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Mesenchymal stromal cells in the
treatment of pediatric
hematopoietic cell
transplantation-related
complications (graft vs. host
disease, hemorrhagic cystitis, graft
failure and poor graft function): a
single center experience
Maria Pérez-Torres Lobato1,2, Maria Isabel Benitez-Carabante1,2,
Laura Alonso1,2, Silvia Torrents3, Nerea Castillo Flores3,
Maria Luz Uria Oficialdegui1,2, Melissa Panesso1,2,
Carla Alonso-Martínez4, Maria Oliveras4, Berta Renedo-Miró4,
Joaquim Vives2,3,5 and Cristina Diaz-de-Heredia1,2*
1Department of Paediatric Oncology and Haematology, Vall D’Hebron University Hospital, Barcelona,
Spain, 2Vall D’Hebron Research Institute (VHIR), Barcelona, Spain, 3Banc de Sang I Teixits, Barcelona,
Spain, 4Department of Pharmacy, Vall D’Hebron University Hospital, Barcelona, Spain, 5Department of
Medicine, Faculty of Medicine, Autonomous University of Barcelona, Barcelona, Spain
Objectives: To describe mesenchymal stromal cells (MSCs) in the treatment of
hematopoietic stem cell transplantation (HSCT) complications and to assess its
safety and efficacy.
Methods: Single-center retrospective study (2016–2023). Patients under 20
years who received MSCs for the treatment of HSCT-related complications
were included.
Results: Thirty patients (53.7% boys), median age at transplant 11 years (range 2–19)
were included. MSCs indications were: graft-vs.-host disease (GVHD) in 18 patients
(60%), of them 13 had acute GVHD (43.3%) and 5 chronic GVHD (16.7%); Grade 3–4
hemorrhagic cystitis (HC) in 4 (13.3%); poor graft function (PGF) in 6 (20%), 5 of
them receiving MSCs with a CD34 stem cell-boost coinfusion; graft failure (GF) in
2 (6.7%), to enhance engraftment after a subsequent HSCT. Infusion-related-
adverse-events were not reported. Overall response (OR) was 83% (25/30); 44%
of responders (11/25) showed complete response (CR). OR for GVHD, HC, PGF
and GF was 83.3%, 100%, 66.7% and 100% respectively. Response rate was 40%
(95% CI: 20–55) and 79% (95% CI: 57–89) at 15 and 30 days. With a median
follow-up of 21 months (IQR11–52.5), overall survival (OS) was 86% (95% CI: 74–
100) and 79% (95% CI: 65–95) at 6 and 12 months post-MSCs infusion.
Conclusion: In our study, the most frequent indication of MSCs was refractory
aGVHD (43.3%). Response rates were high (OR 83%) and safety profile was good.
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Introduction

Advanced Therapy Medicinal Products (ATMP) represent a

new category of medicines with a wide therapeutic potential for

treating different types of hereditary and acquired diseases.

ATMP encompass gene therapy, somatic cell therapy (SCT),

and tissue-engineered products (1, 2). SCT refers to

autologous or allogeneic cellular material that has been

manipulated to change their biological characteristics and then

is transferred into a patient for medical purposes (3–5). One

type of SCT are mesenchymal stromal cells (MSCs). MSCs are

multipotent, non-hematopoietic stem cells able to differentiate

into various cell types, such as adipocytes, osteocytes,

chondrocytes, and cells present in other connective tissues

(6, 7). MSCs, which are present in adult and fetal tissues, can

be derived from numerous sources such as adult bone marrow

(BM), umbilical cord blood (UCB) or adipose tissue (8).

However, BM and UCB are the most common sources for

clinical use (9, 10). MSCs exhibit plasticity, self-renewal,

immunomodulation, and anti-inflammatory properties. For

example, they are able to secrete cytokines and growth factors

at sites of tissue injury and inflammation or induce

immunosuppressive effects by direct cell-to-cell interaction

and paracrine signalling (11, 12). Additionally, they play an

essential role in the BM niche, as they have the ability to

support hematopoietic stem cell survival and proliferation (6).

These properties have prompted their clinical use in the

setting of regenerative medicine and hematopoietic stem cell

transplantation (HSCT) (7, 8, 10).

HSCT is an established curative treatment modality for

patients with severe hematological and non-hematological

diseases (13, 14). Given the biological properties of MSCs,

preclinical and clinical studies showed promising results in the

treatment of HSCT complications, such as GVHD (15–17),

GF, poor graft function (PGF) (18–21) and hemorrhagic

cystitis (HC) (22). However, available clinical trials are scarce

(15, 17, 23), and the efficacy of MSCs in a transplantation

setting is so far unclear.
Methods

Study aims

The aim of this study was to describe the clinical use of

allogenic MSCs in the treatment of HSCTs complications

(GVHD, HC, GF or PGF) in the real-world practice.

The secondary objectives were to determine:

- The safety profile of MSCs during and immediately after

infusion [infusion-related adverse events (AE)].

- The efficacy of MSCs therapy in terms of response rate

[overall response (OR), complete response (CR), partial

response (PR), probability of response, no response (NR)] and

overall survival (OS).
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Study design and inclusion criteria

Retrospective descriptive study between January 2016 and

January 2023. Patients under 20 years of age who had received

MSCs for the treatment of the above-mentioned HSCT-related

complications were included. They all had at least 3 months of

follow-up after MSCs infusions. All patients were treated in a

single-center Pediatric Bone Marrow Transplant Unit. Neither

patient received MSCs within a clinical trial, but off label.

Given that the efficacy of MSCs in the transplantation setting

is still unclear, they received MSCs when first line-therapies

failed, which is the standard of care in our center.

For acute and chronic GVHD, MSCs were used in patients

diagnosed with steroid-refractory (SR) GVHD after at least two

previous lines of treatment. During MSCs treatment, previous

immunosuppressive therapies were not discontinued, unless

clinically indicated.

For patients with HC, MSCs therapy was indicated in case of

grade 3 or 4 HC. As with GVHD, previous supportive therapies

were not discontinued during MSCs treatment.

For patients diagnosed with PGF or GF, indication of MSC

therapy was made based on the definitions below (24, 25).
Data sources and ethics

Anonymized clinical data were collected from the clinical

records at Vall d’Hebron Hospital (VHH). Patients and/or

legal tutors gave written consent for the transplantation

procedure and to record patient´s anonymized

transplantation-related data for studies. Legal tutors and/or

patients signed the inform consent to receive compassionate

use MSCs therapy. Good clinical practice according to

Helsinki Declaration were applied. The study was approved by

the Ethics Committee of VHH.
Mesenchymal stromal cells

Non-crossed matched allogenic MSCs were used in all cases.

MSCs doses were manufactured in Banc de Sang i Teixits (BST)

Barcelona, Spain. The dose was the same for all indications.

However, there could be a little variation of the viable cells/kg

dose (between 0.7 and 1.3 × 106), which depended on the

manufacturing and culture expansion process. In this study, the

median dose that patients received was 1.1 viable cells/kg (range

0.8–1.3 × 106 cells/kg).

Considering that we treated different HSCT-complications and

a standardized dose and infusion schedule for MSC therapy has not

yet been established the dosing and infusion schedule was based on

previous publications (25–28). MSCs infusion scheme for each

post-HSCT complication is summarized in Table 1.

MSCs source was either umbilical cord or bone marrow. MSC

from different tissue sources complied with minimal identity
frontiersin.org
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TABLE 1 MSCs therapy indications and infusion scheme.

Previous
treatments

Number of
patients N

(%)

MSCs infusion
scheme

aGVHD GC, ECP, RXL, MMF,
infliximab, sirolimus

13 (43.3) 4 infusions on days:
+1, +4, +11, +18

cGVHD GC, ECP, RXL 5 (16.7)

Graf failure 1–3 previous HSCT 2 (6.7) 2 infusions on days:
+1 (co-infusion with

HSCT), +15

Poor graft
function

Eltrombopag, CD34
boost

6 (20) 2 infusions on days:
+1 (co-infusion with
CD34 boost), +15

Hemorrhagic
cystitis

Cydofovir, intravesical:
hyaluroic acid, E-
aminocaproic acid/
urokinase

4 (13.3) 3–4 infusions on
days: +1, +7, +14,

(+18)

All NA 30 NA

GC, glucocorticoids; ECP, extracorporeal photopheresis; RXL, ruxolitinib; MMF,

mycophenolate; HSCT, hematopoietic stem cell transplant; aGVHD, acute graft

versus host disease; cGVHD, chronic graft versus host disease; NA, not applicable.
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criteria established by the International Society for Cell and Gene

Therapy (29).

Wharton’s Jelly (WJ)-MSCs were derived, expanded and

characterized following Good Manufacturing Practice (GMP)-

compliant procedures and appropriate donor informed consent

as reported extensively elsewhere (30–32). Briefly, a fragment of

umbilical cord tissue was cut longitudinally and the WJ was

scrapped with a surgical scalpel, spread uniformly over the

plastic surface of a T-flask with re-closable lid (TPP,

Trasadingen, Switzerland), and incubated for 30 min at 37°C.

After the incubation, 10 ml of Dulbecco’s modified Eagle’s

medium (DMEM; Gibco, Carlsbad, CA, USA) containing

2 mmol/L glutamine was added and supplemented with

2 × 104 UI/ml penicillin (Invitrogen, New York, NY, USA),

20 mg/ml streptomycin (Invitrogen), 120 µg/ml amphotericin B

(Invitrogen), and 10%–20% human serum B (hSerB, Banc de

Sang i Teixits, Barcelona, Spain). After 2–5 days, a washing step

with saline solution was performed, and 10 ml of fresh medium

was added. From this point, the culture medium was replaced

every 3–4 days. Cells were further expanded in vitro by seeding

cell culture flasks at (1–3) × 103 cell/cm2. When the total number

of cells reached at least 5 × 106, they were frozen in cryovials

producing the master cell bank (MCB). Further expansion was

performed after thawing for the generation of either working cell

bank (WCB) or drug product (DP) directly. Final product (FP)

was defined as the cell suspension resulting from thawing a DP,

washed and conditioned for administration in patients.

MSC identity was confirmed as CD45–CD105+, CD31–CD73+,

CD90+, HLA-DR−. MSC immune potency was confirmed by

their capacity to inhibit proliferation of stimulated lymphocytes

in co-culture.

Bone Marrow (BM)-MSCs were obtained under GMP

conditions using a bioprocess that included a derivation step of

MSC from BM aspirates and ex vivo expansion in an

approximately 21-days. BM samples were harvested from the

posterior iliac crest of donors and nucleated cells (NC) were
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isolated using an automated Sepax device (Biosafe) and Ficoll-

Paque reagent (GE Healthcare). Then NC were washed and

plated at 2 × 105 cells/cm2 onto cell culture vessels (CellSTACK)

with DMEM supplemented with 10%. All cultures were

maintained at 37°C and 5% CO2 in humidified incubators. The

medium was changed every 3–4 days and at day 10, cells were

trypsinized using 0.05% Trypsin/ethylenediaminetetraacetic acid

(EDTA; Gibco, Life Technologies), when 70%–90% confluence

was reached. Then cells were reseeded at 1 × 103 cells/cm2.

Finally on day 21, cells were harvested and washed with a saline

solution (Plasmalyte; Baxter) and were frozen in cryovials.

During the process, intermediate products and finally doses

were analyzed to verify compliance with the established criteria

according to GMP regulations (33). All MSC products tested

negative for bacteria and Mycoplasma, and endotoxin levels were

always below 0.5 EU/ml.
Definitions

Acute GVHD (aGVHD) was graded according to MAGIC

criteria (34), which goes from 1 to 4, depending on the number

of organs involved [skin, liver, lower gastrointestinal tract (GI)

and upper GI] and its severity. Chronic GVHD (cGVHD) was

graded according to the 2014 NIH criteria (35, 36). The overall

severity of cGVHD was classified as mild, moderate, or severe

based on organ-specific grading.

For HC diagnosis (22, 37), bacterial and fungal infections were

ruled out. HC was categorized as grade 1: isolated microscopic

hematuria; grade 2: macroscopic hematuria; grade 3; macroscopic

hematuria with blood clots; grade 4: hemorrhage causing

blood transfusion dependence, urethral obstruction, or renal

function damage.

Primary graft failure was defined as the lack of achievement of

an absolute neutrophil count (ANC) 0.5≥ × 109/L by day +28 after

peripheral blood/bone marrow allo-HSCT and by day +42 after

umbilical cord blood transplantation (24, 25, 38).

PGF was defined as: cytopenia in at least two hematopoietic

lines [ANC <1 × 109/L, platelet count <30 × 109/L, hemoglobin

(Hb) <10 g/dl] lasting for more than two consecutive weeks in

the presence of stable donor chimerism and hypocellular bone

marrow. Other explanations (such as disease relapse, drugs, or

infections) were ruled out (24, 25, 38).
Response and survival

OR was defined as the proportion of patients who presented a

PR or CR to MSC therapy. For GVHD CR was reached when the

disease resolved completely and no other treatments after MSC

infusion were needed. PR was defined as improvement in staging

of at least one involved organ, grade or score (in case of

cGVHD) and at least steady state on other symptoms (39). For

GF, CR was achieved when ANC ≥0.5 × 109/L was recovered.

PGF CR was defined as ANC >1 × 109/L, platelet count >30 ×

109/L, Hb >10 g/dl (20). Response in at least 1 hematopoietic cell
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lineage was considered as PR. For HC, CR was achieved when gross

hematuria disappeared. If it persisted but improved in at least

one grade, it was was considered PR (38). Overall response,

overall survival and event-free survival were calculated from

first MSC infusion.
Safety assessment

Patients were monitored throughout the MSC infusion and 4 h

after the procedure; during the infusion, non-invasive continuous

cardiac and respiratory monitoring was performed, and vital

signs were recorded hourly for up to 4 h after infusion.

Premedication was not administered to any patient.

Since this was not a clinical trial, but an observational

retrospective study, only AEs occurring during 4 h after MSCs

infusion were considered, as this information was specifically

documented in the patient clinical charts. However, patients’

medical charts were carefully reviewed in search of other possible

AEs during the follow-up period.
Statistical analyses

Statistical analyses were performed in SPSS (version 28.0).

Significance was set at a p level of 0.05 (two-tailed). Qualitative

results were expressed as absolute and relative frequencies and

quantitative variables, as median and interquartile range (IQR) or

range. To test if quantitative data was normally distributed,

Shapiro-Wilk Test was used. Mann-Whitney U-test was applied

to analyze if time from 1st MSCs infusion to OR was associated

with better response (PR or CR). Kaplan Meier (KM) estimator

was used to evaluate and graphically display OS. Cumulative

incidence was used to estimate the probabilities of partial and

complete response. Probabilities were reported as percent with a

95% confidence interval (CI).
Results

Patient characteristics

Thirty patients (53.7% boys, 46.3% girls), median age at

transplant 11 years (range 2–19) treated at a single institution

were included. One patient was included twice (patient 2

Tables 2, 3), as she received MSCs for 2 different indications at

separated time-periods; first she received two MSC infusion due

to GF, and 2 months later, 3 weekly MSCs infusions were

administered to treat aGVHD.

Patients received an HSCT due to a malignant disease (n = 16,

53.3%) or a non-malignant disease (n = 14, 46.6%). Most common

malignant condition was acute lymphoblastic leukemia (n = 13,

81.2%) and most frequent non-malignant disorders were bone

marrow failure (n = 4, 28.5%) and primary immunodeficiency

(n = 4, 28.5%).
Frontiers in Pediatrics 04
MSCs indications, characteristics and
dosage

MSCs therapy indications and infusion scheme are summarized

in Table 1. MSCs therapy and patients characteristic for each

specific indication is summarized in Supplementary Table S1 (HC),

Supplementary Table S2 (GF and PGF) and Table 2 (GVHD). There

were two patients with GVHD that did not strictly followed the

infusion scheme for his/her specific MSCs indication (patients 2 and

4, Table 2); patient 4 received 3 doses instead of 4, as he showed CR

shortly after the second MSC infusion. Patient 2 received 2 MSCs

doses, as she has previously got 2 MSCs infusion due to graft failure.

MSCs source was umbilical cord (56.7%) or bone marrow

(43.3%). The median number of infusions was 4 (IQR 2–4).

MSCs indications were: GVHD in 18 patients (60%), 13 of

them had aGVHD and 5 cGVHD; Grade 3–4 HC in 4 patients

(13.3%), all cases being due to BK virus; PGF in 6 patients

(20%), of whom 5 were co-infused with a CD34 + stem cell

boost; primary GF in 2 (6.7%), to enhance engraftment after a

subsequent HSCT. All patients receiving a boost of CD34 cells

were non-conditioned and the CD34 boost was administered on

the same day of first MSC infusion. For both patients with GF,

MSC first infusion was administered on the same day of the

HSCT. The second MSC infusion was administered 2 weeks later

(please see dosing schedule for patients with GF in Table 1).

Patient 1 (Supplementary Table S2) had previously undergone 3

allo-HSCT. Due to GF diagnosis, she received a 4th allo-HSCT from

a different donor (unmanipulated haploidentical donor) and same

stem cell source (peripheral blood). Conditioning consisted of

fludarabine, cyclophosphamide, anti-thymocyte globulin and

rituximab. Graft vs. host disease (GVHD) prophylaxis consisted of

cyclosporine and methotrexate. Patient 2 (Supplementary Table S2)

had undergone a previous allo-HSCT. After GF diagnosis, she

received a second transplant from a different donor (mismatched

unrelated donor, 9/10) and same source (peripheral blood).

Conditioning consisted of fludarabine, cyclophosphamide and anti-

thymocyte globulin. GVHD prophylaxis consisted of cyclosporine

and mophetil mycophenolate (MMF).

Regarding previous lines of treatment, in case of GVHD, median

lines were 4 (range 2–5). Of note, cyclosporine (CsA) was not

considered a line of treatment, as it was part of GVHD prophylaxis

during HSCT in all patients. MMF was neither considered a new

line of treatment when referring to “previous lines of treatment” if

patients had received it as GVHD prophylaxis (patients 2, 3, 8, 13

and 17). MSCs therapy for GVHD is summarized in Table 2.

Before the indication of MSCs therapy for PGF, one patient

received a boost of donor CD34 + cells 50 days before first MSC

infusion and another was treated with Eltrombopag but none of

them responded. Eltrombopag was discontinued one month

before MSCs infusion.
Response analysis

Response assessment is summarized in Table 3.
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TABLE 3 Evaluation of response to MSC therapy according to the indication of MSCs.

Days from 1st MSCs infusion to OR Median (IQR/
range)

OR (n/N, %) CR (n/N, %) PR (n/N, %) NR (n/N, %) Loss of response
(n/N, %)

aGVHD 15 (range 7–23) 11/13 (84.6) 4/11 (36.4) 7/11 (63) 2/13 (15.4) 5/11 (45.5)

cGVHD 21 (range 12–30) 4/5 (80) – 4/4 (100) 1/5 (20) 1/4 (25)

HC 9.5 (range 9–16) 4/4 (100) 2/4 (50) 2/4 (50) – –

GF 19.5 (range 12–27) 2/2 (100) 2/2 (100) – – –

PGF 26 (range 13–34) 4/6 (66.7) 3/4 (75) 1/4 (25) 2/6 (33.3) –

All 16 (IQR 9.75–22.25) 25/30 (83) 11/25 (44) 14/25 (66) 5/30 (17) 6/30 (20)

aGVHD, acute graft versus host disease; cGVHD, chronic graft versus host disease; HC, hemorrhagic cystitis; GF, graft failure; PGF, poor graft function; OR, overall

response; CR, complete response; PR, partial response; NR, no response. NR, no response.

FIGURE 1

Kaplan-Meier plot probability of response. The x-axis represents
days of follow up after the first MSC infusion, while the y-axis is
the proportion of subjects who shows response after MSC therapy.
Probability of response was 40% at 15 days (95% CI: 20–55), 79%
at 30 days (95% CI: 57–89). Observe that, after 34 days, probability
of response reaches a plateu and does not further increase.
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OR was 83% (25/30): 44% of responders showed CR (11/25)

and 66% had PR (14/25). OR for aGVHD, cGVHD, HC, PGF

and GF was 84.6%, 80%, 100%, 66.7% and 100% respectively.

Median time from first MSCs infusion to any OR was 16 days

(IQR 10–22). For aGVHD it was 15 days (range 7–23), for cGVHD

21 days (range 12–30), for HC 9.5 days (range 9–16), for PGF 26

days (range 13–34) and for GF, 20 days (range 12–27),

respectively. In case of GVHD, median time from first MSCs

infusion to any OR in patients with CR was 8 days (IQR 12–20).

Median time to maximum response in patients with GVHD and

CR was 25 days (range −24).
The probability of response at 15 and 30 days was 40% (95%

CI: 20–55) and 79% (95% CI: 57–89), respectively. After 34 days,

probability of response reached a plateu [87.5%, 95% CI: 65–94)]

and did not further increase (Figure 1). Five patients (17%) did

not respond to MSC therapy. Loss of response (LR) was

documented in 6 patients (20%) and median time from OR to
Frontiers in Pediatrics 06
LR was 2 months (IQR 2–5). All patients who showed LR had

received MSCs due to GVHD.

When analyzing time from first MSCs infusion to any OR and

type of response (PR/CR), statistical significance was observed,

showing that patients with an earlier response had better

response [12 days to OR (IQR 8–20.5) in cases of CR vs. 19 days

to OR (IQR 15–23) in patients with PR; p = 0.038]. These

differences were also observed when GVHD (acute and chronic)

was analyzed separately [8 days (IQR 7–16) to CR vs. 20.5 days

(IQR 16–23) to PR; p = 0.009].
Safety

No patients experienced adverse events during or immediately

after MSC infusion. No other AEs were retrospectively associated

with MSCs therapy during the follow-up period.
Survival analysis

With a median follow-up of 21 months (IQR 11–52.5) from

first MSCs infusion OS was 90% at 3 months (CI: 79–100), 86%

at 6 months (CI:74–100) and 79% at twelve months (CI:65–95)

post MSCs infusion (Figure 2). In case of GVHD

(Supplementary Figure S1), OS was 82% (95% CI: 10–100), 77%

(95% CI: 65–95) and 72% (95% CI: 59–889) at 6, 9 and 12

months respectively.

Overall survival for patients with NR was 53% (95% CI

21–100) at 6 and 12 months post MSCs infusion. In the PR

group, OS were 80% (95% CI 60–100) and 60% (95% CI 36–

100) at 6 and 12 months, respectively.

Overall 7 patients (24%) died, but in none of them

death was related to MSC therapy. No deaths were observed in

the CR group (Figure 3). Causes of death are summarized

in Table 4.
Discussion

In the present study, we describe MSCs as a therapy for HSCT-

related complications in a series of 30 pediatric patients. The most

frequent indication was refractory aGVHD (43.3%, n = 13/30). In
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FIGURE 3

Kaplan-Meier curves by type of response. This graph represents the
survival time (in months) from 1st MSC infusion, in relation to each
type of treatment response. For patients with NR, OS was 53% (95%
CI: 21–100) at 6 months of follow-up onwards. In the PR group, OS
was 80% (95% CI: 60–100) at 6 months of follow-up and 60% (95%
CI: 36–100) from 12 months onwards. Since no death were observed
in the CR group, the survival probability was 100%.

FIGURE 2

Kaplan-Meier plot of overall survival (OS) or probability of survival.
The x-axis is months of follow up after the first MSC infusion until
death occurs, while the y-axis is the proportion of subjects
surviving. OS was 90% at 3 months (95% CI: 79–100), 86% at 6
months (95% CI: 74–100) and 79% at one year (95% CI: 65–95).
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general, response rates were high (OR 83%) and, similar to other

studies (17, 18, 22), safety profile was good.

Regarding GVHD, clinical studies ofMSC therapy in patients with

SR-aGVHD have demonstrated favorable clinical response rates with

an acceptable safety profile (40–45). For example, Kurtzberg et al.

(46) recently reported on 241 children with grade II–IV SR-aGVHD

who were on additional second-line treatments. The 28-day OR rate

was 65% with a 14% CR. The 100-day OR was not assessed. In

another study (47), the same group analyzed 54 children with

primary SR-aGVHD who were naive to other immunosuppressant

therapies and were treated with MSC product (remestemcel-L). A

70.4% OR was achieved, and response was sustained through day

100, including an increase in CR from 29.6% at day 28 to 44.4% at

day 100. In the present study, patients with aGVHD had comparable

response rates, with 84% OR and 36.4% CR. Nonetheless, 20% of all

patients (4 of them with aGVHD) presented loss of response. Of

note, two patients who received MSCs due to aGVHD developed

severe cGVHD and died of respiratory failure. Although they had

previously shown PR to MSCs, they were certainly at risk of

developing cGVHD, since both of them had prior severe aGVHD

(grade III and IV) (48). As opposed to the 2nd study of Kurtzberg

et al. (42), patient population in our study were highly pretreated and

refractory to previous treatments, which might have worsened

response.Some authors (42, 44, 49) have also showed that, when

MSCs were applied in an earlier stage of SR-aGVHD, the CR rates

were higher. For example, Le Blanc et al. (42), in their study of a

group of SR grade II-IV patients, described 55% CR and 16% PR.

For that reason, taking into account the side effects of second line

immunosuppression for GVHD and the good safety profile of MSCs
Frontiers in Pediatrics 07
(even in severely affected children), earlier use of MSCs therapy

could be considered for patients with acute SR-GVHD.

Compared to aGVHD, there is limited use of MSCs therapy in

cGVHD, probably because, in many cases, the chronic fibrotic

processes of cGVHD are irreversible (49). In our study, MSCs therapy

was more effective in aGVHD than in cGVHD (84% OR with 36.4%

CR vs. 80% OR with no CR). Similar to previous report (49–52),

most patients showed response, although only PR were observed.

Another indication for MSC is HC (22, 53, 54). Although there

is limited clinical experience and it is mainly used in adults, some

pediatric studies have shown promising results; for example, Tong

et al. (22) reported thirteen pediatric patients with severe BKV-HC

(grade 3–4) who presented 100% OR with rapid symptoms

improvement. These results are consistent with our series, where

OR was 100% (50% CR) and no loss of response was observed.

MSCs have also been used to reverse graft failure and enhance

engraftment both in children and adults (18–21, 55, 56). In a

meta-analysis by Li et al. (18), studies comparing MSC co-

transplantation in allo-HSCT with allo-HSCT alone where

analyzed (19 clinical trials), showing that MSC co-infusion

generally improved engraftment without increasing mortality or

relapse. In another study by Servais et al., (20). MSC were

administered as a single i.v. infusion at a dose of 1–2 million(s)

cells/kg body weight in patients with PGF. Within 90 days post-

MSC infusion, OR was 53% with 37% CR, observing a response

rate increase to 67% OR and 53% CR within 180 days after MSC

infusion. In our series, all patients with GF and MSC co-

transplantation presented CR. Compared to Servais et al., most
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TABLE 4 Deaths and causes of death.

Patients Diagnosis MSCs
indication

Maximun
response to

MSCs

Patient’s clinical situation with respect to
the indication that led to MSC therapy at

last FU

Cause of death/months after
last MSCs infusion

1 MDS aGVHD PR Severe cGVHD Respiratory failure: bronchiolitis
obliterans/6

2a B-Thal aGVHD PR Severe cGVHD Respiratory failure: alveolar
hemorrhage/7

3 x-ALD aGVHD NR aGVHD grade IV Disease relapse/3

4 B-ALL aGVHD NR aGVHD grade IV Respiratory failure: alveolar
hemorrhage/17

5 B-ALL cGVHD PR Mild cGVHD IFI/17

6 T-ALL HC PR Grade 1 HC Leukemia relapse/2

7 DKC PGF NR PGF Respiratory failure: complicated
bacterial pneumonia, alveolar
hemorrhage/54

MSD, myelodysplastic syndrome; B-Thal, Beta thalassemia major; ALL, acute lymphoblastic leukemia; ALD, x-linked adrenoleukodystrophy; DKC, Dyskeratosis congenita;

aGVHD, acute graft versus host disease; cGVHD, chronic graft versus host disease; HC, hemorrhagic cystitis; PGF, poor graft function; LGI, lower gastrointestinal tract; PR,

partial response; NR, no response; FU, follow-up; IFI, invasive fungal infection.
aAlso referred as patient 2 in Table 2.
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cases of PGF received a CD34 + cells co-infusion, observing

response rates were higher (OR 66% with 75% CR) and more

rapid [26 days from first MSC infusion (range 13–34)]. Certainly,

the CD34 + boost or the subsequent HSCT have most probably

improved response rates in our study. Therefore, more evidence is

needed to confirm the real impact of MSCs on engraftment and

graft function, alone (in case of PGF) or as a co-adjuvant therapy.

Regarding survival analysis, and according to literature, OS

rates varies between 50 and 80%, depending on MSCs indication

and time-point of analysis, among others (18, 20, 22, 46, 47). In

our study, OS was 90% at 3 months (95% CI: 79–100) and 79%

at one year (95% CI: 65–95). Notably, similar to Kurtzberg et al.

(47), we observed survival was higher in responders compared

with non-responders [none of the responders died while, in the

non-responder’s group, OS was 53% (95% CI: 21–100) at 6

months of follow-up onwards]. For that reason, especially in the

case of aGVHD (the most frequent MSCs indication in our

study), considering that early use of MSCs seems to improve

response and consequently, survival, with no identified safety

concerns (even in gravely ill children such as our cohort), we

believe that, despite possibly being a promising therapeutic tool,

there is certainly room for improvement in the use of MSCs.

Regarding the causes of death (Table 4), three patients died of

respiratory failure and alveolar hemorrhage. We believe these

deaths were not related to MSCs therapy since MSCs infusions

occurred more than 6 months before either death (7, 17 and 54

months in patients 2, 7 and 4 respectively). Additionally, all

these patients had previous risk factors of pulmonary bleeding.

For example, the patient with dyskeratosis congenital (patient 7,

Table 4) maintained platelet count between 30 and 50.000 and

developed empyema and pulmonary hemorrhage after chest tube

drainage, which prompted death. The other two patients (one

with beta-thalassemia and the other with B-acute lymphoblastic

leukemia) developed severe cytomegalovirus pneumonitis and

diffuse alveolar hemorrhage as a consequence, which led to death.

Limitations of our study stem in the small number of patients,

the sample heterogeneity with variable follow-up periods, the
Frontiers in Pediatrics 08
retrospective design of the study, the lack of control group

against which to assess the efficacy and safety of MSCs and the

fact that it was single-center. Additionally, the possibility that

some patients might have responded to other concomitant

therapies rather than MSCs cannot be excluded. There are some

confounding factors when comparing results between studies that

we should also acknowledge, such as variability in MSCs donor

types, MSCs dose per infusion, and number of infusions per

patient—even within the same trial in some instances.

In conclusion, our study supports that MSCs seem to be a safe

and effective therapy in the treatment of pediatric patients with

HSCT-related complications. Further adequately powered

prospective studies and clinical trials are required to confirm

efficacy and establish the place and infusion schedule of MSCs

therapy in each specific HSCT-related complication.
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SUPPLEMENTARY FIGURE S1

Kaplan-Meier curves in GVHD. This graph represents the probability of
survival of patients with GVHD from 1st MSC infusion (purple curve),
and the probability of survival of all the patients treated with MSCs
in this study (black curve). For patients with GVHD, OS was 82%
(95%CI: 10–100), 77% (95%CI: 65–95) and 72% (95%CI: 59-889) at 6,
9-and 12-months post MSCs infusion. For all the patients OS was a
little higher; 90% at 3 months (95%CI: 79–100), 86% at 6 months
(95%CI: 74–100) and 79% at twelve months (CI:65-95) post
MSCs infusion.
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