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The advancement of high-throughput screening technologies facilitates the generation

of massive amount of biological data, a big data phenomena in biomedical science.

Yet, researchers still heavily rely on keyword search and/or literature review to navigate

the databases and analyses are often done in rather small-scale. As a result, the rich

information of a database has not been fully utilized, particularly for the information

embedded in the interactive nature between data points that are largely ignored and

buried. For the past 10 years, probabilistic topic modeling has been recognized as

an effective machine learning algorithm to annotate the hidden thematic structure of

massive collection of documents. The analogy between text corpus and large-scale

genomic data enables the application of text mining tools, like probabilistic topic models,

to explore hidden patterns of genomic data and to the extension of altered biological

functions. In this paper, we developed a generalized probabilistic topic model to analyze

a toxicogenomics dataset that consists of a large number of gene expression data from

the rat livers treated with drugs in multiple dose and time-points. We discovered the

hidden patterns in gene expression associated with the effect of doses and time-points

of treatment. Finally, we illustrated the ability of our model to identify the evidence of

potential reduction of animal use.

Keywords: toxicogenomics, machine learning, probabilistic topic modeling, author-topic model, bioinformatics,

TG-GATEs

Introduction

As first introduced in 1999, toxicogenomics has emerged as a new subdiscipline of toxicology to
take advantage of the newly available genomics profiling technique to gain an enhanced under-
standing of toxicity at the molecular level (Schena et al., 1995; Derisi et al., 1996; Nuwaysir et al.,
1999). Since then, toxicogenomics significantly contributes to toxicological research and has pro-
vided an avenue for joining of multidisciplinary sciences including engineering and informatics
into traditional toxicological research (Afshari et al., 2011). On the other hand, due to high com-
putational cost and lack of advanced knowledge discovery as well as data mining tools, the pace of
toxicogenomics has been tardy in recent years (Chen et al., 2012). First, a significant deterrent has
been the enormous size of toxicogenomic datasets. With perhaps thousands of samples and tens
of thousands of genes, the tremendous size of the toxicogenomic database often is cumbersome
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to handle, analyze and interpret. Gene selection (i.e., selecting rel-
evant genes) and grouping genes (i.e., dealing only partial data
at a time) has often been used to reduce complexity and make
analyses more tractable (Rogers et al., 2005). However, both gene
selection and grouping run the risk of losing valuable information
contained in excluded data. Hence, a method that can efficiently
handle the entire data without losing potentially valuable infor-
mation is desirable. Second, any given biological phenomenon
normally involves multiple biological pathways and mechanisms.
Currently, some existing clustering algorithms like hierarchical
cluster analysis and k-means only allow individuals to be assigned
into mutually exclusive clusters. To capture the reality of biolog-
ical phenomena in gene expression data, we need an algorithm
to assign individuals into multiple clusters and to give each clus-
ter a summary of most important genes. One might argue that
some fuzzy clustering algorithms (Pal and Bezdek, 1995; Fu and
Medico, 2007) are able to assign multiple clusters, yet very few
existing algorithm provide much interpretability for clusters. In
order to thoroughly utilize the rich interaction in a large database,
we desire to organize our samples into meaningful clusters which
can be directly linked by actual biological pathways.

The introduction of Latent Dirichlet Allocation (LDA) (Blei
et al., 2003) along with its predecessor Probabilistic Latent Seman-
tic Analysis (Hofmann, 1999) provide a new type of statistical
models, namely, probabilistic topic models that have become a
standard approach to analyze large collections of unstructured
text documents. For a large corpus, probabilistic topic models
assume the existence of latent variables (i.e., topics) that govern
the likelihood of appearance for each word. Topics are defined
as distributions over a fixed vocabulary. Based on the most likely
words in each topic, we are able to interpret the meanings of top-
ics. This intuition can be seamlessly transformed into genomics
datasets. For a large toxicogenomic data, we assume that there
exist latent biological processes that govern alteration of gene
expression levels after samples are treated with drugs at vari-
ous dose levels and time-points. Each latent biological process
is characterized by a distribution of a fixed number of genes.
By annotating the mostly likely differentially expressed genes
in a latent biological process, we then can link the latent vari-
able with a real biological pathway. In recent years, probabilis-
tic topic models have spawn many similar works on genomic
data, noticeably in population genetics (Pritchard et al., 2000),
chemogenomic profiling (Flaherty et al., 2005) and microarray
data (Rogers et al., 2005; Bicego et al., 2012; Yu et al., 2014). How-
ever, most of the previous works of probabilistic topic models on
microarray data either have limited size of samples, or proba-
bilistic topic models are used merely for their clustering ability.
The versatility of probabilistic topic models has not been fully
assessed.

We proposed a probabilistic topic model that was tailored to
the structure of a dataset and applied the model to a large tox-
icogenomics database recently made publicly available. This so-
called asymmetric author-topic model (ATT model) combines
author-topic model (Rosen-Zvi et al., 2004) with asymmetric
prior (Wallach et al., 2009). In Section Materials and Methods,
we outlined our data, the proposed model and its application to
toxicogenomic data. In Section Results, we presented the analysis

results. Analyses were done with MALLET (McCallum, 2002)
that contains the option for asymmetric prior distributions.

Materials and Methods

Toxicogenomic Data
The Japanese Toxicogenomics Project (Uehara et al., 2010;
Chen et al., 2012) is a 10-year collaborative project involving
two Japanese government institutes and 18 private companies
(Igarashi et al., 2015). The project produced a comprehensive
gene expression database, called Open TG-GATEs for the effects
of 170 compounds (drugs) on liver and kidney as primary target
organs in both in vivo and in vitro experiments. Specifically, in
the in vivo experiment, animals are treated at three different doses
(low, middle, and high) of drugs once every day for four different
treatment durations (3, 7, 14, and 28 days). In addition, control
animals are concurrent with all the 12 combinations of doses and
durations. More details on the animals and experimental design
have been described previously (Uehara et al., 2011). Microarray
based gene expression data were generated using the GeneChip R©

Rat Genome 230 2.0 Arrays (Affymetrix, Santa Clara, CA, USA)
that contains 31,042 probe sets. The data used in this study
is obtained from the Annual International Conference on
Critical Assessment of Massive Data Analysis (CAMDA)1 2013
(http://dokuwiki.bioinf.jku.at/doku.php/tgp_prepro). In this
paper, only the data from in vivo repeated dose experiment was
used.

Data Preprocessing
Similar to others (Rogers et al., 2005; Bicego et al., 2010; Yu et al.,
2014), our first step of analysis was to obtain a “document-word”
matrix for gene expression data to apply topic model. Instead of
the sample-gene expression matrix used in others’ works, we cre-
ated treatment-fold change matrix for our studies. This was due
to the fact that TG-GATEs has multiple treated samples for one
treatment (a unique drug-time-dose combination) along with
controlled group. Therefore, we were able to apply a more refined
treatment-fold change matrix as our inputs. Here, all fold change
values of gene expressions between treated and control samples
were calculated and used as the value of elements of the matrix.
Genes with absolute fold change greater than 1.5 were considered
as differentially expressed genes (DEGs) and set the fold change
values zeros for the non-DEG. The final product is a treatment-
fold change matrix where each column represents a treatment
and each row represents a gene.

Probabilistic Topic Models and Their Applications
Latent Dirichlet Allocation in Microarray Data

The fundamental concept of probabilistic topic modeling is the
assumption of the existence of latent variables. In Latent Dirich-
let Allocation (LDA) (Blei et al., 2003), the latent variables are
referred as “topics” and words in documents are chosen based on
what topics the document are related to. “Topics” then stands for
groups of words that are likely to co-occur in a document. Simi-
lar to the previous studies (Bicego et al., 2010; Yu et al., 2014), we

1Download preprocessed TGP data - CAMDA 2013 [Online]. Available online at:

http://dokuwiki.bioinf.jku.at/doku.php/tgp_prepro [Accessed 04/08 2014].
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referred latent variables in toxicogenomics as “latent biological
process” and words in documents were replaced by genes. The
elements of document-word matrix, which usually are frequen-
cies of occurrences of words in text mining, were transformed
to the fold change values in our treatment-gene matrix. Hence,
the latent biological processes represent the groups of genes that
are significantly co-expressed (or often have high fold change
values within groups). Unlike (Rogers et al., 2005) which alters
the original assumption of LDA model, we utilized the origi-
nal assumption of LDA and this enabled us to implement our
models via existing resources of LDA (i.e., MALLET, the open-
source software used in our analysis). Therefore, similar to LDA,
the model inferences were primarily focused on two probability
distributions. In the context of TG-GATEs data, the probability
distribution of latent biological processes for each treatment is
P(Z|Tr), where Z is defined as latent process assignment while
Tr is defined as treatment to describe biological processes that
are activated in a specific treatment. Meanwhile, the probability
distribution of gene for each latent biological process is P(Ge|Z),
where Ge is defined as genes that are DEGs from which we are
able to associate the latent process to biological pathways. The
ability of linking latent process to biological pathway is a defi-
nite advantage over other clustering algorithms and we explored
its applications in Section Functional Annotation and Similarity
Ranking.

Asymmetric Author-topic Model

Although LDA could be used for treatment-centric analysis, it
doesn’t take many unique features of the TG-GATEs data into
account. In addition to examine the treatment-centric view,
drug-centric and/or time-dose-centric analysis were another
important component of this study. The author-topic model
(Rosen-Zvi et al., 2004) is a proper methodology to incorpo-
rate other aspects of data into model construction. Authorship
in author-topic model can be seen as a regrouping of all the
documents. While both models are essentially identical, author-
topic model groups documents together and give LDA model
an author-oriented view for inferences. In other words, once
the regrouping is done, the whole process can be seen as an
LDA model again. For TG-GATEs data, treatment is defined
as a unique drug-time-dose combination, thus we can regroup
treatments based on their drug or time-dose to provide a drug-
centric or a time-dose-wise analysis. The inferences on models
are the same except treatment is replaced by either drug or time-
dose. Furthermore, P(Z|Tr) is replaced by P(Z|Dr) (Dr stands
for Drug) and P(Z|DoTi) (DoTi stands for time-dose) respec-
tively. Table 1 summarizes the total number of individuals in
each setting.

As Wallach et al. (2009) pointed out, asymmetric prior on
the probability distribution of topic for a document substan-
tially increases the robustness of LDA, yet only adds negligible
model complexity and computational cost. Therefore, we fur-
ther improved author-topic model by introducing an asymmetric
prior. The asymmetry of priors can be easily achieved since the
chosen software MALLET has a build-in option in the command.
More information about MALLET can be found on their website
(http://mallet.cs.umass.edu/).

TABLE 1 | Summary of different feature specifications of asymmetric

author-topic model.

Model no. Feature Number of individuals Outputs

1 Treatment 1554 P(Ge|Z), P(Z|Tr)

2 Drug 131 P(Ge|Z), P(Z|Dr)

3 Time-dose 12 P(Ge|Z), P(Z|DoTi)

Functional Annotation and Similarity Ranking
One essential aspect of any clustering algorithm is to organize
individuals into their respective clusters. However, the clusters
often are difficult to interpret. Through asymmetric author-
topic model, individuals are clustered to multiple latent biolog-
ical processes based on the probability distribution P(Z|Tr) (or
P(Z|Dr), P(Z|DoTi)). For each latent biological process, prob-
ability distribution P(Ge|Z) controls how likely each gene is
differentially expressed (i.e., a DEG). According to our results,
there are often fewer than 200 genes (out of 31,042 total genes)
that have positive probability in each latent biological process
while other genes have probability of zeros. We then anno-
tate the found list of DEGs in each latent biological process
through online database DAVID (Huang Da et al., 2009). Con-
sequently, every feature (i.e., treatment, drug, or time-dose) in
the database is automatically connected to annotated biological
pathways. The ability of our proposed model to link from the
latent biological processes to functional annotation, such as real
biological pathways, is a significant advantage over other existing
methods.

Another application of author-topic model is to find most
similar feature to a given one. We can quantitatively measure the
similarity between a pair of features by calculating the symmet-
ric Kullback–Leibler divergence (sKL) (Rosen-Zvi et al., 2004)
between a pair of P(Z|Tr) (or P(Z|Dr), P(Z|DoTi)). For instance,
by finding the sKL between P(Z|Dr1) and P(Z|Dr2), we can tell
how similar Drug 1 and Drug 2 is (i.e., a low sKL score indicates
that two drugs exhibit similar topic distributions). Given a drug,
our model is able to recommend a list of drugs ranked by the sim-
ilarity score sKL. Due to (1) the similarity is based on P(Z|Dr), the
probability of latent biological processes given drugs, and (2) all
the latent biological processes are able to annotated to biologi-
cal pathways, we know which drugs are similar as well as exactly
which pathways link them together.

Results

Model Selection
We run all three of our models on MALLET, whose model
inference is based on Gibbs sampling algorithm. One common
concern using Gibbs sampling is the convergence of the model.
Generally, convergence of the model is monitored via tracking
the probability of the likelihood function after burn-in. After the
likelihood probability stabilizes, we can deem convergence to be
adequate. We run 3000 iterations for all models and observe
stability after about 1500 iterations. We also perform sensitiv-
ity analyses for major parameters, including number of latent
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biological processes, and the initial values for hyperpriors. Hyper-
priors are usually not big factors in the model as they are con-
stantly revised during rounds of Gibbs sampling inference. On
the other hand, the number of latent biological processes is
important. While there is no way to know how many biological
processes are involved in the whole database, we can estimate the
number based on perplexity performance (Blei et al., 2003). In
addition, asymmetric topic models have been shown to be robust
to variations in the number of topics (Wallach et al., 2009). All
the parameters are chosen based on 10-fold cross-validation. For
model 1 (treatment), the number of latent biological processes
is 200. For models 2 and 3 (drug and time-dose) the number of
latent biological processes is 100.

Application on Glutathione Depletion
One proven application of TGP database is detection of
glutathione depletion (Uehara et al., 2010). Taking well-known
hepatotoxin acetaminophen as an example, it was reported that
glutathione metabolism was related to acetaminophen-induced
hepatotoxicity and the mechanisms that underline such liver
injury (Agarwal et al., 2011; Ben-Shachar et al., 2012). For
instance, James et al. (2003) pointed out that acetaminophen
could induce potentially fatal, hepatic centrilobular necrosis
when taken in overdose, since the amount of active metabo-
lite overwhelmed the detoxification capacity of intracellular glu-
tathione. Among our proposed models, model 1 gives us a
treatment-centric view of the TGP database. Table 2 shows
P(Z|Tr) from model 1 that represents the most likely latent bio-
logical processes that encode biological phenomena associated
with acetaminophen. Latent process 161 is identified in 8 out
of 12 time-dose combinations for acetaminophen, as early as
the 3-day treatment with the middle dose of 600mg. Further-
more, the list of most probable DEGs for latent process 161 is
extracted from P(Ge|Z) and functionally annotated by online
database DAVID. As seen on Table 3, glutathione metabolism

pathway is significantly identified in the KEGG database, which
is consistent with the previous findings.

In model 2, the drug-centric view of the TGP database, we
observe similar results. Again, the most likely active latent pro-
cess for acetaminophen is latent process 92 (Table 4) and it
is once again significantly identified as glutathione metabolism
pathway in the KEGG database (Table 5). In addition, by simply
searching the drugs that also have No. 92 among the top ranked
latent processes, we find that bromobenzene, chlormezanone,
coumarin, methimazole, and ticlopidine strongly link with glu-
tathione metabolism pathway (Table 4), and hence presumably
become causes of glutathione depletion. Such hepatotoxicity
associated with these 6 drugs through the glutathionemetabolism
pathway is well supported in other papers (Jollow et al., 1974;
Thor et al., 1979;Wright et al., 1996; Mizutani et al., 2000; Uehara
et al., 2010; Shimizu et al., 2011). Overall, our results indicate
that the construction of our proposedmodel indeedmatches with
the well-known biological processes and hence the model is able
to detect potential treatments or drugs that cause glutathione
depletion.

Application of Drug Similarity and Potential
Reduction of Animal Use
Through sKL score (described in Section Functional Annota-
tion and Similarity Ranking), functional similarity of drugs can
be explored. As an example, we can obtain the most function-
ally similar drugs to acetaminophen as shown in Table 6. The
drugs that have smaller sKL score with acetaminophen (i.e., a
pair-wise score) will exhibit most similar latent biological pro-
cesses. We can observe that bromobenzene and coumarin, which
linked through glutathione depletion pathway, are on the list.

Another application of sKL score is to be used as potential
evidence of reduction of animal use. Reducing, replacing and
refining animal use (3Rs) has been increasingly a goal in toxicoge-
nomics (Russell et al., 1959; Workman et al., 2010). While dose

TABLE 2 | The probability of latent biological processes for acetaminophen under model 1.

Treatment index Dose Time (Days) Top ranked latent biological processes

1 Probability 2 Probability 3 Probability

ACETAMINOPHEN

36 Low 3 2 0.149 36 0.124 181 0.122

37 Middle 3 161 0.279 111 0.168 116 0.098

38 High 3 161 0.139 39 0.1 169 0.1

39 Low 7 68 0.305 162 0.211 69 0.165

40 Middle 7 161 0.366 149 0.12 57 0.079

41 High 7 161 0.275 27 0.08 39 0.066

42 Low 14 69 0.153 134 0.138 63 0.138

43 Middle 14 161 0.342 128 0.104 37 0.098

44 High 14 161 0.274 113 0.082 128 0.074

45 Low 28 69 0.175 96 0.175 160 0.153

46 Middle 28 161 0.278 96 0.152 14 0.085

47 High 28 161 0.366 197 0.091 164 0.07

Only top three topics for each different treatment (drug-dose-time) are shown. For full table, see Supplementary 1.

Topic 161 (in bold) is significantly associated with glutathione metabolism.
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TABLE 3 | Functional annotation of KEGG pathways on latent biological process 161 under model 1.

Term Count FDR P-value Genes

rno00480:Glutathione metabolism 8 1.55E-05 1.65E-08 GPX2, GSR, GCLC, G6PD, GSTA5, GCLM, GSTP1, MGST2

rno00980:Metabolism of xenobiotics by cytochrome P450 7 0.00142 1.51E-06 GSTA5, ADH4, UGT2B1, EPHX1, CYP3A9, GSTP1, MGST2

rno00982:Drug metabolism 7 0.00420 4.47E-06 GSTA5, ADH4, UGT2B1, AOX1, CYP3A9, GSTP1, MGST2

Functional annotation is done on online database David. Only the top 3 annotated of KEGG pathway terms are shown here. For full table, see Supplementary 2.

TABLE 4 | The probability of latent biological processes for acetaminophen, bromobenzene, chlormezanone, coumarin, methimazole, and ticlopidine

under model 2.

Drug Index Drug Top ranked latent biological processes

1 Probability 2 Probability 3 Probability

3 Acetaminophen 92 0.201 17 0.190 1 0.118

16 Bromobenzene 92 0.318 1 0.138 17 0.125

27 Chlormezanone 9 0.341 92 0.192 1 0.128

37 Coumarin 98 0.293 92 0.193 1 0.142

81 Methimazole 92 0.211 21 0.185 32 0.143

123 Ticlopidine 9 0.248 92 0.093 1 0.089

Again, only top three latent processes for each drug are shown. For full table, see Supplementary 3.

Topic 92 (in bold) is significantly associated with glutathione metabolism.

TABLE 5 | Functional annotation of KEGG pathways on latent biological process 92 under model 2.

Term Count FDR P-value Genes

rno00480:Glutathione metabolism 11 5.67E-07 5.18E-10 GSTM1, GPX2, GSR, GCLC, GSTM4, G6PD, GSTA5, GSTT1, GCLM,

GSTP1, GSTM7, MGST2

rno00980:Metabolism of xenobiotics by cytochrome P450 9 9.31E-04 8.51E-07 GSTM1, GSTM4, GSTA5, ADH4, UGT2B1, EPHX1, GSTT1, GSTP1,

GSTM7, MGST2

rno00982:Drug metabolism 9 0.00384 3.51E-06 GSTM1, GSTM4, GSTA5, ADH4, UGT2B1, AOX1, GSTT1, GSTP1,

GSTM7, MGST2

Functional annotation is done on online database David. Only the top 3 annotated of KEGG pathway terms are shown here. For full table, see Supplementary 4.

TABLE 6 | Most similar drugs to acetaminophen based on sKL scores.

Drug name sKL score

Bromobenzene 3.04238

Phenacetin 4.47157

Bucetin 4.51243

Cimetidine 5.46445

Disopyramide 5.85482

Cephalothin 5.89109

Papaverine 5.92761

Erythromycin ethylsuccinate 5.92976

Coumarin 6.03134

Nitrofurantoin 6.03479

The smaller the sKL is, the more similar two drugs are. Only top 10 ranked drugs are

shown here. For full table, see Supplementary 5.

level and time-point are expected to be important, there is gen-
erally no easy way to determine which treatment is ignorable for
a given drug. sKL scores measure the similarity between a pair of
treatments. The idea is to see if either dose or time in treatments

of a drug does not play a significant role to affect sKL score. If
one of them is not significant to sKL score, then there exists the
potential to reduce the number of treatments without compro-
mising study goals. Similar to multivariate analysis of variance
(MANOVA), the importance of dose and time can be attained
with generalized linear models on sKL scores as the following:

sKL = β1XDose + β2XTime,

sKL = β1XDose, or

sKL = β1XTime

Here, XDose is defined as a categorical variable that includes
six different dose pairs (i.e., Low-Low, Low-Middle, Low-
High, Middle-Middle, Middle-High, and High-High). XTime is
defined as a continuous non-negative variable that represents the
difference between two time-points. By fitting the generalized
linear model using various commonmodel criteria (e.g., adjusted
R-square, AIC, and BIC), we can compare dose and/or time sig-
nificance regarding to sKL score. A level of feature that has no
significant impact on sKL score can be potentially reduced.While
only having 12 individuals, model 3 can be used to detect the
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TABLE 7 | Generalized linear models for sKL scores under three (Adjusted R-square, AIC, and BIC) criteria, with best outcomes bolded.

GLMs Adjusted R-square AIC BIC

D and T Dose Time D and T Dose Time D and T Dose Time

Model 3 0.456 0.437 0.076 82.703 93.771 117.212 98.030 106.909 121.591

Acetaminophen 0.559 0.453 0.051 204.660 216.462 246.815 219.988 229.600 251.194

Coumarin 0.592 0.583 0.016 258.487 257.649 296.490 273.814 270.786 300.869

Benzbromarone 0.813 0.816 0.004 225.281 223.221 340.736 240.609 236.359 345.115

overall significance of dose and time. Unsurprisingly, dose and
time generally are both significant to sKL score as seen inTable 7.
It is naïve to think we can remove any treatment regardless which
drug is been tested, yet there might be specific drugs that fit our
assumption. As examples, we chose acetaminophen, coumarin,
and benzbromarone to be tested in the generalized linear mod-
els. Among all, only benzbromarone consistently demonstrate
the superiority of dose only model under all three model criteria.
Therefore, it is possible to combine time-points for treatments
of benzbromarone due to the insignificance of time regarding to
sKL score.

Discussion

Our proposed asymmetric author-topic model is useful in the
large-scale genomics data set analysis because of their ability
to handle large numbers of potentially interrelated variables,
and because of their ability to discern statistical relationships
between drugs and their inner pathways. In this paper, we first
give our rationale on why a probabilistic topic model is suit-
able for genomic profiling expression, such as the Japanese
Toxicogenomics Project database. We have demonstrated that
our asymmetric author-topic model can be implemented to
explore hidden relationships among different features (treatment,
drug, and time-dose) and genes through latent biological pro-
cesses. The straightforward data preprocessing makes the tran-
sition of data format manageable and easy to expand. In fact,
the same principle of data preprocessing can also be applied
to next-generation sequencing (NGS) technology since microar-
ray expression intensity can be simply replaced by read counts
in NGS (Yu et al., 2014). Since our model enhances the tra-
ditional probabilistic topic modeling approach without altering
the core assumptions, our framework can be easily adapted for
new probabilistic topic model. For example, if we have labels
or classes attached to each treatment, we can again enhanced
supervised topic models (Blei and McAuliffe, 2007) with asym-
metric priors and applied the model on database with same
feature-centric analysis capacity. Because of the popularity of
probabilistic topic modeling, there are many existing and well-
built software packages ready to be used, including MALLET.
Therefore, the implementation of newer probability topic mod-
els should also be straightforward in the future. Moreover, other
models can also potentially improve some of the limitation our
model has. Although changing a continuous value (i.e., fold
change values) into a discrete value (i.e., counts) has been done
before (Flaherty et al., 2005), this process ultimately decrease the

precision of the data. Models like Gaussian mixture model that
supports continuous outcome will eliminate the need of altering
data. Another limitation of our model is the need to determine
the number of latent biological processes in advanced. While the
perplexity analysis ensures a relatively proper number of latent
processes were chosen initially, finding an optimal number of
latent processes is still difficult and costly. Many nonparamet-
ric Bayesian models has been developed, including Hierarchical
Dirichlet Processes (Teh et al., 2006), and Hierarchical Pachinko
Allocation (Mimno et al., 2007), and the number of latent pro-
cesses is automatically determined within the algorithm.

One definite advantage of asymmetric author-topic model is
the ability to connect the latent biological processes with func-
tional annotation. By connecting our finding with KEGG path-
ways via DAVID, we further increase the interpretability of latent
biological processes. Therefore, we are able to browse and inter-
act with TGP data through meaningful and interpretable bio-
logical pathway (i.e., glutathione metabolism). Regarding the
application on glutathione depletion, acetaminophen is a well-
known drug that can potentially cause fatal liver injury due
to an overdose. Through our approach, we identify that the
alteration of glutathione metabolism at even the middle dose
(600mg) of acetaminophen as early as treatment day three. The
conclusion of linkages among pathway glutathione metabolism,
acetaminophen, and other 5 drugs are found and confirmed in
other papers. This demonstrates the possibility of finding existing
or new pathway-like annotation through our proposed model,
and the ability to cluster drugs with similarmechanisms of action.
It is possible to even predict potential pathways for a new drug by
estimating the probability distribution of latent biological pro-
cesses under this framework. Our model also has the capability
to adapt analysis that put focus on different features of data.
We show how to identify the dominant factor in dose and time
combinations in our second application through generalized lin-
ear model. As animal reduction in experiment becomes a global
trend, the outcome of similarity of time-dose combination is a
viable approach to reducing animals needed for future study.
Overall, the asymmetric author-topic model has demonstrated
potential to be an accessible and flexible approach for finding
hidden patterns in large toxicogenomic data.
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