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Recent studies show that a moderate duration of sevoflurane, one of the most
commonly used volatile anesthetics in clinical practice, does not induce cognitive
impairment in animals under physiological conditions. However, the influence of
sevoflurane on cognitive function under diabetic conditions remains unclear. The
aim of this study was to determine whether sevoflurane causes cognitive decline
in a rat model of type 2 diabetes mellitus (DM) and if so, to explore a possible
underlying mechanism. Diabetic Goto–Kakizaki (GK) rats and non-diabetic Wistar rats
underwent 2.6% sevoflurane for 4 h or sham (control) exposure. Cognitive function
and hippocampal inflammation were assessed 1 week and 5 months after sevoflurane
or sham exposure. Compared with Wistar control rats, GK control rats exhibited
shorter freezing times in Trace fear conditioning task 1 week after exposure, took
longer to locate the submerged platform and had shorter dwell-time in the target
quadrant in Morris Water Maze task 5 months after exposure. GK rats that received
sevoflurane not only exhibited less freezing times 1 week after exposure, but also
spent more time to locate the submerged platform and had less dwell-time in the
target quadrant, compared with GK control rats. Molecular studies revealed that the
levels of pro-inflammatory cytokines and activated microglia in the hippocampus were
higher in GK control rats than those in Wistar control rats at both time points and were
further increased in GK rats receiving sevoflurane. Wistar rats that received sevoflurane
and Wistar control rats did not differ in any cognitive performance and molecular
assessment. The results suggest that diabetic GK rats exhibit cognitive dysfunction
probably due to increased hippocampal inflammation, and that sevoflurane induces
exaggerated and persistent cognitive decline in GK rat by aggregating hippocampal
inflammation.
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INTRODUCTION

Post-operative cognitive dysfunction (POCD) is generally
defined as a decline in cognitive function that occurs in
patients after anesthesia and surgery when compared to their
preoperative cognitive status. POCD occurs in approximately
10% of all surgical patients and 40% of elderly patients at
age 65 and older (Moller et al., 1998), and is associated
with increased mortality, decreased quality of life and
increased dependency (Steinmetz et al., 2009). Although
the cause of POCD remains to be determined, general
anesthesia alone is now being recognized as a potentially
significant risk to cognitive performance at both extremes
of age. A large body of experimental studies as well as
some retrospective clinical evidence have showed that
exposure to anesthetics could be detrimental to cognitive
development in young subjects, and might also contribute
to cognitive impairment in the elderly (Jevtovic-Todorovic
et al., 2013; Shoair et al., 2015). Of note, anesthesia-induced
cognitive impairment may depend on age, anesthetic agent,
dosage, duration, and number of exposures (Hudson and
Hemmings, 2011; Shen et al., 2013; Callaway et al., 2015).
Additionally, the presence of chronic diseases may also
increase the likelihood of developing cognitive impairment
or cause exacerbation of pre-existing cognitive decline after
anesthesia (Feng et al., 2013; Yang et al., 2014; Yue et al.,
2015).

Diabetes mellitus (DM) is an increasingly common medical
condition affecting approximately 347 million people worldwide,
and about 90% of them have type 2 DM (Nyenwe et al.,
2011). An estimated 25% of diabetic patients will require
surgery (Nyenwe et al., 2011). Recent evidence has suggested
that DM is associated with cognitive dysfunction and is
an important risk factor for dementia (Jiang et al., 2012;
Kariharan et al., 2015; Liu et al., 2016; Zuloaga et al.,
2016).

Sevoflurane is one of the most commonly used volatile
anesthetic agents for the maintenance of anesthesia in surgical
patients, including patients with type 2 DM (Bulte et al.,
2014). Sevoflurane has favorable clinical characteristics such
as rapid pharmacokinetics and lack of airway irritability.
Previous studies have demonstrated that a moderate duration
of sevoflurane (2–3% for 2 or 4 h) does not induce cognitive
impairment in both adult and aged animals (Callaway et al.,
2012; Shen et al., 2013). These studies, however, have been
conducted in animals under physiological conditions and
clinical studies of POCD exclude patients who are already
cognitively impaired. To date, however, the influence of
sevoflurane on cognitive dysfunction under diabetic conditions
has not been examined. The present study sought to determine
whether sevoflurane might exaggerate cognitive dysfunction
in a rat model of type 2 DM and if so, to explore
a possible underlying mechanism, focusing on sevoflurane-
induced change in neuroinflammation that has been implicated
in pathophysiology of cognitive impairment (Moreira et al.,
2007; Li et al., 2013b; Zhao et al., 2013; Zuloaga et al.,
2016).

MATERIALS AND METHODS

Animals
All experiments and procedures were approved by the Animal
Care and Use Committee at Shandong University, and performed
in accordance with the guidelines of the Animal Care and Use
Committee at Shandong University. All efforts were made to
minimize animal suffering and the number of animals used in the
study.

Twelve-week-old male diabetic Goto–Kakizaki (GK) rats and
age-matched male non-diabetic Wistar rats were purchased from
SLAC Laboratory Animal, Co., Ltd. (Shanghai, China). GK rat is
a genetic non-obese model of type 2 DM with relatively stable
hyperglycemia, early hyperinsulinemia and insulin resistance
and later insulin deficiency (Wang et al., 2013). This model is
prone to developing cognitive deficits and learning impairments
along aging and has been considered to be one of the useful
animal models for studying the pathogenesis of type 2 DM and
its neurological complications (Moreira et al., 2007; Li et al.,
2013b; Hussain et al., 2014). A previous study has shown that
GK rats display cognitive dysfunction at 7–8 months of age, we
therefore used 9-month-old GK rats to examine the influence of
sevoflurane on cognitive dysfunction under diabetic conditions
in our study. All Animals were maintained in environmentally
controlled rooms and were granted free access to standard rat
chow and tap water.

Experimental Design
At 9 months of age, hyperglycemia was confirmed via tail
vein blood samples, the animals were then assigned to the
following experimental groups (n = 20 rats per group): (1)
Wistar control rats (Wistar + CON), (2) Wistar rats treated
with sevoflurane (Wistar + SEV), (3) GK control rats (GK
+ CON), and (4) GK rats treated with sevoflurane (GK +
SEV).

Sevoflurane exposure was performed as previously described
(Yue et al., 2015). Briefly, rats were placed in a temperature
controlled chamber with two interfaces that were connected to
an anesthesia machine and a multi-gas monitor, respectively. For
rats assigned to sevoflurane exposure groups, 2.6% sevoflurane
was provided by a humidified 30% O2 carrier gas from a
calibrated vaporizer for 4 h. Rats assigned to control groups
were also placed in the same chamber except no sevoflurane was
provided (sham exposure). The concentrations of sevoflurane, O2
and CO2 in the chamber were continuously monitored by a gas
analyzer (Datex Ohmeda, Mississauga, ON, Canada). The rectal
temperature was maintained at 37◦C during the experiment.
Blood pressure (BP) and heart rate were measured hourly
with a CODA Monitor (Kent Scientific, Corp., Torrington, CT,
United States). Arterial blood gasses were measured in some rats
(n = 6 for each group) before and immediately after sevoflurane
exposure.

Ten rats from each group were used for open field test
and trace-fear conditioning 7 days after sevoflurane exposure
to determine the short-term effect of sevoflurane on cognitive
function. The rest of animals from each group (n = 10
rats per group) were used for Morris water maze (MWM)
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5 months after sevoflurane exposure (at the age of 14 months) to
determine long-term effect of sevoflurane on cognitive function.
Immediately after trace-fear conditioning or MWM assessments,
animals were sacrificed to collect brains and blood for molecular
and biochemical analyses or perfused transcardially with 4%
paraformaldehyde for immunofluorescent study.

Open-Field Test
General locomotor activity was assessed by open-field test as
previously described (Feng et al., 2013). Each rat was placed in an
open field apparatus. The floor of the apparatus was subdivided
into 25 blocks (9′′ square) with thin white stripes, and animal
activity was recorded via a digital camera. The number of line
crossings and rearings performed in 5 min time period was
scored. The apparatus was cleaned with 75% alcohol and rinsed
with water to avoid the presence of olfactory cues following each
test.

Trace Fear Conditioning
Hippocampal-dependent learning and memory tasks were
assessed by trace fear conditioning (TFC) as previously described
(Konopka et al., 2010; Gambus et al., 2015) with minor
modifications. TFC training and testing were carried out in
a room with overhead fluorescent light and a ventilation fan
providing background noise (65 db). During the training, rats
were placed in the experimental chamber (Med Associates, Inc.)
and allowed to adapt to this context for 3 min, after which they
received three consecutive pairs of tone (80 dB, 5 kHz, 20 s) and
foot shock (0.8 mAmp, 2 s) with an empty trace interval of 20 s
and a break between each pair of 3 min.

Sevoflurane exposure was performed within 30 min after
training. Memory of the learned fear was assessed 7 days later
by returning the animals into the original chamber without tone
and shock. Behavior for each animal was recorded and scored
every 5 s during the 5 min observation period. A percentage was
calculated using the formula 100 × f/n, where f is the number of
freezing events (absence of all movement except for respiration)
per animal and n is the total number of observations per animal.

Morris Water Maze
Five months after sevoflurane exposure, spatial and related forms
of learning and memory were assessed by MWM, as previously
described (Zhang et al., 2016). Briefly, a 10-cm diameter platform
was placed 1 cm above the water surface in a circular tank
(diameter, 150 cm; depth, 50 cm). A flag was placed on the
platform to increase its visibility. Rat was gently released in the
water and emerged from the water onto the platform within
120 s. If the rat failed to find the platform, place the rat on
the raised platform and allow it to stay there for 20 s before
being removed from the pool. A different platform location was
used for each subsequent trial. This cueing procedure enables the
rats to acknowledge that they can escape the water by finding a
platform.

After cueing procedure, the platform in the third quadrant was
submerged 1.5 cm below the water level and the place trials were
carried out for 4 days to examine the rats’ ability to obtain spatial
information. A black curtain was used to surround the pool to

eliminate confounding visual cues. Each rat received four trials
per day in each of the four quadrants of the swimming pool.
On each trial, rats were placed into the water facing the pool
wall, and allowed to search for the platform for a maximum of
120 s and stay on the platform for 20 s before being removed
from the pool. A rat that failed to find the platform within 120 s
was guided to the platform and stayed there for 20 s. For all
training trials, the time required for a rat to reach the hidden
platform (escape latency), swimming speed and swimming path
were automatically digitized and recorded. The average of four
trials performed each day for each animal was calculated as the
escape latency.

The day after the completion of the hidden platform training,
probe trials were conducted to examine whether the rats had
developed a spatial bias for the former platform quadrant. The
platform in the third quadrant was removed from the pool and
rats were allowed to swim for 120 s in any of the four quadrants
of the swimming pool. The number of crossings over the original
position of the platform and the percent time spent in each
quadrant were recorded.

Western Blot Analysis
Protein levels of pro-inflammatory cytokines in the hippocampus
were analyzed by western blot as previously described (Zhang
et al., 2016). Briefly, the hippocampus was quickly dissociated
from brain and homogenized in an ice-cold lysis buffer
with protease inhibitor. The protein concentration was
determined by a Bradford assay using BSA as the standard.
Samples were electrophoresed on 12% sodium dodecyl sulfate
(SDS)-polyacrylamide gels, and the gels were transferred to
polyvinylidene difluoride (PVDF) membranes. After blocking for
1 h in 5% non-fat dry milk, the membranes were incubated with
primary antibodies to tumor necrosis factor (TNF)-α, interleukin
(IL)-1β, IL-6, and β-actin (Santa Cruz Biotechnology, Inc.,
Santa Cruz, CA, United States) at 4◦C overnight. Membranes
were then washed and incubated at room temperature with
HRP-conjugated second antibody (Santa Cruz Biotechnology,
Inc.) for 1 h. The enhanced chemiluminescence detection system
(Amersham) was applied to visualize the immunoreactive bands,
and the band densities were analyzed with ImageJ software
(National Institutes of Health). All data were normalized by
β-actin.

Immunofluorescent Study
Rats were perfused transcardially with heparinized saline
followed by 4% paraformaldehyde. Brains were removed and
post-fixed overnight in 4% paraformaldehyde at 4◦C and then
immersed in 30% sucrose. Serial coronal sections of 20-µm
thickness were cut using a cryostat. Immunofluorescent staining
was performed as previously described with modifications (Rana
et al., 2010; Li et al., 2013a). Briefly, brain sections were incubated
by 0.5% H2O2 for 30 min followed by 10% normal horse serum
for 60 min to facilitate antibody penetration. After washing
three times, the sections were incubated with anti-rat CD11b
primary antibody (clone OX-42) (1:100, Chemicon, Temecula,
CA, United States) at 4◦C overnight. Subsequently, the sections
were incubated for 2 h in an anti-mouse secondary antibody
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(Alex Fluor 488, 1:200; Invitrogen, Carlsbad, CA, United States)
followed by washing three times. Immunofluorescent staining for
microglia was visualized with a confocal microscope (Zeiss LSM
510; Carl Zeiss, Thornwood, NY, United States). The number
of activated microglia, defined by stronger immunofluorescent
staining for the marker CD11b (clone OX-42), the presence of
a clearly enlarged soma and marked changes in the appearance
of the processes (Rana et al., 2010), were counted in several
0.2 mm × 0.2 mm squares and expressed as a percentage of the
total number of microglia.

Biochemical Assays
Blood samples were collected and placed on ice immediately.
Plasma was isolated by centrifugation at 2500 g for 15 min at 4◦C.
Plasma glucose levels were measured using a glucose analyzer
(Prestige Smart System). Plasma insulin levels were measured by
commercially available rat ELISA kit (Invitrogen, Camarillo, CA,
United States).

Statistical Analysis
Data were analyzed using a two-way ANOVA. Factors were
identified as diabetes (Wistar and GK) and sevoflurane exposure
(CON and SEV). Tukey’s post hoc test was subsequently used
for comparisons between groups. In MWM test, the number of
original platform (the third quadrant) crossings and the percent
time spent in the third quadrant were analyzed using a two-way
ANOVA followed by Tukey’s post hoc test. Data are presented as
mean ± SE. Values were considered statistically significant when
P < 0.05.

RESULTS

Sevoflurane Induces Short-Term Memory
Decline in GK Rats But Not in Wistar Rats
To exclude possible locomotor dysfunction that might confound
the cognitive assessment, open-field test was conducted to assess
spontaneous activity prior to cognitive test. There were no
differences among four experimental groups in the number of
rearings (Figure 1A) and the number of crossings (Figure 1B).

Short-term memory was assessed by the percentage of time
spent freezing when rats were placed in the same TFC training
context 7 days after sevoflurane exposure. Notably, GK control
rats exhibited significantly less freezing when compared with
Wistar control rats at 9 months of age [F(1,36)= 65.05, P < 0.01]
(Figure 2), indicating that type 2 DM causes impairment in
hippocampal-dependent memory at this time point. Sevoflurane
exposure did not alter freezing in Wistar rats but further reduced
freezing in GK rats, compared with respective control groups
[F(1,36)= 5.13, P < 0.05].

Sevoflurane-Induced Cognitive Decline
in GK Rats Is Persistent
Five months after sevoflurane exposure, place trial revealed that
there was no difference across four experimental groups in
swimming speed throughout 4 consecutive days (Figure 3A),

suggesting that the motor ability of rats was not affected by
type 2 DM or sevoflurane. The escape latency to the submerged
platform did not differ between Wistar control rats and Wistar
rats that received sevoflurane exposure (Figure 3B). In contrast,
both groups of GK rats exhibited significantly longer latency to
find the submerged platform than the Wistar rats on the last two
trials [day 4: F(1,36) = 26.88, P < 0.01], and the GK rats that
received sevoflurane exposure had much higher latency than GK
control rats [day 4: F(1,36)= 5.204, P < 0.05].

On the probe trial, no differences between the two Wistar
groups were observed for the number of platform crossings
(Figure 4A) and the percent time spent in third quadrant
(Figure 4B). Compared with Wistar rats, both groups of GK
rats displayed significantly reduced number of platform crossings
[F(1,36) = 56.31, P < 0.01] and percent time spent in third
quadrant [F(1,36) = 35.31, P < 0.01]. Moreover, the reductions
in the number of platform crossings [F(1,36) = 4.71, P < 0.05]
and the percent time spent in third quadrant [F(1,36) = 4.25,
P < 0.05] were greater in GK rats receiving sevoflurane exposure
than GK control rats.

Sevoflurane Aggravates Hippocampal
Inflammation and Microglia Activation in
GK Rats
Given the findings that sevoflurane exposure induced cognitive
decline in GK rats, we next investigated the possible underlying
mechanism. Pro-inflammatory cytokines, particularly IL-1β,
TNF-α and IL-6, are associated with cognitive impairment
(Perry, 2004; Goshen et al., 2007; Teeling and Perry, 2009;
Patanella et al., 2010). We therefore assessed the effects of
the sevoflurane exposure on the levels of IL-1β, TNF-α, and
IL-6 in the hippocampus, a brain structure that is critical for
learning and memory. Western blot analysis revealed that the
protein levels of IL-1β, TNF-α, and IL-6 in the hippocampus,
measured at 7 days or 5 months after sevoflurane exposure,
were not different between the two Wistar groups (Figure 5).
However, the protein levels of IL-1β, TNF-α, and IL-6 in the
hippocampus in both groups of GK rats were increased at 7 days
after sevoflurane exposure [IL-1β: F(1,20) = 76.65, P < 0.01;
TNF-α: F(1,20)= 144.8, P< 0.01; IL-6: F(1,20)= 114.6, P< 0.01]
and remained at high levels 5 months after sevoflurane exposure
[IL-1β: F(1,20) = 78.49, P < 0.01; TNF-α: F(1,20) = 96.06,
P < 0.01; IL-6: F(1,20) = 121.7, P < 0.01], compared with
Wistar rats. Of note, the increases in the protein levels of these
pro-inflammatory cytokines were greater in GK rats receiving
sevoflurane exposure than GK control rats at both time points
[7 days: IL-1β: F(1,20)= 10.26, P< 0.01; TNF-α: F(1,20)= 14.02,
P < 0.01; IL-6: F(1,20) = 15.87, P < 0.01; 5 months: IL-1β:
F(1,20) = 18.08; P < 0.01; TNF-α: F(1,20) = 12.09, P < 0.01;
IL-6: F(1,20)= 10.71, P < 0.01].

Microglia are the primary immune cells in the central
nervous system and can be activated by a variety of stimuli,
including anesthetics (Rana et al., 2010; Bitzer-Quintero and
Gonzalez-Burgos, 2012; Ye et al., 2013). Activated microglia
are now recognized to be major sources of proinflammatory
cytokines and chemokines within the central nervous system
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FIGURE 1 | Baseline locomotion assessed by open field test in type 2 diabetic Goto–Kakizaki (GK) rats and non-diabetic Wistar rats at 9 months of age. There were
no differences among four experimental groups in the number of rearings (A) and the number of crossings (B). Data are presented as mean ± SE (n = 10 for each
group).

FIGURE 2 | Fear conditioning in type 2 diabetic Goto–Kakizaki (GK) rats and
non-diabetic Wistar rats 7 days after sevoflurane (SEV) or sham (control, CON)
exposure. Freezing times was shorter in GK + CON rats than Wistar +CON
rats and was further reduced in GK + SEV rats. Of note, freezing times was
similar between two Wistar groups. Data are presented as mean ± SE (n = 10
for each group). ∗P < 0.05 vs. respective Wistar rats; †P < 0.05 vs. GK +
CON rats.

(Bitzer-Quintero and Gonzalez-Burgos, 2012). We therefore
examined the effects of the sevoflurane exposure on microglia
activation using immunofluorescent study. As shown in Figure 6,
there are few activated microglia, as defined by strong
CD11b immunoreactivity, an enlarged soma, fewer and shorter
processes, in the hippocampus in two groups of Wistar rats
at 7 days or 5 months after sevoflurane exposure. In contrast,
activated microglia were clearly observed in the hippocampus
in both groups of GK rats at each time point. Moreover, the
number of activated microglia was significantly greater in GK
rats receiving sevoflurane exposure when compared with GK
control rats [7 days: effect of diabetes: F(1,12) = 87.07, P < 0.01;
effect of SEV: F(1,12) = 13.65, P < 0.01; 5 months: effect of
diabetes: F(1,12)= 73.5, P < 0.01; effect of SEV: F(1,12)= 15.89,
P < 0.01].

Sevoflurane Does Not Alter the
Metabolic, Hemodynamic, and
Physiologic Parameters in Both Wistar
and GK Rats
GK control rats exhibited significantly smaller weight gain
[F(1,28) = 88.35, P < 0.01] during the experimental period as
compared to Wistar control rats. Plasma glucose concentrations
[F(1,28) = 204.6, P < 0.01] were significantly higher but plasma
insulin levels [F(1,28) = 7.44, P < 0.01] were significantly
lower in GK control rats than in Wistar control rats at 9 and
14 months of age (Table 1). These data indicate that GK rats
develop diabetes with insulin deficiency during the experimental
period. Sevoflurane exposure did not affect body weight, plasma
glucose concentrations, and insulin levels in either Wistar or
GK rats.

Before sevoflurane exposure, mean BP [F(1,28) = 18.61,
P < 0.01] was significantly increased in GK control rats than in
Wistar control rats, however, heart rate, the acidity (pH), arterial
carbon dioxide tension (PaCO2), arterial oxygen tension (PaO2),
and arterial oxygen saturation (SaO2) was similar between two
control groups (Table 2). Notably, sevoflurane exposure did not
alter any of these parameters in either Wistar or GK rats. These
data excluded the possibility that the molecular and behavioral
changes observed in the study were due to hemodynamic or
physiologic side effects of sevoflurane.

DISCUSSION

The major findings of this study are as follows: (1) sevoflurane
exposure induces exaggerated and persistent cognitive decline
in type 2 diabetic GK rats, whereas it has no effects on
cognitive function in Wistar rats; (2) sevoflurane exposure
further increases expression of proinflammatory cytokines and
activation of microglia in the hippocampus in GK rats but not
in Wistar rats. Taken together, these data suggest that type 2
DM increases sensitivity and susceptibility to the insult from
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FIGURE 3 | The ability of spatial information acquisition assessed by Place trial in type 2 diabetic Goto–Kakizaki (GK) rats and non-diabetic Wistar rats 5 months
after sevoflurane (SEV) or sham (control, CON) exposure. There was no difference across four experimental groups in swimming speed throughout 4 consecutive
days (A). However, both groups of GK rats took longer to locate the submerged platform than Wistar rats on the last two trials, and the GK + SEV rats spent more
time to find the submerged platform than GK + CON rats (B). Data are presented as mean ± SE (n = 10 for each group). ∗P < 0.05 vs. respective Wistar rats;
†P < 0.05 vs. GK+CON rats.

FIGURE 4 | The memory retention capabilities assessed by Probe trial in type 2 diabetic Goto–Kakizaki (GK) rats and non-diabetic Wistar rats 5 months after
sevoflurane (SEV) or sham (control, CON) exposure. The number of original platform (the third quadrant) crossings (A) and the percent time spent in the third
quadrant (B) were reduced in both groups of GK rats than Wistar rats. Moreover, the number of platform crossings and the percent time spent in the third quadrant
were less in GK + SEV rats than those in GK + CON rats. Data are presented as mean ± SE (n = 10 for each group). ∗P < 0.05 vs. respective Wistar rats; †P < 0.05
vs. GK+CON rats.

sevoflurane exposure, which aggravates neuroinflammation in
the hippocampus, contributing to the acute cognitive decline and
the persistence of cognitive impairment.

In the behavioral paradigms that we used to interrogate
cognitive domains of learning and memory, we found that Wistar
control rats and Wistar rats that received sevoflurane did not
differ in either TFC 7 days after sevoflurane exposure or in
the MWM 5 months after sevoflurane exposure. This finding
is consistent with recent reports that a moderate duration of
sevoflurane exposure did not impair acquisition learning or
memory in both young adult and aged rats (Callaway et al.,
2012; Shen et al., 2013). Several experimental studies have
shown that sevoflurane induces neurodegenerative symptoms
including apoptosis, inflammation, and Aβ accumulation in the
hippocampus, resulting in impairment of both short-term and
long-term cognitive function (Jevtovic-Todorovic et al., 2003;
Tian et al., 2015; Xie et al., 2015), especially in aged animals

(Tian et al., 2015). The discrepancy of these results may be
ascribed to the differences in animal species and age, the dosage
of anesthetic, and/or the time points of the performance of the
cognitive tests. Interestingly, our data showed that GK control
rats, when compared with Wistar control rats, had less freezing
in the TFC test at 9 months of age, longer latency to find the
submerged platform as well as reduced number of platform
crossings and percent time spent in third quadrant in the MWM
test at the end of experiments, indicating impairment in their
learning abilities and memory capabilities. These findings are in
agreement with previous studies showing that the development
of type 2 DM may causes cognitive dysfunction (Moreira et al.,
2007; Li et al., 2013b; Zhao et al., 2013), which is associated with
an increased risk of developing all forms of dementia, including
vascular dementia and Alzheimer’s disease (Biessels et al., 2006;
Kopf and Frolich, 2009). Importantly, our data showed that GK
rats receiving sevoflurane exhibited both an early exacerbation
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FIGURE 5 | Representative Western blots (A) and quantitative comparison of protein levels for pro-inflammatory cytokines IL-1β (B), TNF-α (C), and IL-6 (D) in the
hippocampus in type 2 diabetic Goto–Kakizaki (GK) rats and non-diabetic Wistar rats 7 days and 5 months after sevoflurane (SEV) or sham (control, CON) exposure.
The levels of pro-inflammatory cytokines in the hippocampus were higher in GK + CON rats than those in Wistar + CON rats at both time points and were further
increased in GK + SEV rats. Data are presented as mean ± SE (n = 6 for each group). ∗P < 0.05 vs. respective Wistar rats at the same time point; †P < 0.05 vs. GK
+ CON rats at the same time point.

FIGURE 6 | Microglia activation in the hippocampus in type 2 diabetic Goto–Kakizaki (GK) rats and non-diabetic Wistar rats 7 days and 5 months after sevoflurane
(SEV) or sham (control, CON) exposure. (A) Representative photomicrographs showing CD11b-immunoreactive microglia in the hippocampus in each group.
(B) Representative photomicrographs showing non-activated and activated microglia in the hippocampus. (C) Quantitative analysis of activated microglia in the
hippocampus in each group. The number of activated microglia in the hippocampus was higher in GK + CON rats than that in Wistar + CON rats at both time points
and was further increased in GK + SEV rats. Data are presented as mean ± SE (n = 4 for each group). ∗P < 0.05 vs. respective Wistar rats at the same time point;
†P < 0.05 vs. GK + CON rats at the same time point.
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of memory decline as well as a persistent deterioration in both
learning and memory, when compared with GK control rats. Of
note, non-cognitive factors that could have contributed to the
behavioral assessments, such as altered spontaneous movement
in TFC or the swimming speed in MWM, were not significantly
different among four experimental groups. Collectively, these
findings demonstrate that a moderate duration of sevoflurane
exposure has no effect on cognitive function under physiological
conditions, but it leads to exacerbation of the acute cognitive
decline and the persistence of cognitive impairment under type
2 diabetic conditions. To our knowledge, this is the first study
to determine the influence of type 2 DM on anesthetic-induced
cognitive impairment.

Although several mechanisms have been suggested to
be associated with cognitive dysfunction, accumulating
evidence indicates that microglial activation and subsequent
neuroinflammation play major roles in the development
of cognitive dysfunction. Microglial cells are the resident
macrophages in the central nervous system and have been
demonstrated to play an important role in the brain’s
innate immunity and neuroinflammatory processes (Block,
2014). Although microglia have a beneficial healing effect,
activation of microglia is also considered to be toxic to the
neighboring neurons via generating cytotoxic mediators
including proinflammatory cytokines IL-1β, TNF-α, and IL-6
(Burm et al., 2015; Qiu et al., 2016). Indeed, microglial activation
and increased inflammatory cytokines in the brain are deeply

involved in the cognitive dysfunction associated with various
neurodegenerative disorders including Parkinson’s disease,
Alzheimer’s disease, multiple sclerosis, and type 2 DM (Muriach
et al., 2014; Srodulski et al., 2014; Lee et al., 2015; Schmole
et al., 2015; Qiu et al., 2016; Wu et al., 2016). Moreover, recent
studies have demonstrated that surgery or anesthetics can induce
microglial activation and neuroinflammation, contributing to
cognitive impairment (Wang et al., 2014, 2016; Tian et al., 2015;
Qiu et al., 2016). Interventions that reduce microglial activation
and neuroinflammation in the brain can attenuate surgery- or
anesthetic-induced cognitive impairment (Li et al., 2014; Tian
et al., 2015; Qiu et al., 2016; Wang et al., 2016). Our data revealed
that there were no differences in expression of proinflammatory
cytokines IL-1β, TNF-α, and IL-6 and the number of activated
microglia in the hippocampus between Wistar control rats
and Wistar rats receiving sevoflurane 7 days or 5 months after
sevoflurane exposure. However, compared with Wistar control
rats, GK control rats exhibited significant increases in expression
of proinflammatory cytokines and the number of activated
microglia in the hippocampus at both time points. Moreover,
expression of proinflammatory cytokines and the number of
activated microglia in the hippocampus were further augmented
in GK rats receiving sevoflurane compared with GK control rats.
These molecular data were consistent with behavioral findings,
suggesting that microglia-mediated neuroinflammation in the
hippocampus contributes to cognitive dysfunction in type 2
DM, and that sevoflurane exposure induces exacerbation of the

TABLE 1 | Metabolic parameters.

Wistar+CON Wistar+SEV GK+CON GK+SEV

Variables measured at age of 9 months

Body weight (g) 436 ± 5 430 ± 8 362 ± 7∗ 357 ± 5∗

Glucose (mg/dL) 113 ± 2 118 ± 3 235 ± 10∗ 239 ± 8∗

Insulin (µg/L) 2.81 ± 0.32 2.79 ± 0.40 1.25 ± 0.28∗ 1.23 ± 0.36∗

Variables measured at age of 14 months

Body weight (g) 472 ± 6 468 ± 10 374 ± 5∗ 371 ± 9∗

Glucose (mg/dL) 125 ± 4 120 ± 7 218 ± 9∗ 212 ± 6∗

Insulin (µg/L) 3.24 ± 0.37 3.30 ± 0.41 0.87 ± 0.10∗ 0.85 ± 0.11∗

Data are presented as mean ± SE (n = 6–10 for each group). ∗P < 0.05 versus respective Wistar rats at the same time point.

TABLE 2 | Hemodynamic and physiologic parameters before (0 h) and 4 h after sevoflurane exposure.

MBP (mmHg) HR (beat/min) pH PaCO2 (mmHg) PaO2 (mmHg) SaO2 (%)

0 h

Wistar+CON 100 ± 2 329 ± 18 7.41 ± 0.05 38.2 ± 3.1 163 ± 12 98.6 ± 2.2

Wistar+SEV 101 ± 4 332 ± 15 7.40 ± 0.04 40.1 ± 3.5 162 ± 17 98.1 ± 3.9

GK+CON 119 ± 5∗ 330 ± 11 7.39 ± 0.05 39.7 ± 3.0 166 ± 19 98.5 ± 2.7

GK+SEV 121 ± 4∗ 335 ± 13 7.40 ± 0.04 40.4 ± 3.3 160 ± 14 98.3 ± 3.0

4 h

Wistar+CON 97 ± 5 320 ± 16 7.39 ± 0.06 38.5 ± 3.9 162 ± 15 98.8 ± 3.3

Wistar+SEV 99 ± 3 328 ± 20 7.38 ± 0.05 39.1 ± 3.7 161 ± 12 98.2 ± 3.4

GK+CON 120 ± 6∗ 327 ± 14 7.41 ± 0.05 39.2 ± 3.4 163 ± 16 98.6 ± 3.6

GK+SEV 117 ± 5∗ 325 ± 19 7.39 ± 0.04 40.0 ± 3.5 165 ± 18 98.5 ± 4.2

MBP, mean blood pressure; HR, heart rate; PaCO2, arterial carbon dioxide tension; PaO2, arterial oxygen tension; SaO2, arterial oxygen saturation. Data are presented
as mean ± SE (n = 6–10 for each group), ∗P < 0.05 versus respective Wistar rats at the same time point.
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cognitive impairment in type 2 diabetic rats due to aggravation of
neuroinflammation in the hippocampus.

The mechanisms by which sevoflurane aggravates
neuroinflammation in the hippocampus of type 2 diabetic
rats remain unclear. In this study, rats received sevoflurane
at 9 months of age which could be considered as middle
adulthood. We speculate that neuroinflammation may be
prevented by anti-inflammatory counteregulatory mechanisms
that maintain normal brain function in non-diabetic animals
at this time point. The anti-inflammatory mechanisms in the
brain may involve anti-inflammatory external signals (including
anti-inflammatory cytokines, transforming growth factor-β, IL-
10 and IL-1 receptor antagonist) and intracellular mediators
(including endogenous cytoprotective genes or peroxisome
proliferator-activated receptors) that may be expressed or
activated in the brain in response to proinflammatory stimuli
to prevent the inflammatory process and the injury (Tedgui
and Mallat, 2001). Under diabetic conditions, these anti-
inflammatory external signals or mediators may be impaired
or down-regulated, resulting in increased susceptibility to
proinflammatory stimuli (including sevoflurane) and subsequent
aggravation of neuroinflammation. Notably, sevoflurane-
induced aggravation of neuroinflammation in the hippocampus
of GK rats was observed even 5 months after sevoflurane
exposure. This observation suggests that, under diabetic
conditions, sevoflurane exposure might cause permanent
changes in some key regulators of proinflammatory gene
expression, such as the transcription factor nuclear factor-
kappa B. Further studies are needed to elucidate the underlying
mechanisms.

Insulin in the brain has been suggested to play an important
role in promoting learning and memory function (Zhao and
Alkon, 2001). For example, intranasal insulin administration
has been demonstrated to improve glucose uptake and age-
related cognitive decline in older people and aged animals
(Reger et al., 2008; Maimaiti et al., 2016). Additionally, intranasal
insulin administration improves memory function, augments
synaptic proteins, and significantly reduces microglia-mediated
inflammation in the hippocampus in Alzheimer’s disease or
traumatic brain injury in animals (Chen et al., 2014; Brabazon

et al., 2017). Moreover, a recent study showed that sevoflurane
administration caused severe hepatic insulin resistance in a
canine model (Kim et al., 2016). Insulin resistance induced by
sevoflurane might also happen in the brain. In the present study,
GK control rats showed significantly lower levels of plasma
insulin when compared with Wistar control rats. Thus, we could
not exclude the possibility that the cognitive decline observed
in GK rats or exaggeration of cognitive dysfunction induced by
sevoflurane were partly due to reduced insulin levels or increased
insulin resistance in the brain.

With the increasing prevalence of type 2 diabetic patients
undergoing surgery, and the increased risk of complications
associated with type 2 DM, the appropriate perioperative
assessment and management are necessary. The present study
demonstrates that anesthetic sevoflurane induces exaggerated
and persistent cognitive decline in a type 2 diabetic rat
model probably by aggregating hippocampal inflammation.
The findings from this study may provide useful information
regarding clinical anesthetic choice for type 2 diabetic patients in
the future.
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