-induced nephrotoxicity via OCT2. CDDP, cisplatin; MATE, multidrug
and toxin excursion; OCT2, organic cation transporter 2; PPI, proton pump
inhibitor.
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FIGURE 2 | Schematic diagram of the impact of V-ATPase inhibition by PPIs for proliferation, progression, tumorigenesis, metastasis, and drug resistance in tumor
cells. ADP, adenosine diphosphate; ATP, adenosine triphosphate; LDH, lactate dehydrogenase; PPI, proton pump inhibitor; V-ATPase, vacuolar H+-ATPase.

2014) as shown in Figure 1. Many OCT2 inhibitors also inhibit
MATE1, which may increase intracellular CDDP accumulation
and nephrotoxicity. Because there have been no reports regarding
the effect of PPI on MATE1 activity, further study is needed to
clarify the effect of PPI against MATE1-mediated transport of
CDDP.

PPIs ENHANCE THE ANTITUMOR
EFFECTS AND SENSITIVITIES OF
ANTICANCER AGENTS BY TARGETING
V-ATPase IN TUMOR CELLS

As shown in Figure 2, the V-ATPase is an ATP-dependent
proton pump that transports H+ across both intracellular and
plasma membranes to regulate intracellular and extracellular pH
(Forgac, 2007). In tumor cells, increased glucose consumption
via glycolysis leads to the production of lactic acid and H+

ions (Warburg, 1956). Because this cytoplasmic acidification is
detrimental to the cells, overexpression of V-ATPase maintains
an appropriate neutral cytoplasmic pH in the tumor cells,
and consequently causes extracellular acidification (Nelson
and Harvey, 1999). Lee et al. (2015) found that elevated
expression of V-ATPase mRNA was significantly associated
with poor survival in ovarian cancer patients. Extracellular
acidification in tumor cells is known to be involved in
proliferation, tumorigenesis, drug resistance, metastasis, and
tumor progression (Fais et al., 2007). Inhibition of V-ATPase
causes loss of the pH gradient across the plasma membranes,
increasing the extracellular pH and decrease the intracellular

pH, leading to slowed growth and increased cell death (De
Milito et al., 2010). Furthermore, some human tumor cells
exhibit elevated V-ATPase activity in intracellular lysosomal-
type vesicles, leading to drug sequestration in intracellular acidic
vesicles and drug extrusion from the cells through the secretory
pathway (Altan et al., 1998; Raghunand et al., 1999). The
acidification in intracellular vesicles is also involved in resistance
to cancer chemotherapeutic drugs. Therefore, V-ATPase should
be considered a promising target in the development of
anticancer therapeutics.

Various prior studies have reported inhibitory effects of
V-ATPase against cancer growth and metastasis in in vivo
animal models. In mice implanted with human hepatocellular
carcinoma cells, the knockdown of V-ATPase by siRNA markedly
decreased primary tumor growth and suppressed intrahepatic
and pulmonary metastases (Lu et al., 2005). Furthermore,
the knockdown of V-ATPase by lentivirus-mediated shRNA
in a 4T1 mouse model of metastatic breast cancer reduced
tumor formation and decreased metastasis to the lung, liver,
and bone, and consequently improved survival (Feng et al.,
2013).

Interestingly, inhibition of V-ATPase could also lead to
the activation of protective cellular responses (Stransky et al.,
2016). Graham et al. (2014) demonstrated that bafilomycin
A1, a selective V-ATPase inhibitor, upregulated mitogen-
activated protein (MAP) kinases and significantly reduced tumor
growth in MCF7 and MDA-MB-231 mouse xenografts. In
addition, the inhibitory effect of combination treatment of
bafilomycin A1 and sorafenib [an extracellular signal-regulated
kinase 1/2 (ERK1/2) inhibitor] for breast tumor growth and
metastasis in mice was higher than that of single administration
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of bafilomycin A1 or sorafenib. Thus, these findings suggest that
the co-treatment of V-ATPase inhibitor with anticancer agents
has synergistic antitumor effects.

Although PPIs are clinically used as H+/K+-ATPase inhibitors
for the treatment of gastroesophageal reflux and peptic ulcer
diseases, several in vitro and in vivo studies have addressed that
PPIs also inhibit V-ATPase. Luciani et al. (2004) demonstrated
that pretreatment with PPIs (omeprazole and esomeprazole)
enhanced the effects of various anticancer agents (CDDP,
5-FU, and vinblastine) via inhibition of V-ATPase in cell
lines derived from human melanoma, adenocarcinoma, and
lymphoma. Moreover, an in vivo study demonstrated that
oral pretreatment with omeprazole enhanced sensitivity against
CDDP in mice engrafted with melanoma cells (Luciani et al.,
2004). Furthermore, in vivo experiments were performed to
confirm the synergistic effects of omeprazole and paclitaxel
on tumors in orthotopic and patient-derived xenograft mouse
models (Luciani et al., 2004). Interestingly, they demonstrated
that PPI treatment in tumor cells increased both the extracellular
pH and pH of intracellular vesicles, consistent with the inhibition
of V-ATPase activity. Their evidences indicated that pretreatment
with PPIs enhanced the antitumor effect through the inhibition of
acidification in extracellular environment and/or in intracellular
vesicles. Therefore, these findings suggest that co-administration
or pretreatment with PPIs enhances the antitumor effect and
sensitivity of anticancer agents by targeting V-ATPase in tumor
cells.

CONCLUSION

This mini-review suggests that PPIs enhance the efficacy and
safety of cancer chemotherapy via off-target inhibition (i.e., of
OCT2 and V-ATPase), rather than on-target inhibition (i.e., of
H+/K+-ATPase). The present findings should provide important
information for the establishment of novel supportive therapy
during cancer chemotherapy.
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