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Neonatal respiratory support
strategies—short and long-term
respiratory outcomes
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Mechanical ventilation (MV), although life-saving, is associated with chronic
respiratory morbidity in both preterm and term born infants. New ventilation
modes have been developed with the aim of minimising lung injury. These
include invasive and non-invasive respiratory support strategies, techniques for
less invasive surfactant administration (LISA) and closed-loop automated oxygen
control (CLAC) systems. Increasingly, newborn infants with signs of respiratory
distress are stabilised on continuous positive airway pressure (CPAP) and receive
LISA. Early CPAP when compared to mechanical ventilation reduced the
incidence of BPD and respiratory morbidity at 18 to 22 months corrected age.
Nasal intermittent positive pressure ventilation reduced treatment failure rates
compared to CPAP, but not bronchopulmonary dysplasia (BPD). LISA compared
with intubation and surfactant delivery reduced BPD, but there is no evidence
from randomised trials regarding long-term respiratory and neurodevelopmental
outcomes. Synchronisation of positive pressure inflations with the infant’s
respiratory efforts used with volume targeting should be applied for infants
requiring intubation as this strategy reduces BPD. A large RCT with long term
follow up data demonstrated that prophylactic high frequency oscillatory
ventilation (HFOV) improved respiratory and functional outcomes at school age,
but those effects were not maintained after puberty. CLAC systems appear
promising, but their effect on long term clinical outcomes has not yet been
explored in randomised trials. Further studies are required to determine the role
of newer ventilation modes such as neurally adjusted ventilator assist (NAVA). All
such respiratory support strategies should be tested in randomised controlled
trials powered to assess long-term outcomes.
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1. Introduction

Mechanical ventilation (MV) is life-saving for many preterm infants who require

respiratory support in the newborn period. Unfortunately, preterm infants who require

mechanical ventilation frequently develop complications (1). The most common adverse

outcome is bronchopulmonary dysplasia (BPD) and importantly prematurely born infants

can suffer chronic respiratory morbidity including troublesome respiratory symptoms,

lung function abnormalities and exercise intolerance even in adolescence and adulthood

(2). Late preterm and term born ventilated infants may also suffer complications. In a

cohort of term born ventilated infants, 11% developed chronic lung disease (defined as

oxygen requirement at 30 days after birth) and 9% developed neurological complications
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including seizures and abnormal brain imaging (3). In one study,

mortality and severe neurodisability at two-year follow up were

common among term born infants who required mechanical

ventilation at birth affecting more than a quarter of the cohort,

particularly those who were ventilated for longer than three days

(4). Increasingly, studies of long-term outcomes have shown that

respiratory morbidity in these groups may persist into

adolescence and adulthood (5, 6). Consequently, new modes of

ventilation have been developed with the aim of minimising lung

injury and improving respiratory outcomes. These include a

variety of invasive and non-invasive respiratory support

strategies, less invasive surfactant admistration and closed-loop

automated systems of oxygen saturation monitoring.

The lack of follow up studies addressing long term outcomes of

neonatal ventilation strategies and the difficulties in defining

outcome measures that better reflect long-term respiratory health

has been previously highlighted (7). This is an important

omission as it has been demonstrated that in the surfactant era

there is increasing airway obstruction between 8 and 18 years in

extremely preterm/llow birth weight survivors (8), thus it is

important to identify interventions which might reduce/prevent

such a decline. It was highlighted from a follow up study of

extremely preterm infants reported in 2017, that despite

substantial increases in use of less invasive ventilation after birth,

there was no significant reduction in oxygen dependence at 36

weeks or improvement in lung function in childhood over time

(9). We, therefore, now discuss the evidence from the most

recent follow-up studies, setting this in the context of the

respiratory support strategies which are currently used in

neonates and how they have influenced short term outcomes.

Our aims were to determine whether respiratory support

techniques improve long term outcomes, highlight gaps in the

literature that would help inform future research and make

recommendations for clinical practice.
2. Non-invasive respiratory support

2.1. Continuous positive airway pressure
(CPAP)

Continuous positive airway pressure (CPAP) delivers gas,

ideally heated and humidified, with a measurable and

controllable pressure transmitted through nasal prongs or a

mask, connected to the infant’s face. The increased positive

airway pressure maintains lung expansion and prevents end-

expiratory alveolar collapse. Other benefits include prevention of

apnoeic episodes, improved tidal volumes and functional residual

capacity (FRC) and reduced work of breathing (10). CPAP is

now recommended as the optimal mode of respiratory support

in infants at risk of respiratory distress syndrome (RDS) who do

not require intubation for stabilisation (10). A systematic review

included 3,201 preterm infants and concluded that prophylactic

or very early CPAP when compared to mechanical ventilation

reduced the incidence of BPD, the combined outcome of death

or BPD, and mechanical ventilation (11). The use of CPAP post
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extubation compared to supplemental oxygen prevented

respiratory failure in preterm infants, but there was no significant

difference in the rate of oxygen dependency at 28 days of age (12).

CPAP should be delivered by short binasal prongs or mask

with a starting pressure of 6–8 cm H2O (10), but there is

insufficient evidence to suggest whether low or moderately high

CPAP pressure levels improve morbidity and mortality in

preterm infants (13). In a randomised controlled trial in preterm

infants born between 26 and 32 weeks of gestation, delivery of

CPAP via nasal mask when compared to nasal prongs, reduced

the duration of CPAP support and the rates of moderate and

severe BPD, but did not have any significant effect on

mechanical ventilation requirement or the overall incidence of

BPD (14). Weaning from CPAP by gradual pressure reduction

increased the likelihood of successful weaning during the first

attempt without increasing the total duration of CPAP support

or supplementary oxygen treatment (15). A systematic review of

15 trials comparing weaning methods confirmed that, in preterm

infants (<37 weeks of gestation), gradual weaning of CPAP

increased the chances of success of the first weaning attempt but,

by contrast with the aforementioned study, this method

prolonged the weaning process. A stepdown strategy to high or

low flow nasal cannula resulted in earlier weaning but it was

associated with longer duration of oxygen treatment.

Importantly, for none of the weaning strategies a significant

effect was seen on BPD (16). Interval training, by taking the

infant off CPAP for several hours each day, appears to have no

clinical benefit and may increase the risk of BPD (17), and

therefore should be avoided.

In a follow up study of a randomised controlled trial

comparing intubation/ surfactant vs. early CPAP, treatment with

early CPAP was associated with less respiratory morbidity by 18–

22 months corrected age including less episodes of wheezing

without a cold, respiratory illnesses diagnosed by a doctor or

emergency room visits (18).
2.2. Nasal intermittent positive pressure
ventilation (NIPPV)

Nasal intermittent positive pressure ventilation (NIPPV) is a

time-cycled, pressure limited mode of non-invasive ventilation

that provides two levels of pressure: a constant positive end

expiratory pressure (PEEP) and a higher positive inspiratory

pressure (PIP) (19). Ventilator inflations can be synchronised

with the infant’s breathing further improving respiratory stability

(10). A 2017 Cochrane review included ten trials enrolling a total

of 1,061 infants and demonstrated that early nasal intermittent

positive pressure ventilation (NIPPV) in preterm infants at risk

of respiratory distress within the first hours after birth reduced

the risk of respiratory failure and the need for intubation

compared with early CPAP without increasing the risk of

complications. The use of NIPPV, however, was not associated

with a lower risk of BPD (20). A more recent systematic review

and network meta-analysis including 4,078 infants concluded

that early NIPPV in preterm infants with RDS was associated
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with reduced rates of treatment failure and mechanical ventilation

when compared to CPAP and heated, humidified, high-flow nasal

cannula (HHFNC). Moreover, NIPPV reduced the risk of air

leaks and was associated with lower rates of BPD or mortality

when compared to CPAP (21).

A review of five trials demonstrated that extubation of infants

to synchronised NIPPV (S-NIPPV) when compared to CPAP

significantly reduced the risk of extubation failure up to one

week after extubation. Non-synchronised NIPPV (NS-NIPPV)

also reduced the risk of extubation failure and both modalities

were associated with less air leaks. Rates of BPD did not differ

between the different modalities (22). In agreement with the

above, Ramaswamy, et al. reported that both S-NIPPV and NS-

NIPPV reduced the risk of reintubation within the first week

post extubation, but S-NIPPV was more effective than the non-

synchronised mode. In that review, S-NIPPV resulted in lower

rates of BPD when compared to CPAP and NS-NIPPV, whereas

NS-NIPPV was the least favourable mode for that outcome (23).
2.3. Heated, humidified, high-flow nasal
cannula (HHFNC)

Heated, humidified, high-flow nasal cannula (HHFNC) delivers

heated and humidified gas at flows of between two and eight litres/

minute via nasal catheters (10). In preterm infants, HHFNC may

provide positive pressure at similar levels to that used with CPAP

(24). It is not possible, however, to measure the pressure delivered

to the lung when using either HHFNC or CPAP and it is possible

the higher treatment failure of HHFNC seen in some trials (see

below) may be the result of a less effective transfer of pressure to

the lung via HHFNC when shorter and smaller prongs are used

compared to those used during CPAP. HHFNC has gained

popularity with 87% of neonatal units reported as using it in 2015

across the United Kingdom (UK), mainly as a primary mode of

post extubation respiratory support. Most practitioners preferred

HHFNC due to perceived better access to the infant, less nasal

trauma and quicker achievement of oral feeds, but randomised

trials have not demonstrated its superiority (25). A 2016 Cochrane

review concluded that HHFNC had similar rates of efficacy to

CPAP either as primary or post extubation mode of respiratory

support for preventing treatment failure, death and BPD, but only

small numbers of extremely preterm and late preterm infants were

included in the reviewed studies. Post extubation, HHFNC reduced

nasal trauma and the risk of pneumothorax when compared to

CPAP (24). In an international, multicentre, randomised, non-

inferiority trial in 564 preterm infants born at or above 28 weeks

of gestation with RDS, HHFNC as primary support resulted in a

significantly higher rate of treatment failure compared to CPAP

hence the trial recruitment stopped prematurely (26).

Lavizzari and co-workers demonstrated similar efficacy and

safety of HHFNC to CPAP and bilevel CPAP (BiPAP) as a

primary mode of ventilation in preterm infants born at greater

than28 weeks of gestation with RDS (27). In agreement with this,

a retrospective, two-centre observational study highlighted that

the use of HHFNC for primary respiratory support in preterm
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“rescue treatment” resulted in intubation rates within 72 h

comparable to published data (14.7% and 11.1%) (28). A

systematic review which included 10 trials with a total of 1,830

preterm infants found a significantly higher risk of treatment

failure using HHFNC compared with CPAP (RR = 1.34, 95% CI

1.01 to 1.68), but no significant difference in intubation rates and

a lower risk of nasal trauma with HHFNC. The authors

concluded that HHFNC should be used as first-line option for

respiratory support in centres offering CPAP/ NIPPV as a back-

up (29). In a retrospective study of 134 infants, these who failed

HHFNC had lower birth weight, higher inspired oxygen

concentrations (FiO2) and maximum flow rate requirements at

the time of commencing HHFNC and were more likely to be

blood culture positive (30).

There is a paucity of evidence with regards to long-term

outcomes of HHFNC support. A retrospective Australian study

demonstrated that the introduction of HHFNC for weaning from

nasal CPAP had no statistically significant effects on rates of BPD

or home oxygen requirement. Infants supported with HHFNC,

however, had significantly higher rates of BPD and were more

likely to be discharged on home oxygen after adjusting for

gestation and birth weight. The authors concluded that those

findings could reflect selection bias and increased illness severity

and underlined the need to evaluate the effect of HHFNC on

long-term respiratory outcomes in well-designed RCTs (31).
2.4. Non-invasive neurally adjusted
ventilator assist (NIV-NAVA)

Non-invasive neurally adjusted ventilator assist (NIV-NAVA)

uses electrical signals from the diaphragm to trigger breaths and

synchronise the ventilatory support with the infant’s respiratory

efforts (19). Studies to date have demonstrated its feasibility in

preterm infants, but results are limited to short term outcomes

(30). In a RCT comparing rates of treatment failure between the

use of CPAP and NIV-NAVA as a primary mode of respiratory

support in very low birth weight (VLBW) infants with RDS, there

were no significant differences in the rates of MV, BPD and death

between the two groups. The duration of MV, however, was

significantly longer in the CPAP group (32). A subsequent

Cochrane review identified two RCTs including a total of 23

preterm infants comparing NIV-NAVA with NIPPV. Due to the

limited data, the authors could not conclude whether this mode

was safe and effective in preventing respiratory failure in preterm

infants (33). The available data are inconclusive with regards to the

efficacy of this mode for post extubation stabilisation in preterm

infants. A retrospective comparison of NIV-NAVA to NIPPV post

extubation in infants born before 30 weeks of gestation did not

find any significant difference in the rate of treatment failure (34).

In contrast, Lee et al. demonstrated a reduction in extubation

failure rate in preterm infants supported with NIV-NAVA over

CPAP (35). In a more recent RCT enrolling 78 infants of less than

30 weeks of gestation, the use of NIV-NAVA post extubation was

more efficient than CPAP in preventing extubation failure, but the
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duration of respiratory support and incidence of severe BPD were

similar in the two groups (36). Further trials are required to assess

the efficacy of this mode and its effect on long-term respiratory

outcomes.
2.5. Nasal high-frequency oscillatory
ventilation (NHFOV)

Non-invasive high frequency oscillatory ventilation (NHFOV)

combines a continuous distending pressure through a non-

invasive interface with interposed high-frequency oscillations (19)

Data, however, are limited with regards to optimal settings,

safety, efficacy and its impact on long-term outcomes.

In a randomised, crossover study in 30 preterm infants,

transcutaneous carbon dioxide (TcO2) levels where significantly

lower during NHFOV compared with CPAP (p = 0.0007) (37).

Moreover, in a RCT which included 206 preterm infants

extubated to either NHFOV or CPAP, NHFOV significantly

reduced reintubation rates and improved carbon dioxide

clearance (38). Malakian et al. randomised 124 infants born

between 28 and 34 weeks of gestation with RDS to either

NHFOV or CPAP as a primary mode of respiratory support and

showed that the use of NHFOV did not reduce the need for

mechanical ventilation during the first 72 h (p = 0.13), but the

median duration of non-invasive ventilation was significantly

shorter (37.35 vs. 49.77 h, p = 0.009) (39). A systematic review

included eight RCTs with a total of 463 patients born at less

than 34 weeks gestational age and demonstrated a lower risk of

intubation along with more effective CO2 clearance in infants

receiving NHFOV rather than CPAP. The authors concluded

that the analysed trials differed in their study designs and the

clinical characteristics of the study participants and, therefore,

the results should be investigated in a large multicentre

randomised trial (40). NHFOV might be considered before

resorting to intubation and invasive ventilation because of

respiratory failure on NIPPV, but this needs appropriately

testing. A follow-up study aiming to explore the long-term safety

of NHFOV demonstrated that preterm VLBW infants who

received NHFOV after their first extubation at birth, compared

with NIPPV or CPAP, did not differ significantly in the number

of episodes of bronchitis, pneumonia, wheezing and re-admission

rates at 24 months corrected age. In addition, pulmonary

function tests and the incidence of neurodevelopmental

impairment at 12 and 24 months corrected age were similar

between the groups (41). The study, however, had a relatively

small sample size (n = 139 infants) and low follow up rate (113

out of 139 infants at 12 months and 110 out of 139 infants at 24

months corrected age) and therefore further evidence is required.
3. Less invasive surfactant
administration (LISA)

During less invasive surfactant administration (LISA),

surfactant is gradually instilled in small aliquots in the trachea
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spontaneous breathing on non-invasive respiratory support. The

European consensus guidelines for the management of RDS

recommend that LISA is the preferred method of surfactant

administration for spontaneously breathing infants on CPAP

(10). A systematic review of 14 studies concluded that LISA

compared with surfactant administration through an

endotracheal tube significantly reduced the risk of death or BPD

at 36 weeks postmenstrual age, the need for reintubation within

72 h and the incidences of severe intraventricular haemorrhage

(IVH), death during first hospitalisation and BPD amongst

survivors, without increasing adverse effects (42). It should be

noted, however, that appropriately designed head to head studies

between LISA and INSURE have not been performed so far.

Follow-up data, however, on infants who have received LISA

treatment are sparse as this is a relatively new method of

surfactant administration. Two-year follow up data from the first

multicentre RCT on LISA [avoid mechanical ventilation study

(AMV); LISA vs. endotracheal intubation intratracheal bolus

surfactant] demonstrated no significant differences in growth

parameters and neurodevelopmental outcomes between the LISA

and control groups. There was a trend in the LISA group

towards reduced episodes of bronchitis (p = 0.06) and the

authors speculated that this may be a surrogate for improved

lung function (43). Small retrospective follow up studies on LISA

included 53 preterm infants less than 29 weeks of gestation and

observed trends for favourable pulmonary and neurocognitive

outcomes at the corrected age of three years (44). A longitudinal

study on the long-term outcomes of 60 preterm infants less than

32 weeks of gestation that received surfactant via LISA or

endotracheal intubation found no significant differences in

hospital readmissions, severe respiratory impairment, domiciliary

oxygen therapy and need for bronchodilator therapy at 24

months postmenstrual age (45). Data from the five-year follow-

up of infants that received LISA in the German Neonatal

Network cohort study (46) recorded in a review suggested better

lung function (forced expiratory volume in one second) and

improved neurodevelopmental outcomes in infants that received

LISA compared with infants that received surfactant via the

standard method (47). Those studies though were limited by

their retrospective nature, small sample sizes and their non-

randomised designs.
4. Invasive ventilation

4.1. Patient triggered ventilation (PTV)

4.1.1. Assist control (Ac) and synchronised
intermittent ventilation (SIMV)

Synchronisation of positive pressure inflations with the infant’s

respiratory efforts (patient triggered ventilation) may reduce the

need for respiratory support and thereby reduce lung injury (48).

During assist-control ventilation (ACV), inflations are triggered

by every spontaneous breath that exceeds the critical trigger

threshold. In synchronised intermittent mandatory ventilation
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(SIMV), only the pre-set number of inflations are triggered

regardless of the infant’s spontaneous breathing rate (30).

A Cochrane review of studies comparing patient triggered to

conventional mechanical ventilation demonstrated that ACV/

SIMV was associated with shorter duration of MV, but no

significant reduction in the rates of BPD, severe IVH, air leaks or

mortality. AC compared to SIMV was associated with a trend to

a shorter duration of weaning. Due to design of the trials, the

authors could not conclude whether those benefits were due to

the provision of synchronised ventilation (49). There have been

no studies exploring whether AC/SIMV improved long-term

outcomes.
4.2. Pressure support ventilation (PSV)

Pressure support ventilation (PSV) is very similar to ACV as

every spontaneous breath is supported with positive pressure but,

in addition, the end of spontaneous inspiration determines the

termination of the ventilator inflation. The frequency is fully

controlled by the patient, and, therefore, a back-up mode is

required in case of insufficient respiratory drive (50). The flow is

dependent on the set driving pressure, lung compliance and

resistance and the inspiratory effort of the patient. The tidal

volume delivered depends on the flow and the duration of the

inspiratory phase (51). A Cochrane review comparing the effect

of PSV and time-cycled synchronised ventilation identified only

two small, randomised crossover trials which did not report on

clinical morbidities or mortality (52). In a randomised controlled

trial that enrolled 107 extremely low birth weight (ELBW)

infants, SIMV with PS facilitated extubation and weaning during

the first 28 days of life compared with SIMV alone, but there

were no significant differences in the total duration of MV, the

duration of oxygen treatment, or BPD and death or BPD at 36

weeks post-menstrual age. In the subgroup of infants with birth

weights of 700–1,000 grams, SIMV plus PS reduced the duration

of oxygen dependency (53). Erdemir and co-workers compared

PSV with volume-guarantee vs. SIMV in the weaning phase of

VLBW infants with RDS and found a trend towards a reduced

prevalence of post-extubation atelectasis (p = 0.08) and lower

peak inflation pressure with PSV (p < 0.001). There were no

significant differences in the duration of weaning, rates of

extubation failure, risk of leaks and rates of BPD (54). A

potential reason for benefits of PSV is that this mode of

ventilation supports all breaths and was shown to reduce the

work of breathing in preterm infants during the weaning phase

(55). In a randomised weaning trial comparing ACV and PSV,

however, the median duration of weaning did not differ

significantly between the groups (56). No trials have addressed

the impact of PSV on long-term outcomes.
4.3. Proportional assist ventilation (PAV)

During proportional assist ventilation (PAV), the ventilatory

support is proportional to the breathing effort of the infant. The
Frontiers in Pediatrics 05
modality uses volume and flow changes created by the patient to

unload elastic and resistive work of breathing during inspiration

and expiration respectively. The frequency, time and rate of lung

inflations are controlled by the patient (50). Studies on PAV

have only assessed short term outcomes. In a randomised

crossover study, Schulze et al. demonstrated that in preterm

infants with evolving BPD, PAV maintained gas exchange with

lower mean airway pressures (MAP) and peak inspiratory

pressures (PIP) compared with PTV, but episodes of oxygen

desaturations had longer duration (57). In another study, 12

infants with a median gestational age of 25 (range 24–26) weeks

were studied at a median of 43 (8–86) days. After an hour on

PAV compared with an hour on ACV, the infants’ work of

breathing was reduced, respiratory muscle strength was higher

and the oxygenation index (OI) was significantly lower (58).

Subsequently, eight infants with evolving or established BPD

were studied for four hours on PAV and then on ACV in

random order. During PAV, their median inspired oxygen

concentration (p = 0.049), mean airway pressure (p = 0.012) and

OI (p = 0.012) were all lower (59). Most of the PAV studies have

been of a crossover design and it requires experience by the

clinician in applying PAV which may explain why PAV has not

had much attraction over the last decade.
4.4. Neurally adjusted ventilator assist
(NAVA)

Neurally adjusted ventilator assist (NAVA) uses the electrical

activity of the diaphragm (Edi) to servo control the applied

ventilator pressure. A specialised nasogastric tube with an

electrode array at the distal end detects the Edi and is used as a

signal to trigger the ventilator and determine the level of

support. The pressure delivered throughout each inflation is

proportional to the Edi signal. The NAVA level is then adjusted

to increase or decrease the amount of pressure delivered per

microvolt of Edi detected (60).

Studies comparing NAVA with conventional mechanical

ventilation modes demonstrated that NAVA improved patient-

ventilator interaction and comfort (61) and decreased PIP and

MAP, work of breathing, oxygen requirement (FiO2) (62), sedation

requirement (63) and episodes of apnoea (61). Moreover, a review

of ten recent studies comparing NAVA or NIV-NAVA to

conventional respiratory support modes concluded that the

application of NAVA appears to be safe and feasible in premature

infants as no adverse events were reported (64). In a randomised

crossover study comparing NAVA with ACV in infants with

evolving or established BPD, NAVA improved oxygenation by

reducing OI, FiO2, PIP and MAP and compliance was higher (65).

In a retrospective case control study, infants with evolving BPD on

NAVA/ NIV NAVA had lower extubation failure rates (p = 0.002),

shorter durations of invasive ventilation (p = 0.046), total duration

of invasive and non-invasive ventilation (p = 0.026) and total

length of hospital stay (p = 0.019). There were no significant

differences, however, in the rates of BPD or home oxygen (66).

A Cochrane review identified one RCT comparing NAVA with
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PTV in 60 preterm infants born at or above 28 weeks of gestation and

concluded that there were no significant differences in the duration of

MV, the length of neonatal unit stay and the rates of BPD,

pneumothorax or IVH (67). The authors concluded that the

study’s sample size was too small to allow to detect any possible

impact on long term respiratory outcomes (68). More recent data

suggest that NAVA/ NIV and NAVA ventilation in preterm infants

improves their growth trajectory at the time of discharge, probably

due to the improved synchronisation and patient comfort (69).

Large RCTS are required to explore the effect of this respiratory

mode on long-term outcomes.
4.5. Volume targeted ventilation (VTV)

During volume-targeted ventilation (VTV), a standard volume

set by the operator is delivered to the infant regardless of changes

in the infant’s lung function with an aim to reduce lung damage

and stabilise the partial pressure of carbon dioxide (pCO2). VTV is

difficult to apply if there is a large leak around the endotracheal

tube and cuffed tubes are not in widespread neonatal practice. The

level of tidal volume used significantly affects the work of

breathing in preterm infants with acute RDS (70) or during

weaning (71) and in infants with evolving or established BPD (72).

A systematic review of 22 studies comparing VTV with pressure-

limited ventilation demonstrated that the use of VTV reduced the

risk of death or BPD at 36 weeks of gestation, the rates of

pneumothorax, the duration of mechanical ventilation, the rates of

hypocarbia and the incidence of severe IVH and periventricular

leukomalacia (PVL). There was, however, no significant difference

in mortality and long term outcomes were not reported (73). The

review was limited by the small sample size of most trials, the

different tidal volume (Vt) delivery depending on the ventilators

and the additional ventilation modes used, different timepoints at

randomisation as well as different weaning approaches.

There are only a few studies of VTV compared to other

ventilator modes reporting long-term respiratory or

neurodevelopmental outcomes. Stefanescu and co-workers

showed a non-significant trend towards benefit for the combined

outcome of death or neurodevelopmental impairment at 18

months corrected age in extremely preterm infants managed with

VTV (74). A randomised trial in VLBW infants receiving VTV

vs. SIMV suggested no significant difference in the rate of

neurodevelopmental impairment at 6 to 9 months corrected age

(75). Follow up at two years of age from one of the RCTs

included in the systematic review (73) demonstrated no

significant differences in rates of hospital readmissions or

frequency of respiratory illness between the two groups, but

fewer children from the VTV arm required treatment with

inhaled steroids or bronchodilators (76).
4.6. High frequency jet ventilation (HFJV)

During high frequency jet ventilation (HFJV), short jets of gas

are released in the inspiratory circuit through a pneumatic valve,
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and expiration is passive. HFJV is applied in conjunction with

CV, with application of PEEP. The inspiratory to expiratory ratio

can be adjusted to provide fast and low volume inspirations with

long expirations that could be useful in cases of hypercapnia

(77). Data regarding the efficacy of HFJV in preterm infants with

lung disease are limited. In an RCT comparing rescue HFJV with

CV in 144 preterm infants with severe pulmonary dysfunction,

there were no significant differences in mortality, chronic lung

disease at 28 days and adverse effects between the two groups. In

a secondary analysis up to the time of treatment crossover that

included 73 infants, HFJV was associated with lower mortality,

but the data were limited by the small number of the infants

included in the study (78). Term infants with persistent

pulmonary hypertension rescued with HFJV demonstrated

improved oxygenation, but no differences in the duration of

ventilation, oxygen treatment or hospitalisation compared with

infants rescued with CV (79). In a retrospective case control

study, the use of HFJV as a rescue treatment was not associated

with a reduction in the composite outcome of death or discharge

on home oxygen, but cases treated with HFJV had more severe

lung disease when compared to controls introducing bias to the

results (80). The most recent Cochrane systematic reviews do not

support the superiority of elective and rescue HFJV over HFOV

(81) or CV (78) due to the insufficient evidence that is available.

Appropriately powered RCTs are required that would incorporate

long term respiratory and neurodevelopmental outcomes.
4.7. High-frequency oscillatory ventilation
(HFOV)

High-frequency oscillatory ventilation (HFOV) has been

considered a lung protective ventilation strategy as it avoids

atelectasis whilst minimising the risk of alveolar overdistention

due to the small tidal volume delivery (82). HFOV can be used

as a primary or rescue mode of ventilation (83). Higher mean

airway pressure is often used during HFOV, it is, therefore,

important that the clinicians have appropriate expertise if air

leaks are to be minimised. Primary HFOV has been extensively

studied in the context of RCTs that included preterm or low

birth weight infants with pulmonary dysfunction mainly due to

RDS. A systematic review included nineteen studies and

demonstrated a significant, but small reduction in the risk of

BPD with the use of primary HFOV, but no differences in

mortality. Pulmonary air leaks occurred more frequently in the

HFOV group, the risk of severe ROP was significantly reduced

and there were no differences in short term neurological

outcomes (84). The evidence was weakened by the significant

heterogeneity of the studies included in the meta-analysis, the

various interventions applied, different types of ventilators used

and characteristics of the study population. Importantly, a meta-

analysis of individual patients’ data from 3,229 participants did

not show any advantage of HFOV over conventional ventilation

in the prevention of BPD at 36 postmenstrual age and there were

no significant associations with mortality or severe brain

damage (85).
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Better pulmonary function tests were found at one year of age

among VLBW with BPD who received early HFOV at birth (86)

whereas follow up data from the Provo trial at a mean age of six

years showed no significant differences in the frequency of

hospitalisation, pulmonary illness, asthma or disabilities (87).

Follow up data from the UK Oscillation Study (UKOS), which

has been the largest RCT to date comparing primary HFOV to

CV in preterm infants, demonstrated similar respiratory

outcomes between the groups at one year (88) and two years of

age (89). The HFOV group, however, had superior small airway

function when participants were assessed at 11 to 14 years (z-

score for the forced expiratory flow at 75% of the expired vital

capacity (FEF75): −0.97 with HFOV vs. −1.19 with CV; adjusted

difference: 0.23 [95% confidence interval: 0.02–0.45]) and

significantly higher teacher ratings for school performance (90).

Those results were not subsequently confirmed by data gathered

at 16–19 years of age when measures of pulmonary function

were found to be similar between the groups. Participants,

however, from the HFOV group were more likely to be

diagnosed with asthma and to require inhalers for asthma

treatment (91). A more recent prospective observational study

showed that the implementation of a new ventilation care bundle

with HFOV as early rescue therapy using low tidal volumes and

higher frequencies increased survival free of respiratory treatment

and reduced respiratory hospital admissions at two years of

postmenstrual age (92).

HFOV with volume guarantee (HFOV-VG) is a promising

new ventilatory mode for the treatment of respiratory failure

in newborns. The clinician can set a target Vt and the

ventilator adjusts the oscillation amplitude accordingly.

According to a recent national UK survey, fifty-four per cent

of NICUs used HFOV-VG (93) which has been shown to

reduce fluctuations in tidal volumes and achieves better

control of partial arterial pressures of carbon dioxide (pCO2)

levels (94, 95). Although HFOV-VG is becoming increasingly

popular among neonatal practitioners, optimal starting values

have not been identified with regards to improving important

clinical outcomes (96, 97).
4.8. Closed-loop automatic oxygen control
(CLAC)

Closed-loop automated oxygen control (CLAC) systems

monitor oxygen saturation (SpO2) values in real-time to

calculate and make an adjustment to the FiO2 patient delivery

without any human intervention (98). A literature review

included 18 studies (99) and highlighted that CLAC was

consistently associated with an increased percentage of time

spent within the target oxygen saturation range with fewer

manual adjustments to the FiO2 and was effective in infants on

non-invasive respiratory support or mechanically ventilated at a

range of postnatal ages. Results appear to be consistent for all

the control algorithms (99) and across different SpO2 target

ranges (100, 101). In addition, previous studies demonstrated

that CLAC could facilitate earlier weaning of the inspired
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oxygen concentration when compared to manual control (102,

103). Two reviews emphasised that studies on CLAC had not

reported whether the clinical outcomes of preterm infants were

improved (98, 99). Most studies on CLAC included very

preterm or low birth weight infants, but we have reported that

in late preterm and term born infants, CLAC shared the same

benefits as in the preterm population (104, 105).

More recently, a retrospective study compared two large

cohorts of preterm infants admitted to a NICU before and

after the implementation of CLAC as a standard of care.

Mortality, morbidity and length of neonatal unit stay were not

significantly different between the groups. Implementation of

automated oxygen control as a standard of care was associated

with shorter duration of MV, but longer duration of non-

invasive respiratory support and more supplemental oxygen

days (106). Neurodevelopmental outcomes at two years of age

were similar between the two cohorts, but parent-reported

hospital readmissions until the time of follow up were less

frequent after the implementation of automated oxygen control

(107). Those studies were limited by their retrospective design.

Moreover, changes to standards of clinical care between the

two study periods could have influenced the results.

Randomised controlled trials are currently being undertaken

and will provide more evidence on the effect of CLAC on

clinical outcomes.
5. Conclusions

It is now common practice to stabilise newborn infants at risk

of RDS who do not require intubation and MV on CPAP.

Increasingly, less invasive surfactant administration (LISA) is

used and endotracheal intubation and mechanical ventilation are

avoided. Early CPAP when compared to mechanical ventilation

reduced the incidence of BPD and was associated with reduced

respiratory morbidity at 18 to 22 months corrected age. Delivery

of CPAP via nasal mask vs. prongs may be of greater benefit and

gradual vs. abrupt pressure wean seems to increase the chances

of success of the first weaning attempt. NIPPV rather than CPAP

or HHFNC reduced the rates of treatment failure and the need

for mechanical ventilation, mortality and BPD. After extubation,

NIPPV rather than CPAP reduced the risk of extubation failure,

whereas HHFNC and CPAP seem to have similar efficacy.

Further studies are required to assess the efficacy of newer non-

invasive ventilation techniques such as NIV-NAVA and nHFOV.

Furthermore, there is only limited follow-up data that have

reported nHFOV as post-extubation respiratory support in

preterm infants with regard to reduction in the rates of long-

term respiratory morbidities and neurodevelopmental

impairment compared with NIPPV and CPAP. Less invasive

surfactant administration reduced the risk of death or BPD and

severe IVH compared with MV, but the limited follow up studies

did not demonstrate any significant improvements in long-term

respiratory and neurological outcomes and growth parameters.

Synchronisation of positive pressure breaths with the infant’s

respiratory effort is associated with shorter duration of MV.
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Randomised trials of VTV have demonstrated it reduced the risk

of BPD, but there were no significant differences in long-term

respiratory morbidity and neurodevelopment outcomes apart

from a reduction in the rates of treatment with inhaled steroids

and bronchodilators at two years of age; this needs further

exploration. A Cochrane review demonstrated a small reduction

in BPD with primary HFOV, but the evidence was weak to

support this finding. Follow up data from the UKOS trial

showed that early HFOV was associated with superior lung

function at 11 to 14 years, but these results were not

maintained after puberty. Whether HFOV is associated with

superior lung function in young adults needs testing. NAVA/

NIV NAVA in preterm infants were associated with improved

growth at the time of discharge but their effect on long-term

respiratory outcomes should be explored in future studies.

Closed-loop automated oxygen control systems may provide a

solution to the low compliance with achievement of oxygen

saturation targets, but their effect on clinical outcomes of the

infants needs to be determined. Testing new strategies of

neonatal ventilation in RCTs that are appropriately powered to

assess long-term outcomes is required. To reduce the cost, it is

essential to incorporate routinely collected data. This requires

excellent communication and co-operation between researchers

and hospital and community practitioners. Outcomes at 18 to

24 months have been used to determine long term outcomes.

The results from the UKOS study, however, demonstrated that

while there were no significant effects at two years, there were

significant differences at 11 to 14 years (90). Building in follow

up to such an age a priori would likely be prohibitively

expensive, unless as above routine data sources could be

incorporated. Whereas it is not possible to blind clinicians

during the “acute” study to the intervention and their expertise

may influence the results, it is possible to “blind” those

undertaking the follow up (90, 91), hence, further emphasising

the importance of long term follow up to evaluate respiratory

support strategies.
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