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The purpose of this narrative review was to investigate the key determinants of
musculoskeletal health in childhood and adolescence, with particular attention
to the role of physical activity. First, we examined the importance of bone
modeling and remodeling in maintaining the bone health and the integrity and
mechanical characteristic of the skeleton. In addition, we reported the evidence
on an appropriate calcium and vitamin D intake, as well as local load variation in
achieving proper peak bone mass. Proteomic and transcriptomic studies
identified the skeletal muscle “secretoma”, consisting of several myokines
involved in endocrine and paracrine functions. Among these, we explored the
role of irisin, a myokine involved in the muscle-bone crosstalk, and in the
regulation of metabolic pathways. It is known that physical activity during
growing positively impacts on skeleton and can protect by bone loss in
adulthood. However, there are still concerns about the optimal interval duration
and exercise intensity, particularly at the pubertal growth spurt which represents
a window of opportunity to increase skeletal strength. We reported data from
clinical trials performed in the last 5 years analyzing the impact of the type and
timing of physical activity during childhood on skeletal development. Finally, we
reported recent data on the significance of physical activity in some rare diseases.
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Introduction

The coordinated action of osteoblasts, osteoclasts and osteocytes directs bone modelling

and remodeling (1). The former process promotes longitudinal growth of the bones and

adaption of the skeleton to mechanical stress, while the latter removes old or damaged

bone. Thus, bone remodeling maintains the strength of the skeleton over the course of

life. During bone modeling, osteoclasts and osteoblasts work individually, while when

bone remodeling occurs, bone resorption and bone formation are coupled into bone

remodeling units (1). With ageing, the skeleton undergoes substantial architectural and

metabolic modifications, possibly predisposing to osteoporosis and increased risk of

fractures. Although osteoporosis is typically associated with ageing, the contributing

factors can act already during growth. Hence, the impairment of bone health occurs

during the developmental age, when over a third of bone mass is accumulated, reaching a

peak around the second decade of life (2). The conjunction of this critical period of bone

growing with bone loading and physical activity represents a “window of opportunity” to

develop a healthy skeleton (3). Environmental factors, such as diet and exercise, impact

20%–40% of peak bone mass in adulthood. Physical activity is recognized as a means of

health promotion and disease prevention throughout the life (4), although there are few

specific recommendations in infancy and childhood, which represent periods of life
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wherein healthy behaviors can have lasting metabolic and

behavioral consequences (5, 6). An adequate development of

skeletal muscles during these two periods may have long-term

consequences on body composition and inclination to engage in

physical activity throughout life (7). Moreover, although muscle

fiber composition is genetically determined (8), early physical

training can play an important role in “fiber reprogramming”

(9). Bone mineral content (BMC) and bone mineral density

(BMD) increase in response to repetitive and variable loading

activities through increased force and strain. Moderate or intense

physical activity and several sports inducing greater than normal

bone load are critical for the achievement of bone strength (10).

Considering this, the implementation of exercise interventions

during childhood and adolescence could maximize peak bone

mass and consequently slow down the onset of osteoporosis.

In this narrative review, we focused on the key determinants of

musculoskeletal health in pediatric age, and we reported the most

recent studies on the impact of physical activity on bone strength

during childhood and adolescence. Furthermore, we reported the

effects of physical activity in some rare diseases in which has

been demonstrated an improving of bone health.
The concept of bone health: bone
modeling, bone remodeling and peak
bone mass

Bone contains an organic component represented by

collagenous and non-collagenous proteins and cells, and a

mineral part of hydroxyapatite (11).

Bone cells include osteoblasts, the bone forming cells, which

originate from mesenchymal stem cells; osteocytes, differentiated

from osteoblasts and inserted in the bone matrix; and osteoclasts,

the bone reabsorbing cells, differentiated from hematopoietic

progenitors. Skeletal growth is the result of the bone expansion of

cortical bone, and bone growing through endochondral ossification

(12). This process called “bone modeling”, which starts during fetal

life and proceeds until epiphyseal fusion, is particularly sensitive to

mechanical load, supporting the significance of physical activity

during growth (13). The acquisition of bone mass occurs slowly

throughout childhood, while it proceeds quickly with the onset of

puberty and at the time of growth spurt. Peak bone mass occurs at

12.5 ± 0.90 years in girls and 14.1 ± 0.95 years in boys (13).

The changes of bone sizes and thickness occur more rapidly

after epiphyseal fusion and continue until the attainment of peak

bone mass during the second decade of life (13). However, the

changes of bone shape and bone composition occurring during

pubertal development, influence the bone strength (14). Thus,

the “bone bank” is built in the first two decades of life, and most

of the risk of osteoporosis depends on what occurs in this

period. Peak bone mass represents a key determinant of bone

health and risk of osteoporosis in adulthood (15). Indeed, it is

strictly related to bone strength that in turn is determined by

bone mass, bone density, microarchitecture, micro repairs and

bone geometry. The attainment of a suitable peak bone mass can

prevent fractures both in childhood and adulthood (16–18).
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Bone is also a living tissue as old and damaged bone is removed

and replaced with newly formed bone. This process of bone renewal

and repair is called “bone remodeling”, and it is due to the action of

osteoclasts and the osteoblasts (19). In healthy bones, the osteoclast

and osteoblast activity are balanced. When this process becomes

unbalanced, so that the bone reabsorbing happens faster than bone

replacing, bones can become thin and fragile. Bone remodeling is

determinant to maintaining the integrity and the mechanical

properties of the skeleton (20). This balance is controlled by

the RANK/RANKL/osteoprotegerin (OPG) and Wnt/β-catenin

pathways which regulate osteoclastogenesis and osteoblastogenesis,

respectively (21). Bone remodeling’s alterations have been observed

in several congenital and acquired pediatric disorders (22).

Particularly, in subjects with obesity, the condition of low-grade

inflammation activates osteoclasts by up regulating the production

of RANKL and other inflammatory cytokines, and inhibiting

osteoblastogenesis, thus accelerating bone resorption (23).
Key determinants of bone health in
pediatric age

According to the National Osteoporosis Foundation, bone

health is the consequence of both genetic and environmental factors

(16). Genetic factors impact skeletal development for approximately

60%–80% (16, 24). Numerous loci linked with low bone mass and

osteoporosis have been recognized by Genome Wide Association

(GWA) studies (25), although few studies have been conducted in

children. Environmental factors, such as diet and physical activity

are responsible for 20%–40% of the peak bone mass (16).
Calcium and vitamin D intake

Adequate calcium and vitamin D intake, in association with

physical activity, maximizes peak bone mass and reduces the risk

of osteoporosis and fractures in childhood and adulthood (26).

The National Institutes of Health provided the recommendations

for calcium intake and calcium content of foods (27). The

recommended dietary allowance (RDA) for calcium is 1,300 mg

for subjects aged 9–18 years (24). Calcium intakes <600 mg/day,

may expose to substantial risks of inadequate mineralization (28).

Intakes <400 mg/day, especially when combined with low

vitamin D levels, represent a risk of rickets and fractures.

A systematic review evaluated the methods and quality of

guidelines on calcium and vitamin D supplementation in healthy

children (29). The authors observed significant variations on

calcium and vitamin D recommendations across 24 guidelines

and consensus among countries around the world. The

recommended calcium intake for children ranged from 400 to

1,150 mg/day. Additionally, data on vitamin D supplementation

at different ages, vitamin D type, and sunlight exposure were

conflicting across studies (29).

In a previous study, the supplementation of 800 mg of calcium

and 400 IU of vitamin D daily for 6 months resulted in increases in

cortical and trabecular bone (30). In contrast, a meta-analysis
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demonstrated that rising dairy products in the diet significantly

improved bone mineral content only in children with low baseline

calcium intake (31). Thus, calcium and vitamin D supplementation

would appear to have little influence on bone health.
Physical activity and musculoskeletal health

Muscle and bone interact through both anatomically and

mechanically, as well as through paracrine and endocrine signals

(32). As regards the mechanical interaction, bones represent a site

of attachment for muscles and, in turn, skeletal muscles facilitate

locomotion by giving strength to the bone; hence, muscles are the

primary source of tension for bones. This is testified by the fact

that astronauts experience bone loss and muscle atrophy as they

are exposed to an environment that lacks gravity, such as space; as

they return to the ground, the speed of recovery that they

experience in their muscle mass exceeds that of bone, suggesting

muscle contraction is essential for bone recovery. Thus,

immobility, aging and other diseases can cause changes in both

bone and muscle mass. In addition, skeletal muscles produce

factors which regulate bone metabolism. These muscle-secreted

factors named “myokines”, include myostatin, interleukin (IL)-6,

IL-7, IL-15, IGF-1, FGF-2, irisin, and BAIBA (33).

Physical activity has a positive impact onmusculoskeletal health.

The skeleton responds to physical stress quickly and bone

remodeling starts. Exercise leads to bone adaptation by cellular

mechano transduction (34). Quickly, upon exercise, the

mechanosensors located through the cells, such as stretch-activated

ion channels and integrins, modify their conformation (Figure 1).
FIGURE 1

Bone adaptation to exercise. MSC, mesenchimal stem cells; RANKL, receptor
DKK1, dickkopf-1; OPG, osteoprotegerin; TNFα, tumor necrosis factor alpha.
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These conformational changes activate a signaling cascade which

determines bone accretion at the site of deformation (34). To obtain

an osteogenic response, the bones must undergo such a deformation

that exceeds the usual deformation threshold. The threshold varies

between individuals and bone sites according to physical activity

habits, age, hormone levels, and other metabolic factors (35). Thus,

children and adolescents may have a different response to

comparable mechanical loads: inactive children may improve bone

mass in response to low-impact loads, while active children will

need a greater mechanical load (36). The response is regional,

allowing specific bone to meet increasing loading requirements.

Indeed, a greater bone density has been observed in the dominant

arms of baseball, tennis, and squash players with side-to-side

variations ranging from 8% to 22% (37). It has also been

demonstrated that the magnitude of loading and deviations from

normal loading patterns are more important for bone modeling

than stimulus duration. Mechanical loading induced by physical

activity is necessary to stimulate bone modeling as it provides the

stimulus required to develop a robust skeleton (38). Mechanical

loads of 3.5 g-force for 3 days/week with 100 loads per session and 7

months of intervention determine an osteogenic effect. Furthermore,

the mechanical loading stimulates the Wnt/-catenin signaling

pathway, which in turn downregulates osteoclastogenesis and

osteoclast activity, thus influencing bone remodeling (39).

Regarding the muscle response to exercise, the increased load

contributes to muscle size and strength, primarily as a result of

muscle cell hypertrophy rather than hyperplasia (40). The

increase in muscle mass results in an inhibition of myostatin

which hence regulates muscle mass. Nonetheless, it is not yet

clear why only the muscles under load increases muscle mass,
activator of nuclear factor kappa-Β ligand; RANK, RANKL/OPG receptor;
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while the decrease in circulating levels of myostatin resulting from

exercise should affect the whole body (41). This suggests that other

unknown soluble factors produced by skeletal muscles after

exercise may contribute to increases in muscle size and strength.

On the other hand, during aging and immobility, the

physiological changes caused by skeletal unloading determine the

onset of sarcopenia, characterized by a decrease in the size

(atrophy) and number (hypoplasia) of muscle fibers. Therapeutic

strategies to treat sarcopenia are currently aimed at targeting the

myostatin/activin signaling mechanism, on the basis of the

principle of “muscle-bone crosstalk”.
Irisin: a myokine involved in the crosstalk
between muscle and bone

Irisin is a myokine firstly identified for its role in inducing

browning of white adipose tissue and increasing energy

expenditure (42). Then, both in human and mouse it has been

demonstrated that irisin is also involved in glucose homeostasis

by promoting liver glycogen synthesis and inhibiting

gluconeogenesis (43, 44). Further role of this myokine in

cognitive functions, learning, and memory has been recognized

(45). In humans irisin represents a link between physical activity

and metabolic homeostasis, as it mediates the beneficial effects of

exercise on glucose and lipid metabolism, and it provides to

maintain musculoskeletal homeostasis (46, 47). This evidence

strengthens the hypothesis that muscle can be considered an

endocrine organ. Studies of proteomics and transcriptomics

identified the composition of the skeletal muscle “secretome”

leading to identification of several myokines (48). Most of the

proteins identified in cultures of myotube were predicted as

putative secreted proteins, pointing out that skeletal muscle acts

as an endocrine organ. Functional analysis suggests their role in

skeletal muscle as paracrine regulators of oxidation, hypertrophy,

angiogenesis, and extracellular matrix (49). These myokines are

also involved in the regulation of body weight, inflammation,

insulin sensitivity, and cognitive function. Thus, muscle derived

regulatory RNAs could represent a novel frontier for the

treatment of chronic diseases. Exercise as downhill running,

eccentric exercise, and resistance training determine a systemic

marked cytokine response, with a higher degree of muscle

involvement (50). However, a strong elevation of several

cytokines and chemokines in skeletal muscle has been described

after exercise with long duration or high intensity (51), while a

less evident or absent response has been observed after moderate

intense physical activity (52). The direct involvement of irisin in

bone metabolism, by inducing the differentiation of bone

marrow stromal cells into mature osteoblasts, has been

demonstrated (53). In healthy children, irisin serum levels

positively correlate with bone mineral status and negatively with

inhibitors of Wnt signaling pathway (54). Furthermore, high

irisin levels correlate with a better glycemic control and bone

health in children affected with type 1 diabetes (55). Zhang et al.,

confirmed the positive regulatory effect of irisin on bone during

physical exercise, as they found an increased expression of
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biochemical markers of bone formation and irisin increase in

bone tissue after 2 weeks of free wheel-running exercise (56).

Exercise-induced irisin, or exogenous administration of irisin, can

prevent bone loss, as demonstrated in hind-limb suspended mice

(47). However, the true effect of physical activity in promoting

secretion of irisin is still debated. Some studies reported a huge

effect of exercise in promoting irisin release (45–47), while others

did not document any changes in irisin levels after both acute

and chronic exercise (57, 58). Probably, this disagreement

depends on the type and duration of exercise, and the type of

assay for irisin assessment. Conversely, serum irisin levels has

been identified as a predictive biomarker for sarcopenia (59, 60).

Moreover, irisin can activate the differentiation of osteoblasts

under microgravity conditions by promoting the secretion of β-

catenin protein and increase OPG levels (61).

Furthermore, body composition is also a relevant factor for

musculoskeletal health, in fact age-related loss of skeletal muscle

(sarcopenia) is often associated with obesity (“sarcopenic

obesity”). Increased myostatin levels have been shown to result in

low levels of muscle tissue mass and at the same time inhibit

insulin signaling, muscle mitochondrial biogenesis, lipid

oxidation and energy expenditure, therefore this myokine could

play a key role in sarcopenic obesity (62).
The impact of exercise interventions
on bone strength

Physical exercise and healthy eating habits during growing

increases the probabilities of accruing bone, and potentially

delays osteoporosis in adulthood. Literature data on the

effectiveness of physical activity interventions in childhood and

adolescence are heterogeneous.

A meta-analysis of 27 studies found a significant effect of

weight bearing activity on BMC and BMD (63). Children

involved in school-based exercise programs for 9 months showed

higher whole-body, femoral neck and total hip BMC compared

with their counterparts not involved in exercising (64).

Furthermore, a persistence of the benefits 3 years after ceasing

the intervention has been observed. Longitudinal studies reached

different conclusions regarding whether the osteogenic effect

depends on continuing physical activity into adulthood (65–67).

Subject who practiced sports during childhood showed a greater

hip BMC in adulthood than their sedentary counterparts (68). A

cross-sectional cohort study investigated the longstanding effects

of soccer on BMD and fracture risk, demonstrating a higher

BMD, and lower risk of fractures in the athletes 30 years after

retirement (69).

A recent study demonstrated that the age at which children first

start walking might affect their bone strength in later life (70).

Ireland et al., examined the association between walking age and

bone mineralization by Dual-energy x-ray absorptiometry (DXA)

and Quantitative Computed Tomography (pQCT) in subjects

aged between the ages of 60 and 64 years (70). Later

independent walking age has been associated with lower BMC,

suggesting that early mechanical loading on the skeleton might
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influence bone strength development. A systematic review of the

literature evaluated the changes induced on bone mineralization

by ball games, dancing, jumping and other physical activities.

The results of this study showed that weight-bearing exercise in

childhood had a positive effect on bone strength, while exercise

performed during prepubertal and peripubertal age caused an

increase in bone mineral accrual (71). These results have been

confirmed by other studies which observed that, although

osteogenesis and bone anabolism are more pronounced during
TABLE 1 Clinical trial investigated weight-bearing physical activities
improving musculoskeletal health.

Study Participants Exercise
intervention

details

Bone
mineralization
outcomes

Vlachopoulos
et al., 2017
(64)

116 males aged
13.1 0.1 years
evaluated at
baseline and at
12-month (follow
up)

37 swimmers
37 footballers
28 cyclists
14 controls
Duration: more
than 3 h per week

- Footballers had
higher
improvement in
BMC compared to
cyclists and
swimmers

- No significant
difference between
swimmers and
cyclists was found

Larsen et al.,
2016 (68)

295 Danish school
children aged 8–
10 years

96 small-sided ball
game group (SSG)
83 strength training
group (CST)
- 116 controls
Duration: 3 ×
40 min/week over
10 months

- Both training types
resulted in higher
change scores in
postural balance

- SSG group had
higher change
scores in leg aBMD
compared with
CST and controls

Bielemann
et al., 2019
(69)

4,106 adolescents
from the 1993
Pelotas Birth
Cohort Physical
activity assessed at
11, 15, and 18
years of age by
self-report and at
18 years by
accelerometry

Two groups:
- 150 min/week of

moderate
physical activity
(MPA)

- at least 75 min/
week of vigorous
physical activity
(VPA)

- Time spent inMPA
at 11 and 15 years
was not associated
with aBMD
improvement

- VPA at all time
points was
positively related
to aBMD
improvement in
boys

- VPA was related to
higher a BMD at 18
years of age in girls

Zribi et al.,
2022 (74)

39 adolescents
aged 11 ± 1 years
at baseline and at
12-month (follow
up)

20 prepubescent
boys, volleyball
players 19 controls
Duration: for
volleyball players 4–
6 h of training plus
one competition
game a week for at
least 18 months in
addition to 2 weekly
physical education
sessions at school (of
50 min each)
Controls: physical
education session at
school (50 min
each)

At follow-up,
volleyball players
gained more BMD in
whole body than
controls; a close
correlation was
observed between the
increment of whole
body lean mass and
increased BMD and
BMC in whole body

Frontiers in Pediatrics 05
the peripubertal phase, the period immediately preceding puberty

represents a “window of opportunity” in which the skeleton is

more sensitive to mechanical stress (35).
The impact of physical activity on
musculoskeletal health

In this section we reported the most important clinical trial

conducted in the last 5 years that investigated weight-bearing

physical activities improving musculoskeletal health. Table 1

shows the recent data on the effects of sport interventions on

bone mineralization.

The PRO-BONE study explored the effect of 12-months

involvement in osteogenic (football) and non-osteogenic

(swimming and cycling) sports in 116 adolescent male athletes

aged 13.1 years ±1.0 (72). The authors observed that after 12-

months participation, footballers showed significantly higher

BMC at most skeletal sites than swimmers and cyclists. A

previous study demonstrated that 8 months of sport-specific

training improved total body BMD by 2.9% in footballers, but

not in swimmers (73). These results confirm previous studies

that reported that swimming and cycling have no effect on bone

strength, possibly due to the low ground reaction forces

produced during exercise (74, 75). Therefore, football improves

bone strength compared to non-osteogenic sports which should

be combined with weight-bearing activities.

The randomized controlled trial FIT FIRST involving 295

Danish children aged between 8 and 10 years evaluated the effects

on bone mineralization and muscular structure after 10 months of

high-intensity school training (3 × 40 min/week) consisting of

team soccer and other ball games or circuit training with weight-

bearing exercises (76). The authors observed that both high-impact

school interventions improved musculoskeletal health in children.

The observations confirmed that in childhood the skeleton adapts

to the physiological changes induced by physical training and

suggested that both high-intensity interval program and odd-

impact training may improve musculoskeletal health.

Bieleman et al., examined the relations between physical

activity and areal BMD (aBMD) according to intensity of

exercise in several sports: outdoor soccer, indoor football,

athletics, basketball, volleyball, tennis, handball, dance,

gymnastics, martial arts, swimming, trapper, and playing bat

(77). Vigorous physical activity improved aBMD more than

moderate physical activity, especially in boys. In particular, the

involvement in vigorous activities from the middle to the end of

adolescence seems to be related to higher aBMD. Other studies

described differences induced by physical activities on aBMD

between boys and girls (78–80). The better impact of vigorous-

intensity physical activity on bone density in boys than in girls

may be explained by the increased sensitivity to mechanical

loading in boys during adolescence and exposure to testosterone

which increases bone and muscle mass (81).

Zribi et al. evaluated longitudinally the consequences of 1-year

of volleyball on BMD and BMC, assessed by DXA (82). Volleyball

is a team sport which includes different movements such as
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accelerations and decelerations, rapid changes of direction and

repetitive jumps. All actions generate high stresses on the upper

and lower limbs from the reaction forces produced by the jumps,

which measure three to six times the body weight.

This study demonstrated that playing volleyball 4–6 h per week

for approximately 1 year resulted in higher BMD and BMC at all

skeletal sites analyzed in prepubertal boys compared with non-

physically active controls. In volleyball the mechanical forces

acting on the bones derive both by the high reaction forces

produced by the impact with the ground in the jump, and by the

muscular contractions which pull their bone attachment.
Physical activity in rare diseases

Physical activity has a key role in the care of patients affected

with rare diseases, as it exerts both physic and psychological

effects, pointing to increase quality of life. In addition, there is

evidence that physical activity can improve bone health in some

skeletal and extra-skeletal rare diseases.

Rheumatic and musculoskeletal diseases include a group of

systemic diseases such as osteoarthritis, rheumatoid arthritis,

systemic lupus erythematosus, axial spondyloarthritis, psoriatic

arthritis, systemic sclerosis, characterized by pain, disability, and

low quality of life. Patients with rheumatic and musculoskeletal

disorders experience loss of mobility, loss of autonomy, and

higher mortality rates. Consequently, these disorders have a high

impact on the social and health system.

The recent recommendations of the European League Against

Rheumatism (EULAR) taskforce suggested that exercise

interventions improve pain and functions, although the size of

the effect varied by type of diseases and type of intervention

(83). As weight gain has been associated with worse outcomes

for most of these conditions, maintaining an adequate body

weight is also recommended.

Physical activity is essential for children with hemophilia, a rare

X-linked bleeding disorder caused by a missing or defective clotting

factor, to maintain joint movement, reduce joint bleeding, develop

muscle mass and strength, and prevent secondary chronic disease

and osteopenia/osteoporosis (84–86). In the past, since there was

no treatment for hemophilia, the affected children were forbidden

to exercise because the risk of bleeding. Current therapies not only

treat acute bleeding, but also prevent it. It is sufficient to pre-

administer the deficient clotting factor and the risk of bleeding is

temporarily reduced. The availability of effective and safe drugs

drives patients and caregivers to insistently ask doctors to start

physical activity as for their peers (87).

Although for a hemophilic childunder pharmacological treatment

there are no contraindications for practicing sports, the sport

promotion for hemophilic children is yet an obstacle course (88).

Different guidelines indicated hemophilic subjects’ sports

participation according with type and severity (89). In addition,

the selection of activities should consider individual preferences,

abilities, and physical conditions. However, high-impact sports

such as rugby, boxing, soccer and basketball, or sports with a

higher risk of injury are often discouraged despite good
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prophylaxis. The National Hemophilia Foundation (NHF) has

suggested guidelines for athletic participation of patients with

bleeding disorders (90). For hemophilic patients, a minimum of

60 min of exercise per day, with adequate supervision, is

recommended after receiving prophylaxis.

To overcome the problem and allow physical activity for every

child with hemophilia, the Italian study group has drawn up some

recommendations which invite gradual training before accessing

intense physical activity. Gradual training allows the individual

subject to understand which and what physical activity practice

and favors the possibility of daily moderate physical activity to

limit the chronic evolution of arthropathy (91).

Prader-Willi syndrome (PWS) is the most frequent form of

genetic obesity. It is characterized by severe hypotonia and

feeding problems in early infancy, followed by excessive eating

and gradual development of severe obesity (92). In adulthood,

PWS patients develop cardio-respiratory diseases, psychiatric

disorders as well as various comorbidities such as muscle

weakness and scoliosis. Encouraging physical activity is an

essential objective of the management of PWS both in children

and adults. In the last years, several studies have considered

physical activity in PWS patients (93–95). Although most studies

have described a low exercise in patients with PWS, it is not

clear whether the decreased physical activity in these patients is

related to obesity per se, or to the physical and intellectual

disabilities related to this syndrome. A recent systematic review

which considered controlled trials, single-group interventions,

observational, and qualitative studies reported that only 5%–8%

of PWS children (93, 96, 97) and 15%–25% of adults (94, 98)

met the WHO physical activity and sedentary behavior

guidelines (99). According with WHO guidelines, 60 min/day of

moderate-to-vigorous physical activity is suggested for children,

and 150–300 min/week (i.e., at least 30 min/day) for adults (98).

Replacing sedentary lifestyle with physical activity has beneficial

effects for lifelong health preservation, particularly for individuals

with low physical activity levels such as PWS patients (100).

Recently, a protocol for a randomized trial on increasing

resistance training in young people with PWS has been started

(101). The purpose of this study is to establish whether

progressive resistance training is effective in improving muscle

strength in PWS subjects, understand participants’ experiences

and identify factors influencing implementation, and determine

long-term efficacy in terms of healthcare expenditure.
Conclusion and future directions

The skeleton is a structure made up of living tissue that grows,

repairs, and renews itself. It plays a supportive role for muscles and

a protecting role for internal organs. Furthermore, the skeleton

influences energy metabolism through a continuous interaction

with cytokines derived from both adipose and muscle tissue, and

with insulin. There is substantial evidence that skeletal muscle

secretes factors which act as mediators of endocrine signaling

and are also implicated in the favorable effects of exercise.

Skeletal muscle “secretoma” during exercise has not yet been
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described, but research has developing modified myokines with the

aim of supporting the treatment of chronic diseases.

Adequate nutrition and physical activity can influence

musculoskeletal health; however how exercise during pediatric age

affects bone health remains to be investigated. Previous studies

have demonstrated a cumulative effect of vigorous physical activity

during adolescence on BMD, suggesting that any time in

adolescence is a window of opportunity to increase bone mass.

The mechanical forces acting on the loaded bones are generated

both by the high reaction forces produced by the impact with the

ground in sports such as high jump, basketball, and volleyball, and

by the muscle contractions that pull their attachment on the

skeleton. This agrees with previous studies that have shown that

lean mass development is the best predictor of bone mass

accumulation. Osteogenic sports, such as football, result in a

higher BMC than non-osteogenic sports, such as swimming and

cycling, in which physical activities should be combined with

weight-bearing movements to optimize bone growth.

Studies of larger cohorts of children and adolescents addressing

issues such as the complex interaction between bone, gut, white

and brown adipose tissue, nutrition, and physical activity will be

needed in the future to provide new insights into this fascinating

field of metabolic endocrinology.
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