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Acellular dermal matrix in
urethral reconstruction
Jiang Aodi, Lian Ying, Sun Chengyang and Zhai Hongfeng*

Department of Plastic and Aesthetic Surgery, People’s Hospital of Henan University, People’s Hospital of
Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, China
The management of severe urethral stricture has always posed a formidable
challenge. Traditional approaches such as skin flaps, mucosal grafts, and
urethroplasty may not be suitable for lengthy and intricate strictures. In the
past two decades, tissue engineering solutions utilizing acellular dermal matrix
have emerged as potential alternatives. Acellular dermal matrix (ADM) is a
non-immunogenic biological collagen scaffold that has demonstrated its
ability to induce layer-by-layer tissue regeneration. The application of ADM in
urethral reconstruction through tissue engineering has become a practical
endeavor. This article provides an overview of the preparation, characteristics,
advantages, and disadvantages of ADM along with its utilization in urethral
reconstruction via tissue engineering.
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1 Introduction

The urethra is a tubular structure that connects the urinary bladder to the external

environment. It primarily consists of two distinct cell types: epithelial cells and smooth

muscle cells. In comparison to the female urethra, the male urethra is slender and can

be anatomically divided into penile (cavernous), bulbous, membranous, and prostatic

segments (1). There are multiple etiologies for urethral injury, including iatrogenic

causes, infections, trauma, tumors, and congenital hypospadias (2, 3). Hypospadias is a

common congenital malformation that occurs in approximately ∼1/150–1/300 live

births (3). Following urethral injury, the organization and distribution of fibroblasts in

normal tissues become disrupted, leading to the development of urethral strictures (4).

Patients may experience abnormal urination, pain, urinary tract infections, and

potential impairment of kidney function or overall quality of life. Anastomotic

urethroplasty (AR), urethral dilation (UD), or direct vision internal urethrotomy

(DVIU) are commonly employed treatment options for managing urethral strictures.

Steenkamp et al. (5) described changes in sexual function and reproductive sensitivity

following AR repair for bulbous urethral stricture; temporary decline in erectile and

ejaculatory function can occur as a result of AR intervention. Moreover, both UD and

DVIU exhibit reduced efficacy with increasing length of the stricture. Historically oral

mucosal grafts considered as “gold standard” materials for repairing urethral strictures

or defects due to their favorable therapeutic outcomes; autologous replacement tissues

such as penile or scrotal skin grafts bladder mucosa grafts, and oral mucosal grafts

often give rise to various complications at the donor site (6).

In the past two decades, with the advancement of tissue engineering, various strategies

have been proposed to address the challenge of limited sources of autogenous tissue for

urethral reconstruction (7, 8). Tissue engineering is a scientific discipline that applies

principles from cell biology and engineering to develop active biological substitutes
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capable of repairing damaged tissues and enhancing their

functionality. Its fundamental principle involves creating a three-

dimensional complex composed of cells and biological materials

(9). Numerous biodegradable materials are currently under

investigation, including acellular matrix, polylactic acid (PLA),

polyglycolic acid (PGA), as well as PLA-PGA copolymers (10–

12). Hu et al. (13) described the biocompatibility and application

of polylactic acid-glycolic acid copolymer (PLGA) and PLGA-

collagen scaffolds in canine urethral reconstruction. Although

urothelial cells implanted on both scaffolds exhibited satisfactory

growth, resulting in multiple layers formation within proximal

and distal segments of the reconstructed urethra, post-surgical

complications such as strictures and urethral discontinuities were

observed. It is evident that the performance of PLGA and PLGA-

collagen scaffolds was suboptimal. The acidic degradation

products commonly associated with synthetic polymeric

materials, such as PLGA, may impede proper cellular growth in

the surrounding environment (14). However, acellular matrices

closely resemble the native extracellular matrix, making acellular

dermal matrix (ADM) an innovative treatment approach to

overcome these challenges in urethral reconstruction. This article

presents a comprehensive review on the preparation and

characteristics of ADM materials, along with their research

advancements in tissue engineering for urethral reconstruction.
2 Preparation of ADM

ADM is produced using acellular techniques that involve the

enzymatic removal of the epidermis and complete elimination of

residual cells from the dermis, resulting in an acellular collagen-

elastin biomaterial matrix with minimal antigenicity and

exceptional biological and mechanical properties (15). Various

physical, chemical, and biological methods are currently

employed for preparing ADM (Refer to Table 1).
2.1 Physical methods

The physical method disrupts the cell membrane, induces cell

lysis, and facilitates the transport of cellular debris (16–19).

Commonly employed physical methods include repeated cycles

of freezing and thawing, ultrasonic vibration, supercritical carbon

dioxide, high hydrostatic pressure treatment, mechanical

compression, and electroporation. In recent years, numerous

studies have attempted to utilize physical techniques in

facilitating decellularization and demonstrated its feasibility.
TABLE 1 Categorization of acellular dermal matrix preparation methods.

Methods Primary effect
Physical Cells are eliminated through the combined action of apoptotic cells

and cell-matrix adhesion proteins

Chemical Disrupts cellular membranes and degrades genetic material.

Biological Reactive cleavage of the arginine or lysine carboxyl side chains in cell
adhesion proteins leads to cellular detachment and lysis from the
adjacent extracellular matrix
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The freeze-thaw method can be optimized by increasing the

temperature differential or adjusting the number of cycles,

thereby enhancing its efficiency. Multiple freeze-thaw cycles may

be employed throughout the decellularization process without

compromising matrix protein preservation (20). It is important

to note that complete removal of nuclear material should not be

reported, as the formation of ice crystals during freezing and

thawing disrupts cell membranes in tissues or organs (21). While

this process effectively preserves biochemical composition and

mechanical properties, insufficient removal of genetic material

may lead to potential immunological rejection. To disrupt cell

membranes, high hydrostatic pressure exceeding 600 MPa is

applied; however, it should be acknowledged that such high

pressure can induce protein deformation, as evidenced by

observed collagen and elastic fiber deformations in decellularized

blood vessels. Consequently, this results in a reduction of

approximately 50% in the tensile strength of fibers compared to

their original tissue state (22).

Supercritical carbon dioxide exhibits low viscosity and high

transport properties, allowing for minimal damage to tissue

mechanical properties when passed through at a controlled speed

similar to the critical point. Various studies have demonstrated

its ability to induce non-deformability in tissue fibers (23).

However, its poor solubility for polymers and polar substances is

a drawback that can be partially addressed with entraining agents

such as ethanol, though this may introduce new impurities (24).

Nonthermal irreversible electroporation, typically achieved

through the application of microsecond electrical pulses, disrupts

the transmembrane electrical potential and induces micropore

formation in the plasma membrane. Ultimately, this leads to cell

death by perturbing its steady-state electrical balance while largely

preserving the three-dimensional structure of tissues and organs.

A novel porcine acellular dermal matrix (PADM) prepared by Xia

et al. (25), utilizing laser micropore technology, was demonstrated

to be both safe and effective in animal transplantation.
2.2 Chemical methods

Chemical decellularization methods commonly employ a

variety of detergents, including surfactants, acids, bases,

hypertonic and hypotonic solutions, and chelating agents.

Surfactants can be classified based on their charge as ionic,

nonionic or zwitterionic; all of which have the ability to disrupt

cell membranes and degrade DNA. Hogg et al. (26) utilized

chemical treatment to remove the epidermis, followed by

immersion in a hypotonic buffer solution for cell dissolution and

subsequent addition of nuclease buffer to eliminate residual

nucleic acid substances. This approach achieved rapid and

efficient preparation of ADM. Draguňova et al. (27) also

developed an effective method for preparing decellularized

matrices using only a few chemicals with minimal procedures.

Bera et al. (28) employed a method based on hypotonic/

hypertonic saline solution to decellularize goat skin before

formulating an ADM bio-ink and 3D bioprinting it. Ultimately,
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TABLE 2 Commercial ADM products currently available in the market
include the following examples.
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this resulted in an ADM with exceptional mechanical properties

and cell adhesion.
Product Manufacturer Origin
Alloderm LifeCell Corp., Bridgewater, NJ, USA Human dermis

Cortiva RTI Surgical, Alachua, FL, USA Human dermis

NeoForm Mentor, USA Human dermis

SurgiMend TEI bioscience USA Bovine dermis

Permacol Covidien Co., Ltd, USA Porcine dermis

Strattice LifeCell Co., Ltd, USA Porcine dermis

CollaMend CR Bard Davol Co., Ltd, USA Porcine dermis

XenMatrix CR Bard Davol Co., Ltd, USA Porcine dermis

DermACELL LifeNet Health Inc., Virginia Beach,
VA, USA

Human dermis

Cymetra LifeCell Corp., Bridgewater, NJ, USA Human dermis

DermaMatrix Musculoskeletal Transplant
Foundation and Synthesis, USA

Human dermis

MatriDerm Dr Suwelack AG, Billerbeck, Germany Bovine dermis

Glyaderm Euroskinbank, NL Human dermis

Pelnac Gunze Corp., JP Bovine dermis

Renoskin Perouse Plastie, FR Bovine dermis

AlloMax CR Bard/Davol Inc., Cranston, RI, USA Human dermis

FlexHD Ethicon, Inc., Somerville, NJ, USA Human dermis

Renov Beijing Qingyuan Weiye Bio-tissue
Engineering Co., Ltd, China

Porcine dermis

Integra Integra Life Sciences, Princeton, NJ, USA Bovine dermis

Porcine ADM
dressing

Jiangyin Benshine Biological Technology
Co., Ltd, China

Porcine dermis

Allogenic ADM Beijing Jayyalife Biological Technology
Co., Ltd, China

Human dermis

Xenogeneic ADM
dressing

Jiangsu Unitrump Bio-medical
Technology Co., Ltd, China

Porcine dermis
2.3 Biological methods

Organisms (enzymes) selectively cleave the arginine carboxyl

side of cell adhesion proteins, resulting in detachment and lysis

of cells from the adjacent matrix. Commonly employed enzymes

include trypsin, collagenase, nuclease, thermophilic protease, and

dispase (29, 30). Excessive utilization of enzymes may lead to the

degradation of natural matrix components, including collagen,

elastin, and glycosaminoglycans (31). Following enzymatic

decellularization, thorough rinsing of the tissue is essential to

eliminate or neutralize any residual enzyme components and

cellular debris (32). Therefore, it is recommended to use trypsin

for short-term periods to prevent damage to the matrix

components. It should be noted that trypsin does not exhibit

cytotoxic effects on bioengineered materials which are crucial for

in vitro cell culture.

As each method possesses its own set of advantages and

disadvantages, a combination of methodologies can be employed

to explore a more efficacious acellular process and prepare an

ideal ADM with enhanced decellularization efficiency. While

ionic SDS has demonstrated commendable efficacy in eluting

cells and removing cellular components, it also leads to the

degradation of the extracellular matrix due to the elution of

other substances. Triton X-100, a nonionic eluent, exhibits

inefficacy against the eluted cells while causing minimal damage

to the extracellular matrix. Although enzymatic hydrolysis can

selectively eliminate DNA and other cellular components, its sole

effect on elution is suboptimal and may result in certain damages

to blood vessels and ultrastructure. Therefore, combining

physical, chemical, and enzymatic methods can yield superior

outcomes in terms of decellularization.
3 Sources of ADM

The sources of ADM can vary, including human, porcine,

bovine, ovine or piscine origins (33–37). Human-derived ADMs

require tissue screening for infectious pathogens such as HIV,

hepatitis, and syphilis. However, the limited availability and high

costs significantly restrict their utilization (38). Additionally, the

presence of residual heterologous antigens like α-1,3-galactose

(α-Gal) may trigger an immune response. Fish skin-derived

ADM lacks the α-Gal antigen and poses a low risk of viral

infection, making it an economical and sustainable source (39).

Nevertheless, the primary constituents of fish skin-derived ADM

are generally less thermally stable and more susceptible to

degradation compared to human-derived ADMs (40). Bovine-

derived ADM offers broader sourcing options and lower costs in

comparison with human-derived alternatives. It is considered a

favorable choice for repairing eyelid contractures due to its good

short-term results; however, there is insufficient literature on the

long-term safety and effectiveness of bovine ADM grafts
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available currently (41). Given the hist skin and human skin as

well as its economic feasibility factor into consideration in

clinical practice settings; pigs have become the primary source

for xenogeneic ADM.

ADM products have been developed to mimic the extracellular

matrix (ECM) of the host. Table 2 provides an overview of the

currently available and widely used ADM products in the market

(33, 42–44). Among them, Alloderm and Cortiva are two

commonly utilized commercial ADM products (45). The natural

animal dermal matrix offers abundant sources and low cost,

which presents significant advantages for clinical development

and holds immense application prospects.
4 Characteristics and advantages of
ADM

4.1 Characteristics

ADM removes cellular elements that have potential

immunogenicity while retaining the original extracellular matrix

as a supportive framework (46). This three-dimensional structure

comprises biomaterials such as collagen, elastin, and

proteoglycan that serve as an ideal substrate for epithelial cell

growth, fibroblast proliferation, and neovascularization post-

transplantation (47). ADM can be regarded as a collagen-based

scaffold with preserved three-dimensional structure obtained
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through physical-chemical-biological methods involving

elimination of epidermal cells and other constituents from

natural skin tissue. Consequently, ADM possesses slight

variations in its physicochemical characteristics compared to

native tissues; particularly exhibiting inferior mechanical

properties along with reduced resistance against enzymatic

degradation (48).

The xenogeneic ADM undergoes a process where

immunogenic cells and skin appendages are removed, resulting

in the presence of mainly collagen, laminin, hyaluronic acid,

elastin, keratan sulfate, fibronectin, and a small amount of cell-

associated proteins along with abundant type I collagen (49, 50).

Being a xenogeneic protein, the telopeptide of this however,

numerous experiments have demonstrated that the

immunogenicity of collagen is relatively weak. The primary

constituent found in ADM is collagen I which exhibits

excellent histocompatibility (51). It should be noted that

xenogeneic ADMs elicit a more severe inflammatory response

compared to allografts possibly due to the presence of basement

membrane constituents such as collagen IV and laminin in the

superficial dermis.

In practical applications, ADM often requires properties

similar to native tissue in order to meet the specific

requirements. Therefore, for better application performance, a

certain degree of cross-linking modification is advantageous in

further reducing the immune response triggered by the material.

Commonly used modification methods include physical and

chemical approaches, with thermal modification, radiation

irradiation, and drilling being the primary physical methods.

Chemical methods involve crosslinking modifications using

glutaraldehyde, epoxides, carbodiimide, nanomaterials,

dialdehyde polysaccharides and others. Previous studies have

demonstrated that cross-linking can effectively decrease

immunogenicity by inducing covalent bond formation between

amino acid residues in ADM and collagen molecules which can

mask tissue antigenicity and reduce immune responses (52).

Chen et al. (53) employed chemical cross-linking and the

synergistic binding of ADM and chitosan under freezing

conditions to fabricate a composite scaffold with dual physical

and chemical, thereby significantly enhancing the survival rate of

autologous rat skin grafts. Feng et al. (54) synthesized

glutaraldehyde-modified heparin with cross-linked active aldehyde

groups, which was subsequently cross-linked with porcine ADM

and chemically modified to enhance its anticoagulant

performance. The results demonstrated that the modified ADM

exhibited superior thermal stability and biocompatibility,

particularly in terms of its enhanced anticoagulant and anti-

platelet adhesion properties, leading to a reduced incidence of

coagulation, thrombocytopenia, and bleeding. Improved properties

can be achieved through the utilization of newly developed

nanoengineered ECM scaffold technologies (55, 56). The complete

elimination of immunogenicity in ADM cannot be guaranteed

solely by removing cellular components alone. The rate at which

residual cellular components are removed from dermis can be

enhanced by increasing temperature differentials and altering

freeze-thaw cycles (57).
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4.2 Advantages

The development of ADM aims to harness the properties of

native ECM and facilitate tissue regeneration in practical clinical

settings. ADM exhibits properties such as toughness, elasticity,

water retention, and robust mechanical force buffering (58). It

can serve as a dermal scaffold, facilitating the rapid migration

and infiltration of various host cells including fibroblasts,

myofibroblasts, lymphocytes, macrophages, granulocytes, mast

cells and more (47, 58,59). Following inflammatory cell

infiltration, there increased levels of collagen and elastin

production leading to the formation of new connective tissue and

blood vessels (61). ADM demonstrates excellent biological

strength and effectively supports fixation while reducing tension

during cell proliferation (58).

Secondly, ADM harbors a multitude of signaling factors, such

as vascular endothelial growth factor (VEGF), transforming growth

factor β (TGF-β), basic fibroblast growth factor (BFGF), and others

(62). These growth factors have demonstrated the ability to retain

their biological activity post-sterilization and during extended

storage, while also promoting cell adhesion, proliferation,

differentiation, and tissue formation (59). Additionally, ADM

exhibits low antigenicity and excellent histocompatibility, creating

an advantageous environment for the growth and proliferation of

seed cells (63, 64). Following implantation in the body, ADM

gradually undergoes degradation and is subsequently replaced by

new tissue. Compared to other biological materials, ADM

provides ample space for normal cell growth, making it a suitable

candidate for use as a biological injection material (65–67). ADM

can be considered as an “off-the-shelf” natural biomaterial that

effectively addresses the issue of donor site insufficiency within

the host itself (68). In summary, ADM scaffolds possess a

complex composition consisting of diverse molecules that play

pivotal roles in the process of tissue regeneration.
5 The application of ADM in urethral
repair and reconstruction for tissue
engineering

Traditional techniques for urethral reconstruction involve the

utilization of external genital skin, oral mucosa, and bladder

mucosa for repair. However, this approach a risk of necrosis in

the transplanted skin and mucosal tissue. Moreover, it fails to

achieve functional restoration of the urethral epithelium (69, 70).

Tissue engineering techniques offer the advantage of not

necessitating large quantities of autologous tissue, particularly in

cases where an increase in urethral length is required instead of

autologous tissue harvesting. ADM is a three-dimensional

extracellular matrix framework derived from the skin that serves

as a reparative material. Although initially used in patients with

severe burns, ADM has recently gained widespread application

across various clinical fields including plastic surgery, breast

surgery, head and neck surgery, otolaryngology, urology, oral

surgery abdominal wall reconstruction gynecology and
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ophthalmology (71–77). ADM has gradually become a popular

choice for urethral repair and reconstruction in tissue

engineering. Currently scaffold-based urethral reconstruction

emphasizes the use of either cell-free or cell-seeded ADMs.
5.1 Using cell-free ADM scaffold material

In the initial stage, Lin et al. (78) successfully achieved the

reconstruction of 16 male urethral diseases by suturing ADM

into a tubular structure, which included 13 complicated urethral

strictures and one urethral hypospadias. The average length of

urethral replacement was 4.7 cm, ranging from 2 to 10 cm.

Postoperative urethrography demonstrated excellent integration

of ADM with the surrounding tissue, while urethroscope

examination revealed complete epithelialization of the graft

urethra. No postoperative infections or rejections were observed;

however, three cases experienced postoperative urethral strictures

that were effectively managed through dilatation or incision.

ADM is tentatively considered an ideal substitute for the urethra.

On the other hand, Liu et al. (79) implanted sutured allogeneic

ac dermal matrix into a tubular structure to repair 5.0 cm long

urethral defects in 15 dogs. After a follow-up period of 24 weeks,

no infections or anastomotic stenosis occurred, and there was no

histological evidence of rejection with significant infiltration of

inflammatory cells at any time point during evaluation. However,

it should be noted that achieving normal structural

approximation in the central area of ADM after transplantation

requires an extended duration. Yang et al. (80) surgically treated

five patients with anterior urethral strictures ranging from 5 to

9 cm in length by excising the affected segment and replacing it

with tubular ADM. Three patients achieved successful voiding

after catheter removal, while the remaining two underwent

intermittent urethral dilation for a period of 2 months. All five

patients demonstrated satisfactory voiding function 3 months

post-operation, as confirmed by urethrography which revealed

excellent continuity of the reconstructed urethra. ADM as a

substitute for autologous tissue is a safe, effective, invasive, and

cost-efficient method to avoid the trauma associated with

harvesting autologous tissue in previous procedures. However,

long-term outcomes regarding urethral stenosis remain uncertain.

Tang et al. (81) conducted a review of 49 patients with urethral

strictures ranging from 1.5 to 3.8 cm in length who underwent

urethroplasty with ADM and were followed up for 12 months.

Cystoscopy revealed satisfactory coverage of the urethral epithelial

mucosa in 11 cases. Infection occurred in two cases within the

postoperative period of 2–4 weeks, while one case developed a

urethral fistula at 5 months and seven cases experienced non-

infective urethral strictures between 6 and 10 months after

surgery. In this study, one out of two patients who developed

postoperative infection had a stricture length of 3.0 cm, while the

patient with a urethral fistula also presented with a stricture

length close to 3.0 cm. Therefore, the use of ADM without seeded

cells in an Onlay method for urethral reconstruction may have

limited therapeutic efficacy for strictures longer than 3.0 cm.

Additionally, the health status of the urethral bed should also be
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taken into consideration (82). El-Kassaby et al. (83) reported that

acellular matrix would be suitable for use in surgical treatment of

early strictures with an apparently healthy urethral bed and

minimal spongiofibrosis. Primary ADM should not be performed

in patients with preoperative infection complicated by urethral

stones due to long-term stone irritation and poor local mucosal

conditions, which increase the risk of infection or poor healing

outcomes (81). In general, ADM represents a novel approach for

material selection in urethral repair and reconstruction that offers

benefits such as straightforward implementation, convenience,

minimal invasiveness, and no additional sampling.

The most direct tissue engineering strategy for urethral

reconstruction involves the utilization of natural or synthetic cell-

free scaffolds, which are subsequently infiltrated with host cells

and eventually degraded to form new tissue. The successful

implantation of cell-free grafts relies on a healthy urethral bed,

sufficient vascular supply, and the absence of spongiform fibrosis;

otherwise, there is a risk of graft atrophy, inadequate tissue

regeneration, and fibrosis. Considering that urethral stricture is

characterized by ischemic cavernous fibrosis as a pathological

process, it may impact the quality of the newly constructed

urethra. Therefore, this simplified procedure can only be

considered as an option for patients with short to moderate

urethral defects. Clinical data demonstrates a high failure rate in

treating urethral strictures longer than 4.0 cm.

The utilization of acellular fetal skin offers potential advantages

compared to other acellular matrices. Sobhani et al. (84) employed

an early gestational age fetal ADM scaffold for repairing

hypospadias in a rabbit model. The decellularized fetal skin

demonstrated favorable angiogenesis and re-epithelialization,

resulting in reduced postoperative complications and shortened

operation time, thereby establishing a solid foundation for

treating complex hypospadias. The composition of the fetal

dermis plays a critical role in scar-free wound healing and

reducing complications associated with fetal dermal grafting (85).

There is a significant disparity between the extracellular matrix

of adult skin and fetal skin, primarily due to type Ⅰ collagen

being the primary component. However, compared to adult skin,

fetal skin exhibits higher levels of type Ⅲ collagen, type Ⅰ
collagen, and cutin (86), which may explain its suitability as a

“ready-made” material for tissue engineering urethra.

Furthermore, recent studies have shown that utilizing ADM

grafts in the second stage repair of hypospadias for ventral side

elongation effectively corrects ventral curvature without

increasing the risk of urethroplasty complications while also

providing aesthetic benefits (87).

In order to enhance the efficacy of ADM materials, scholars

have compared various preparation methods. Morgante et al. (88)

conducted a study on porcine urethral repair using ADM and

compared two types of acellular matrices: full-thickness porcine

bladder matrix (PABM) and commercially derived cross-linked

porcine dermal matrix (PermacolTM). Anatomical and

immunohistochemical evaluations were performed 3 months after

the operation. The PABM graft showed complete fusion, while

the PermacolTM graft remained palpable. Immunohistochemical

analysis demonstrated a non-inflammatory remodeling response
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to both biomaterials. PABM implants displayed extensive

infiltration of interstitial cells and neovascularization with

significantly higher cell density than PermacolTM. We believe that

the poor growth of cells in PermacolTM may be attributed to

variations in decellularization methods employed by different

research groups, resulting in differential effects on cell removal,

extracellular matrix composition, and subsequent tissue

remodeling. It is evident that natural acellular matrices hold great

promise as biomaterials for reconstructive and regenerative

surgery; however, their physical and biological properties can

potentially be influenced by chemical or radiation exposure. To

fully realize the clinical potential of ADMs, it is crucial to

conduct comprehensive evaluations of their safety and efficacy

both in vitro and in vivo while also establishing standardized

protocols for their utilization in clinical practice (Table 3).
5.2 Using cell-seeded ADM scaffold material

Cell seeding with acellular dermal matrix is more suitable for

tubular implants (92). The biological scaffolds are seeded with

different types of cells, which can effectively promote cell

expansion by releasing growth factors, cytokines, etc., thereby

improving the mechanical properties of the grafts (93). Studies

have demonstrated that in animal models, cell-inoculated matrix

have been compared with uninoculated matrix, and the results
TABLE 3 Experimental and human studies with cell-free ADM.

Authors Source of
matrix

Subjects Usage Techniques

Lin et al.
(78)

Human
dermis

Human Urethral stricture (15
cases), Hypospadias (1
case)

Tubulara

Liu et al.
(79)

Dog dermis Dog Urethral defect (15
cases)

Tubular

Yang et al.
(80)

Human
dermis

Human Urethral strictures
(5cases)

Tubular

Tang et al.
(81)

Human
dermis

Human Urethral strictures (49
cases)

Onlayb

Lin et al.
(89)

Bovine
dermis

Human Hypospadias (35 cases) Coverage

Wang et al.
(90)

Bovine
dermis

Beagle Urethral defect (21
animals)

Onlay

Sobhani
et al. (84)

Human fetal
dermis

Rabbit Hypospadias (8 animals) Onlay

Wu et al.
(91)

Human
dermis

Human Hypospadias (219 cases) Coverage

aTubular graft surgery involves complete removal of the diseased segment of the ureth
bInlay grafting is performed by creating a longitudinal incision through the affected ur

diseased area.
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are better with the former, which provides a robust empirical

foundation for clinical research (94). The utilization of cell-based

grafts has exhibited a remarkable 5.7-fold increase in long-term

success rates compared to unseeded grafts (95). Importantly,

incorporating cells within grafts has been shown to significantly

reduce the incidence of stenosis, fistula formation, and infection.

This can be attributed to the potential promotion of

vascularization and urothelial barrier formation by cellular

components, effectively mitigating local inflammation and

fibrosis resulting from urine leakage. Autologous stem cells hold

immense promise in urethral tissue engineering, with several

scholars exploring the feasibility of combining ADM with stem

cells. Fu et al. (96) employed bone marrow mesenchymal stem

cells seeded on ADM, subsequently repairing rabbit urethral

injuries. Histological examination using HE staining revealed that

over time, the reconstructed area in the experimental group

exhibited a transition from a single layer of urethral epithelial

cells to multiple layers, closely resembling the structure of

normal urethral tissue at 12 weeks post-operation. In contrast,

the control group without the use of bone marrow mesenchymal

stem cells displayed inferior urethral regeneration. Urethrography

demonstrated an absence of urinary fistulas and urethral

strictures or other complications in the experimental group,

while such complications were observed in the control group.

These findings indicate that combining bone marrow

mesenchymal stem cells with ADM yields superior outcomes for
Graft
extension

Summary findings

2–10 cm ADM is provisionally deemed to be an optimal alternative for the
urethra

5.0 cm ADM may be an ideal tissue engineering material for the
replacement of urethral

5–9 cm Using ADM as a substitute for autologous tissue is a safe,
effective, minimally invasive, and cost-efficient method to avoid
the trauma associated with harvesting autologous tissue in the
past.

1.5–3.8 cm ADM represents a novel approach for the selection of materials in
urethral repair and reconstruction. It offers the benefits of
straightforward implementation, convenience, minimal
invasiveness, and no additional sampling

3.0 cm × 1.5 cm Use of ADM may be a safe and efficient covering technique to
provide an additional coverage layer for proximal hypospadias
repair, thereby reducing the incidence of fistula formation,
especially among patients who have poor-quality covering
materials

3.0 cm ADM patches modified with CBD-VEGF demonstrated an
optimized tissue repair performance in a way to increase tissue
angiogenesis and maintain urethral function without inducing
severe inflammation and scar formation

4 × 4 mm The application of acellular fetal skin (AFS) is a safe and feasible
method that can decrease surgical time in a complex hypospadias
reconstruction

1.0–1.2 cm It is found that HADM application can significantly reduce the
incidence of urethrocutaneous fistula complications, without
increasing the risk of infection and urethral stricture

ra, followed by suturing the tubular graft in place to replace the resected segment.

ethra, separating the urethral membrane, and using a graft to cover and repair the
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repairing urethral injuries compared to using ADM alone.

Therefore, ADM provides support for cell adhesion, growth, and

proliferation, facilitating material exchange and signal

transduction pathway formation. Both cellular-matrix interaction

and tissue engineered graft-host tissue environment interaction

are crucial factors for successful outcomes in urethral

reconstruction. However, the mechanism by which seed cells

participate in the regeneration process after binding to ADM

remains unclear. Although preclinical animal studies tend to

suggest that cell-bound ADM is more effective with fewer

complications, these findings have not been substantiated by a

limited number of clinical studies.

Currently, there is a limited number of clinical reports available

on the construction of urethra using cell-loaded ADM grafts. Liu

et al. (79) sutured allogeneic acellular dermal matrix into a tube

to repair two patients with urethral defects measuring 12.0 cm

and 12.7 cm in length, respectively. Urethral mucosa homogenate

and bladder mucosa homogenate were applied on the inner

surface of the ADM cavity, respectively. No anastomotic stenosis

was observed. In the clinical application of long segment urethral

reconstruction using ADM, the repair process relies on host cell

regeneration at both ends, resulting in time-consuming

procedures. However, by utilizing homogenization seeding of

host urothelium and multicentric growth of epithelium based on

nutrients infiltrated into the ADM, it is possible to effectively

shorten the repair time. Fossum et al. (97) conducted a study in

which autologous urethral epithelial cells were cultured in vitro

and subsequently transplanted onto ADM for surgical treatment

of 6 patients with severe hypospadias, aged between 14 and 44

months. All patients underwent a two-stage surgical approach.

Initially, urothelial cells were obtained through bladder lavage

and then seeded onto ADM. In the second operation, an ADM

scaffold containing urothelial cells was implanted to construct a

new urethra. During the follow-up period of 3.5–5 years, one

patient experienced partial stenosis without receiving any specific

treatment, one patient developed proximal anastomotic

obstruction, and two patients developed urinary fistula requiring

surgical correction. Urethroscopy performed on all patients

revealed widening of the newly constructed urethra, while biopsy

results from three patients indicated that the inner mucosa

consisted of urothelial cells. The authors Bhargava et al. (82)
TABLE 4 Experimental and human studies with cell-seeded ADM.

Authors Types of cells Source of
matrix

Subjects Usage

Fu Jinshan
et al. (96)

Bone marrow
mesenchymal stem
cells (BMSCs)

Rabbit
dermis

Rabbit Urethral injury
(36 animals)

Liu et al. (79) Urethral mucosa and
bladder mucosa cells

Human
dermis

Human Urethral defects
(2 cases)

Fossum et al.
(97)

Urothelial cells Human
dermis

Human Hypospadias
(6 cases)

Bhargava
et al. (82)

Keratinocytes and
fibroblasts

Human
dermis

Human Urethral stricture
(5 cases)
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performed surgical treatment on five patients with urethral

strictures ranging from 4 to 11 cm buccal mucosa keratinocytes

and fibroblasts on ADM. Buccal mucosa biopsies were obtained

from each patient for cell collection. These grafts were utilized

for two-stage procedures (n = 3) and urethroplasty (n = 2).

Results revealed that two patients experienced complications of

urethral fibrosis and constriction, resulting in complete or partial

removal of the graft. Three other patients required internal

fixation after a follow-up period of 33 months. The application

of tissue engineering techniques for implanting expanded cells on

ADM can effectively enhance urethral tissue regeneration and

accelerate lesion healing, making it particularly suitable for

patients with long and complex urethral strictures or defects.

However, the optimal conditions for cell differentiation and

maturation in cell-loaded ADM remain unclear, and there are

stringent requirements for in vitro cell culture, especially when

considering human treatment. Once a tissue-engineered urethra

is successfully constructed in vitro, timely scheduling of the

implantation procedure is crucial to prevent graft failure.

Additionally, it should be noted that using cell-inoculated

matrices would result in higher overall costs compared to using

cell-free matrices.

Another aspect that has received limited attention in the design

of tissue engineered urethral scaffolds is the prevention of urinary

fistulas. Recent research indicates that the utilization of ADM

derived from bovine skin as a coverage material for proximal

hypospadias repair can effectively decrease the occurrence of

urinary fistula formation (89). Wu et al. (91) investigated the use

of ADM in hypospadias repair and demonstrated a significant

reduction in urinary fistula complications without an increased

risk of infection and urethral stricture. Given the detrimental

effects of urine on the cellular components of tissue-engineered

urethra, it is crucial for the scaffold to possess sufficient

impermeability as an isolation barrier. Furthermore, appropriately

modified ADM materials can effectively decrease the incidence of

associated complications and other adverse reactions.

Wang et al. (90) utilized bovine ADM loaded with collagen

binding vascular endothelial growth factor (CBD-VEGF) for the

repair of canine urethral injury. A few months later, the group

with urethral injury was compared to the groups receiving ADM

implantation and CBD-VEGF modified ADM implantation,
Technique Graft
extension

Summary findings

Tubular 2.0 cm × 1.0 cm Overall findings indicate that the combination
of BMSCs and acellular dermal matrix has better
efficacy than the acellular dermal matrix alone

Tubular 12.0 cm–12.7 cm The repair time can be significantly reduced by
employing the host urothelium homogenate
seeding technique

Tubular 25 cm2 This technique is feasible for treatment of a
selected group of hypospadias where
pronounced chordee and shortage of preputial
and penile skin

Onlay 4–11 cm This pilot study has identified the potential
clinical usefulness of TEBM
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respectively. The findings revealed that while the control group

experienced urethral stricture and diverticulum, one case in the

ADM group developed urinary fistula. However, no associated

complications or adverse reactions were observed in the CBD-

VEGF modified ADM implantation group. Importantly, ADM

effectively prevented both urethral stricture and diverticulum

when compared to the control group, demonstrating its efficacy

in averting these conditions. Notably, combining ADM with

growth factors promotes functional vascular system formation,

thereby maintaining extracellular matrix metabolism balance and

facilitating urethra remodeling without inducing severe

inflammation or scar hyperplasia (Table 4).
6 Conclusions

Given the limited availability of tissue, coupled with a high

incidence rate and challenges in achieving complete structural

and functional restoration of the urethra, treatment outcomes for

long urethral strictures remain unsatisfactory. ADM-based tissue

engineering solutions have emerged as promising alternatives.

ADM is derived from natural extracellular matrix (ECM),

exhibiting exceptional biocompatibility along with appropriate

mechanical properties and controlled non-toxic degradability.

ADM creates a favorable microenvironment conducive to

nurturing urethral parietal cell components while significantly

enhancing the development of tissue-engineered substitutes for

the urethra. However, further investigation is warranted in

refining preparation technologies aiming to more accurately

replicate ADM’s inherent extracellular environment. Additionally,

it is imperative to implement suitable modifications including

integration of bioactive molecules.

The acellular allogeneic dermal matrix is highly versatile and

readily available as an off-the-shelf material. It is the most

commonly utilized scaffold type in clinical practice, devoid of

cells. In terms of surgical approach, inlay grafting should be

preferred over tubular reconstruction due to the latter’s high

failure rate. This is primarily attributed to the limited extent for

adequate tissue regeneration on the stroma from the urethral wall

boundary, which has been reported to be approximately 1.5 cm.

We consider acellular allogeneic dermal matrix without cells as a

valuable alternative when there is a scarcity of tissue sources,

increased risk of donor site complications, and unsatisfactory

outcomes in treating long urethral strictures. On the contrary,

recent reports have highlighted the utilization of cell-seeded

matrices in urethral reconstruction, indicating advancements in

cell biology and biomaterials as scaffolds. Despite not fully

replicating the intricate ECM microenvironment, animal studies

on tissue-engineered urethra have successfully incorporated

growth factors and cell co-culture. However, there are only three

documented cases of cell-seeded scaffolds being used for human

urethroplasty with a limited number of patients. Only 2 study

that used a tubularized ADM as a construct has been published

in the literature. In two cases where patients had urethral defects

longer than 12.0 cm, repair was performed using acellular

allogeneic dermal matrix seeded with homogenized urethral
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mucosa and bladder mucosa. Notably, no instances of

postoperative urethral stricture were observed among these

patients—an occurrence rarely reported in clinical practice (79).

Additionally, acellular dermis seeded with keratinocytes and

fibroblasts was employed to treat five patients with urethral

stricture; however, all experienced recurrent strictures (92). The

failure can be attributed to the progressive and incurable nature

of lichen sclerosis itself. Additionally, other contributing factors

to this outcome may include the preparation of acellular dermal

matrix, selection of cell type for inoculation, and surgical

technique employed. A study involving six children underwent

hypospadias repair using urothelial cells inoculated into acellular

dermis (94). In this study, one child required surgical

intervention due to urethral restenosis, while two other patients

underwent correction for urethral fistula. Human studies utilizing

acellular allogeneic dermal matrices seeded with cells failed to

replicate the promising results observed in animal models.

However, we discovered that applying ADM coverage during

urethroplasty significantly reduced the incidence of urinary fistula

after hypospadias surgery—an aspect that has been relatively

overlooked. In conclusion, cell scaffolds seem to hold promising

prospects in the future. In particular, tubular scaffolds

constructed from co-cultured cells may be a more appropriate

orientation for TE urethral reconstruction.

The treatment of urethral stricture depends on a variety of

factors, including patient age, etiology, length and location of

stricture, preoperative intervention, and surgical experience. The

results of clinical studies of ADM Tissue Engineering grafts

remain uncertain due to the inadequacy of available trials.

However, through the combination of ADM with an optimized

decellularization protocol, novel nanoengineering technology, and

3D bioprinting technology, it holds great promise as a material

for tissue-engineered urethral repair. The utilization of 3D

bioprinting can simplify the creation of seeded tubular urethral

structures, enhance patient-specific design options, and improve

the efficiency of generating tissue-engineered urethra.
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