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The impact of the opioid epidemic on pregnant people and children is a growing
public health crisis. Understanding how opioids affect the developing brain during
pregnancy and postnatally remains a critical area of investigation. Biological sex
plays a crucial role in all physiologic processes, with the potential for a significant
impact on neonatal outcomes, including those infants with opioid exposure.
Here, we aim to explore current literature on the effect of sex on neonatal
outcomes following prenatal opioid exposure. Sex differences in adults with
opioid use disorder have been well studied, including increased mortality among
males and higher rates of psychiatric comorbidities and likelihood of relapse in
females. However, such differences are not yet well understood in neonates.
Emerging clinical data suggest sex-specific effects in infants with prenatal opioid
exposure on the expression of genes related to feeding regulation and reward
signaling pathways. Increased susceptibility to white matter injury has also been
noted in female infants following prenatal opioid exposure. Understanding the
impact of sex as a biological variable on neonatal outcomes following prenatal
opioid exposure is paramount to improving the health and well-being of infants,
children, and adults impacted by the opioid epidemic.
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1 Introduction

Rates of opioid use disorder (OUD) among pregnant individuals and persons of

childbearing age continue to rise (1), accompanied by a significant increase in neonatal

abstinence syndrome (NAS), also known as neonatal opioid withdrawal syndrome

(NOWS) (2–7). The diagnosis of NAS has risen more than five-fold from 2000 to 2016,

highlighting the need for an improved understanding of risk factors associated with

NAS to help inform prevention and tailor neonatal management (4, 8). Current

literature suggests certain factors during pregnancy that increase the risk of NAS,

including opioid type, total opioid exposure, tobacco use, and selective serotonin

receptor inhibitor (SSRI) use (9). However, other factors that influence the development

of NAS and its complications remain poorly understood. There has been discrepant

literature regarding the impact of sex in the development of NAS and its associated

complications, with some studies showing increased vulnerability among male infants

(10–13), while others are more equivocal (14, 15).
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Recognition of the fundamental role that sex plays in disease

and health outcomes across the lifespan has grown over the

previous decades (16). Sex-specific influences on the growth and

development of a fetus during pregnancy start along the

placental-fetal-brain axis, with salient differences noted from early

in gestation (16–19) (Figure 1). Males reportedly have increased

vulnerabilities in pregnancy outcomes and perinatal stressors,

however, the biological mechanism underlying these differences

and long-term outcomes is an active area of investigation (19–26).

While opioids readily cross the placenta and blood-brain barrier

in the developing fetus (27), it remains unclear how sex

influences the impact of prenatal opioid exposure on infant and

childhood outcomes. Here, we review preclinical and adult studies

and summarize some of the proposed mechanisms for sex

vulnerability in opioid-exposed neonates, including inflammation,

different responses to stress, changes in the microbiome, and

differences in cell death mechanisms (28–37) (Table 1).
2 The influence of sex on opioid use
and effects in offspring: preclinical and
human data

2.1 Sex differences in preclinical data

Preclinical studies of sex as a biological variable (SABV) in

prenatal opioid exposure allow for investigation in the absence of
FIGURE 1

Mechanisms of sex-specific differences in outcomes following
prenatal opioid exposure begins before birth and occurs due to
complex interplay of many factors including, but not limited to: (1)
sex-specific regulation of genetic and epigenetic changes
influenced by maternal, placental and fetal factors (2) sex-specific
influence on growth and neurodevelopment (3) sex-specific
differences in immune and endocrine function. Figure created with
BioRender.com.
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confounding variables, such as clinical and social factors, that may

influence outcomes across the lifespan in humans. Alongside the

establishment of the impact of sex following prenatal opioid

exposure, preclinical studies also lend themselves to the

exploration of the mechanisms underlying sex-specific differences.

The effects of exogenous opioid administration in the

developing central nervous system (CNS) begin with an

understanding of the function of the endogenous opioid system

in fetal development. Hauser and Knapp highlighted the

modulation of cellular proliferation and differentiation by

endogenous opioids that are context-dependent and vary by cell

type, timing, and duration of exposure (38). Preclinical studies

have shown the expression of mu-, delta- and kappa-opioid

receptors in neural precursor cells. Expression of endogenous

opioid peptides and receptors allows for proper coordination and

timing of proliferation and differentiation in a region-specific

manner during maturation and into adulthood allowing for

plasticity (38). Endogenous opioid peptides are thought to

function in the normal maturation process by inhibiting the

growth of neural progenitor cells and allowing sufficient time for

development to occur (38). Exogenous opioid exposure during

this delicate maturational process may have a significant impact

on the trajectory of the developing CNS. Several preclinical

studies using cell cultures and animal models to examine

oligodendrocyte maturation and function with exogenous opioid

exposure during pregnancy demonstrate alterations in the timing

of oligodendrocyte maturation and myelination (39). These

studies further support emerging clinical literature that

demonstrates white matter changes in infants with prenatal

opioid exposure (32, 40).

The interaction of sex on the endogenous opioid system has

been further explored in the preclinical literature. In one study,

cell culture models of rodent oligodendrocytes were evaluated

postnatally to assess control of myelination and related processes

by endogenous opioid peptide endomorphin at the mu-opioid

receptor and opioid-related neuropeptide nociceptin at the

nociceptin/orphanin receptor (41). The authors demonstrated an

elegant interplay between endomorphin and nociceptin in

regulating oligodendrocyte function and maturation restricted to

those cells isolated from female pups (41). The suggestion of sex-

specific effects on myelination controlled by the endogenous

opioid system may have enduring ramifications for fetal brain

development occurring in the context of exogenous opioid exposure.

Opioid receptor signaling and its role in regulating excitatory

and inhibitory neural pathways by region is reviewed thoroughly

by Reeves et al. demonstrating diversity in mechanisms of

opioid-receptor mediated action (42). Hou et al. examined the

impact of prenatal opioid exposure on opioid receptor signaling

in mesolimbic structures in rodents during the neonatal period

and found that male pups were particularly susceptible to

aberrant signaling in this pathway following prenatal

buprenorphine and methadone exposure (43). Altered excitatory

and inhibitory synapses in the anterior cingulate cortex, nucleus

accumbens, and prefrontal cortex of rodents exposed to

exogenous morphine has also been noted (44). Further

characterization of cell-specific roles and opioid receptor
frontiersin.org
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TABLE 1 Summary of sex-specific alterations noted in endogenous and exogenous opioid functions.

Endogenous opioid effects Exogenous opioid effects
• Neural cell specific functions:

⚬ Proper timing of neural cell maturation
⚬ Differential regulation of oligodendrocyte function and maturation based

on sex

• Sex-specific influence on opioid-receptor density, microglial function, synaptic
pruning pathways, and dopamine reward pathways

• Sex-specific developmental program of neuroimmune system • Sex-specific variation in gut microbiota

• Influence of sex hormones on endogenous opioid signaling related to
reproductive behaviors

• Sex-specific hypothalamic-pituitary axis dysregulation

• Sex-specific differences in endogenous opioid peptides and receptors • Sex-specific effects on genetic and epigenetic changes in placenta and fetus
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expression is necessary to gain a better understanding of the impact

of endogenous and exogenous opioid signaling on brain circuitry.

Beyond neural cell-specific functions related to sex is the

influence of sex-specific hormones. McCarthy et al. provided an

elegant review of sex differentiation in rodent brains and

behavior that stems from hormonal and chromosomal effects.

Through an intricate intersection between neuroimmunity,

neuroepigenetics, and neuroendocrine, sex-specific developmental

programming takes place in the brain’s innate immune cells,

leading to unique neurodevelopment, phenotypic behaviors, and

predisposition to neuropsychiatric disorders (45, 46). The effects

of sex hormones are also seen in the endogenous opioid system.

Estrogen and progesterone regulate endogenous opioids via

mu-opioid receptor activation and expression in signaling female

reproductive behaviors in several rodent models (47, 48).

Similarly, androgens exert prenatal organization effects,

responsible for the development of both internal and external sex

organs, but more importantly, the sexual dimorphism of early

brain development and subsequent behaviors throughout life

(49). Sharp et al. provided a comprehensive review on sex

differences in opioid-receptor mediated reward circuitry (50).

Such sex differences likely determine distinct opioid-mediated

dependence, sensitivity, tolerance, and withdrawal between males

and females (50). Despite inconsistent findings across

neuroanatomical regions and developmental stages due to

complex regulatory roles inherent to the endogenous opioid

system, sex-specific distinction exists in the amount and location

of endogenous opioid receptors (mu-, delta-, and kappa-)

and opioid peptides (beta-endorphin, met/leu-enkephalin,

dynorphin). For instance, male rats have significantly greater

concentrations of mu-opioid receptors in the spinal cord and

midbrain than females, while females have significantly higher

concentrations of kappa receptors in the spinal cord and

hindbrain than males (51). Adult rat males had a greater

abundance of beta endorphin in the prefrontal cortex than

females, while adult females had a greater abundance of the same

peptide in the hypothalamus, hippocampus, and anterior

pituitary than males (52). The sex differences in endogenous

opioid peptides and receptors are even more complex due to the

fluctuation of these peptides and receptors over the course of the

estrous cycle in females (53). Taken together, sex-specific

differences in opioid receptor-mediated reward effects are

complex and need to be accounted for in determining and

understanding the effects of the opioid epidemic.
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Preclinical literature examining the impact of exogenous opioid

exposure during pregnancy on the hypothalamic-pituitary-adrenal

(HPA) axis has also noted sex-specific differences in opioid-

exposed adolescent and adult animals. One study demonstrates

muted pituitary response to postnatal stress in adult female

rodents following prenatal morphine exposure (28); another

study suggests exaggerated pituitary response in adolescent males

following prenatal oxycodone exposure (54). While these studies

highlight sex-specific HPA dysregulation into adulthood

following prenatal opioid exposure, further study of the impact

of opioid type, duration of exposure, and underlying

mechanisms, including receptor pathology, is needed.

There has been growing interest in the neural-gut connection

and the role of the gut microbiome in pathology related to OUD

(36, 37). Antione et al. studied the impact of neonatal morphine

exposure in mice and found gut dysbiosis and significant

alterations in gut diversity and composition. Adolescent

morphine-exposed females had increased Firmicutes/

Bacteroidetes (F/B) ratio compared to saline-exposed females,

while no differences were noted in morphine-exposed males

compared to saline-exposed males (35). These changes in

morphine-exposed females persisted into adulthood (35).

Chronic methadone exposure in pregnant dams also showed

alterations in gut microbiota in both dams and offspring, though

no sex-specific differences were found (55). The neural-gut

connection and its relation to developmental pathology following

prenatal opioid exposure requires further investigation.

There are limited studies in preclinical models examining the

influence of sex on long-term outcomes following prenatal opioid

exposure. In an animal model of prenatal methadone exposure,

Grecco et al. have shown limited sex-related differences in the

early postnatal period, with more pronounced sex effects on

alcohol reward behaviors in adolescence (34, 56). Methadone-

exposed females showed a greater preference for alcohol-associated

environments, whereas methadone-exposed males demonstrated

resistance to this conditioned preference (56). There were also

differences in behavior responses to alcohol, with methadone-

exposed adolescent females showing hyperactivity and increased

locomotor activity following alcohol consumption and methadone-

exposed males demonstrating more binge-like alcohol

consumption (56). Interestingly, examination of mu-opioid

receptor density in the reward pathway of adult rodents following

prenatal morphine exposure demonstrates a significantly greater

increase in mu-opioid receptor density in males compared to
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females (57). Morphine-exposed males were more vulnerable to

executive function deficits tested in adulthood, evidenced by

impaired learning, motivation, and attention (58). Further

examination of sex differences in microglia and synaptic pruning

pathways suggested deficits in microglial phagocytic pathways in

male offspring with morphine exposure may underly these

enduring behavioral impairments (58). These studies highlight the

importance of understanding the developmental crosstalk between

sex and prenatal opioid exposure and its influence on neuronal

functioning, reward pathway signaling, and behavior into adulthood.
2.2 Sex differences in OUD

Paralleling the preclinical data, sex-specific effects of opioids

are also evident in adults with OUD. With almost 11 million

Americans reporting opioid misuse in 2016, the prevalence of

OUD remains highest in males, however, the rate of use

increases more rapidly in females (59). The risk of overdose is

also higher in males, but emerging data highlight distinct

vulnerabilities in females, especially during pregnancy and the

postpartum period (60, 61).

A scoping review by Huhn et al. demonstrated several themes

across the addiction cycle that were different between males and

females (62). Although most studies were retrospective and not

powered to assess sex differences, the authors reported a

significantly higher burden of mental health disorders,

particularly depression and suicidal ideation, in females

compared to males at the time of presentation for treatment

(62). Co-occurring mental illness, i.e., depression, in females

conferred a unique risk for relapse (62). These findings

underscore the need for addressing comorbid mental health

conditions in treatment programs for OUD and tailoring these

approaches to females. Several studies promoted the use of

buprenorphine treatment for females as it was associated with

lower rates of relapse and higher rates of treatment retention

compared to males with OUD (62). Overall, this review identifies

important themes to help inform and tailor practice strategies

and highlights the need for additional prospective studies and

further understanding of the biological mechanism underlying

sex-related differences in the treatment of OUD. The same

authors have published a systematic review of preclinical

literature evaluating sex-related differences in response to

endogenous and exogenous opioids, which further highlights the

need for more rigorous study in this area (63).

Another study by Davis and colleagues used machine learning

to assess multi-center follow-up data to evaluate sex differences in

factors predicting relapse following treatment of OUD (64).

Younger age at initiation and male sex were risk factors for

relapse. Conduct disorder and multiple co-occurring substance

use disorders posed a greater risk for return to opioid use in

males (64). For females, withdrawal symptoms, depressive

symptoms, and diagnosis of post-traumatic stress disorder were

factors that increased the likelihood of relapse following

treatment (64). Understanding sex differences in risk factors for

relapse following OUD treatment may inform personalized
Frontiers in Pediatrics 04
treatment programs to mitigate such risks and, in turn, tackle the

growing opioid epidemic. More rigorous clinical data from

prospective studies designed to assess sex differences in OUD

management and outcomes are urgently needed.
2.3 Sex differences in neonates with prenatal
opioid exposure and clinical outcomes

NAS manifests as multiorgan withdrawal signs, e.g., high-pitch

cries, tremors, hypertonia, difficulty feeding, hyperphagia, sleep

disturbance, loose stools, and poor growth. Some neonates have

more severe withdrawal requiring pharmacotherapy with unclear

risk factors. Maternal factors (medication types, dose, comorbid

physical and mental health conditions, polysubstance use,

socioeconomic status), neonatal factors (gestational age, body

weight), hospital-based practice variations, and genetic and

epigenetic factors may contribute to specific risk profiles and

predisposition to worse NAS (65–70). Opioid-exposed males

and females may also exhibit different responses and clinical

outcomes related to in utero opioid exposure. Data on sex

differences in the risk, clinical presentations, and need for

pharmacotherapy in opioid-exposed neonates remain unclear.

Some reported no sex differences in the withdrawal severity, need

for pharmacotherapy, and duration of treatment for NAS

(14, 15). Others showed that male sex is a risk factor for worse

withdrawal and need for pharmacotherapy, and female sex is

protective against severe withdrawal (10, 11, 71, 72).

Conradt et al. showed that of the 52 studies on long-term

outcomes in opioid-exposed neonates published between 1975

and 2019, only 18 were published in the last five years, pointing

to the lack of longitudinal studies in the field (73). Opioid-

exposed children seemed to exhibit more adverse behaviors, e.g.,

anxiety, aggression, fear, and have lower executive functioning,

with more ambiguity in cognitive outcomes. Only two of these

18 studies were prospective, highlighting the tremendous

challenge in understanding long-term outcomes in opioid-

exposed neonates. Several critical methodologic shortcomings

thought to contribute to such challenges were the small sample

size, the abundance of confounding factors, the lack of consensus

on the assessment and diagnosis of NAS, and the lack of early

biomarkers to track risks and neurodevelopmental outcomes.

Furthermore, less than half of these publications considered sex

differences (73). Consequently, the sex-specific impact of prenatal

opioid exposure remains unclear, with some reported males

having poorer cognitive and language development in early

childhood (74), another showing both sexes performing worse on

cognitive functioning than their respective non-exposed

counterparts, yet another reporting females having worse and

increasing differences in cognitive at a later age (27).

Emerging studies have focused on biomarker research in NAS.

Biomarker discovery has the potential to provide a mechanistic

underpinning of NAS, which can inform targeted interventions

and convenient monitoring for this condition (70). Existing

studies demonstrated that genetic and epigenetic changes may

predict withdrawal severity and the need for pharmacotherapy.
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These changes include variants of the cytochrome P450 family 2

subfamily B member 6 (CYP2B6) (75), increased methylation of

ATP binding cassette subfamily B member 1 (ABCB1),

cytochrome P450 family 2 subfamily D member 6 (CYP2D6),

and opioid receptor mu 1 (OPRM1) (76, 77), single nucleotide

polymorphism in opioid receptor kappa 1 (OPRK1), opioid

receptor delta 1 (OPRD1), prepronociceptin (PNOC) (78), and

dopamine receptor type 2 (DRD2) (79). The first genome-wide

association studies done in opioid-exposed neonates showed a

promising potential to develop a polygenic risk score that can

predict the need for pharmacotherapy (80). Camerota et al.

showed that pharmacotherapy for NAS decreased DNA

methylation in one of four CpG sites within the OPRM1 and

was accompanied by improved clinical presentations, e.g.,

reduced irritability, signs of stress, and abnormal movements

(81), suggesting the utility of biomarkers in monitoring disease

progression in NAS. Similar to the trend in the clinical studies,

however, only a few molecular studies considered sex differences.

Sex-specific mechanisms commence long before birth and stem

from an intricate gestational interplay between the mother and the

fetus, between the chromosomal and hormonal effects, resulting in

distinct neurobehavioral changes and sex-specific vulnerability

(17, 82, 83) (Figure 1). Maternal factors (e.g., drug metabolism

and immune responses) affect placental gene expression. At the

same time, fetal sex also modulates placental gene transcription.

Testosterone release by male fetuses in mid to late gestation

differentiates the body and the brain from females, which further

impacts the physiological responses and drug metabolism after

birth. In addition to this hormonal effect, the sex chromosome-

specific genes modulate sex-specific responses, furthering the sex-

specific differences pre and postnatally (82). Converging data

support the propensity of male fetuses to early-life adverse events

and the greater vulnerability to subsequent developmental

challenges (17, 26). Therefore, sexual dimorphism related to

prenatal opioid exposure will affect the postnatal course,

supporting the need to study sex differences to optimize care.

A few studies have demonstrated evidence of molecular

mechanisms underlying sex-specific changes in NAS. A salivary

transcriptomic study showed that opioid-exposed males had

greater expression of key reward gene DRD2 than opioid-exposed

females. This sex-differential gene expression persisted with the

need for pharmacotherapy and correlated positively with volume

of oral intake (breastmilk, formula), suggesting sex-specific

aberrant reward signaling might predispose males to worse NAS

(31). Opioid-exposed females, however, are not without risks.

Despite less severe overt withdrawal, exposed females had a greater

incidence of white matter hyperintensity in brain imaging than

exposed males (32). Such white matter hyperintensity findings

were accompanied by greater expression of proinflammatory

genes, suggesting sex-specific proinflammatory effects of prenatal

opioids and associated brain injury with a greater effect in females

than males (32). Sex-specific proinflammatory effects on the brain

and feeding regulation may alter the brain-gut axis and long-term

health and developmental outcomes.

Sex-specific differences in dopamine receptor gene expression

implicate the disruption of mesolimbic and mesocortical
Frontiers in Pediatrics 05
dopamine pathways in neonates with prenatal opioid exposure.

Postnatal neuroimaging in opioid-exposed neonates demonstrated

smaller deep gray matter structures (e.g., ventrolateral thalami,

subthalamic nuclei) and smaller brainstem volumes adding to the

evidence of alterations in these dopaminergic pathways (84).

Resting-state functional imaging demonstrates global connectivity

issues in neonates with prenatal opioid exposure, suggesting the

involvement of various pathways and regions in aberrations

related to opioid exposure (85). These small cohort studies have

controlled for sex but were not designed to show sex differences,

necessitating further investigation.

Clinical and molecular studies in neonates with prenatal

opioid exposure may be essential first steps to understanding sex-

specific risks and vulnerability differences in adults with OUD.

Prenatal opioid exposure imposes myriad health challenges,

including structural and functional brain changes, cognitive and

neurodevelopment, vision health, and nutrition and growth

(73, 84, 86–90). Accounting for sex is crucial to understanding

opioid effects and targeting efforts and interventions to prevent,

cure, and ameliorate such effects. Males and females have

fundamental differences that cannot be simplified or ignored,

and we must meticulously study these unique characteristics to

provide optimal care for this vulnerable population.
3 Conclusion/future directions

The present narrative review of preclinical and clinical

literature reveals several salient sex-related differences in

neonates, children, and adults affected by OUD and underscores

the need to include SABV in future investigations. Preclinical

studies with particular attention to the unique interplay between

the endogenous opioid system and coordination of neural

maturation and differentiation, alongside neuroendocrine effects

specific to sex hormone biology, may be particularly informative

in understanding the impact of prenatal opioid exposure. Future

studies should focus on the sex-specific and proinflammatory

impact of prenatal opioid exposure on the placenta-brain,

placenta-gut, and brain-gut axes as they may elucidate novel

biomarkers and treatment strategies. While there is significant

biological plausibility underlying the influence of sex on prenatal

opioid exposure and neonatal outcomes, a more substantial

investigation into the sex-specific mechanisms underlying this

developmental influence is imperative to inform the identification

and management of neonates at risk for NAS. Understanding the

full scope of the impact of opioid use and misuse on fetal

development, neonatal, and adult outcomes is a daunting

prospect, but the influence of sex in each of these pathways is an

essential consideration and must not be overlooked.
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