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Purpose: The primary objective of this study was to develop and validate an AI
algorithm as a screening tool for the detection of retinopathy of prematurity (ROP).
Participants: Images were collected from infants enrolled in the KIDROP tele-ROP
screening program.
Methods: We developed a deep learning (DL) algorithm with 227,326 wide-field
images from multiple camera systems obtained from the KIDROP tele-ROP
screening program in India over an 11-year period. 37,477 temporal retina
images were utilized with the dataset split into train (n= 25,982, 69.33%),
validation (n= 4,006, 10.69%), and an independent test set (n= 7,489, 19.98%).
The algorithm consists of a binary classifier that distinguishes between the
presence of ROP (Stages 1–3) and the absence of ROP. The image labels were
retrieved from the daily registers of the tele-ROP program. They consist of per-
eye diagnoses provided by trained ROP graders based on all images captured
during the screening session. Infants requiring treatment and a proportion of
those not requiring urgent referral had an additional confirmatory diagnosis
from an ROP specialist.
Results: Of the 7,489 temporal images analyzed in the test set, 2,249 (30.0%)
images showed the presence of ROP. The sensitivity and specificity to detect
ROP was 91.46% (95% CI: 90.23%–92.59%) and 91.22% (95% CI: 90.42%–
91.97%), respectively, while the positive predictive value (PPV) was 81.72% (95% CI:
80.37%–83.00%), negative predictive value (NPV) was 96.14% (95% CI: 95.60%–
96.61%) and the AUROC was 0.970.
Conclusion: The novel ROP screening algorithm demonstrated high sensitivity and
specificity in detecting the presence of ROP. A prospective clinical validation in a
real-world tele-ROP platform is under consideration. It has the potential to lower
the number of screening sessions required to be conducted by a specialist for a
high-risk preterm infant thus significantly improving workflow efficiency.
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TABLE 1 Dataset split by stages.

Train Validation Test
No ROP 17,929 2,698 5,240

Stage 1 ROP 1,568 207 398

Stage 2 ROP 5,919 923 1,609

Stage 3 ROP 566 178 242

Total 25,982 4,006 7,489

Camera split
RetCam 20,536 3,075 5,783

NEO 5,446 931 1,706

Rao et al. 10.3389/fped.2023.1197237
Introduction

Retinopathy of prematurity (ROP) is one of the leading causes

of infant blindness worldwide. It is a disease of the retina that

affects low birth weight premature infants, which can lead to

irreversible blindness if left untreated. Improving healthcare

systems in low to middle-income countries has led to better

survival rates for babies born prematurely. However, without

timely diagnosis and treatment such infants are at risk for

developing ROP due to their low birth weight. A lack of experts

in the field of ophthalmology combined with improved survival

rates of premature babies, therefore, make ROP a major public

health problem (1–4). India has 3.5 million premature babies

born annually, the highest number anywhere in the world. The

numbers of infants with ROP are on the rise (5). The potential

at-risk population of ROP is understood as babies born under

2,000 grams. This concerns around 9% of births in India (6).

Traditionally, ROP screening is done by a pediatric vitreo-retina

specialist using a bedside clinical exam. This is available primarily in

large cities (7). ROP screening programs are currently grossly

inadequate, particularly in remote settings due to the insufficient

doctor-population ratio, with less than 200 ROP specialists in

India (8, 9). As a result, babies at risk for ROP are often unable to

get the necessary screening and diagnosis in a timely manner.

This is particularly true in places where medical resources are

scarce such as in small rural centers. ROP is highly treatable with

early screening and regular monitoring (10). In recent years, the

adoption of widefield retinal imaging has enabled tele-ROP

screening. This is done in collaboration with a reading center

providing the diagnosis (11). In India, this approach has been

extensively used to screen in rural areas (12–16). While this has

been a significant advancement, there remains a large unscreened

high-risk population. Furthermore, ROP diagnosis can be

inconsistent (17, 18). For premature infants, such variability leads

to clinically significant differences in outcomes (19). An objective

tool is therefore necessary. It can help standardize care irrespective

of the location where the infant is being managed. A combination

of the benefits of wide-field imaging and automated diagnosis

integrated on a teleophthalmology platform can solve these issues.

Such a model can enable rapid screening and triaging of infants

even in a low-resource setting.

Artificial intelligence methodologies have been used to improve

the diagnosis of many medical conditions, including retinopathy of

prematurity. Deep learning (DL) consists of computer-based

analysis systems trained to automatically recognize and evaluate

images or other inputs (20). It has been successfully used to

diagnose a variety of ocular conditions, most notably diabetic

retinopathy (21). Recently, quite a few studies have been

published on the use of DL to screen for plus disease in ROP

(4, 22–33). However, as a first step, there is a need for an

automated tool that can screen the huge at-risk ROP population

in India. This led us to develop an AI model that provides a

binary output for the presence or absence of ROP.

In this study, we have trained a DL algorithm using

a substantial dataset of temporal images that were captured

with various wide-field imaging systems from the largest
Frontiers in Pediatrics 02
single-hospital tele-ROP screening program in the world. The

development of the DL algorithm for automatic detection of

ROP in retinal images of premature babies was implemented

using a binary classification model (ROP present vs. ROP

absent). Further, we compare the accuracy of the DL method on

an independent test set with the diagnosis from trained ROP

graders and ROP specialists.
Methods

The study adhered to the tenets of the Declaration of Helsinki

and was approved by the Institutional Ethical Committee of

Narayana Nethralaya, a tertiary eye hospital in South India. For

algorithm development, a total of 227,326 anonymized images

from 5,944 premature infants who underwent ROP screening

were retrospectively collected and included following a written

informed consent. They were captured using wide-field RetCam

cameras (RetCam III, RetCam shuttle, Natus technologies,

Middleton, USA) or Forus (3netra NEO, Forus Health Pvt Ltd,

Bengaluru, India) in the KIDROP tele-ROP screening program

over an 11 year period (from 2011 to 2022). The tele-ROP

program covers 30 districts across 4 zones in South India. This

encompasses 124 Neonatal centers, level 2 and Level 3, that

cover special newborn care units (SNCUs) managed by the Govt

as well as NICUs that are part of tertiary centers. The imaging

protocol has been described in detail elsewhere. In brief, on each

eye of an infant, a minimum of six fundus images were obtained

using the 130-degree lens provided by the manufacturer and

included- macula center, disc center, temporal, superior, nasal

and inferior quadrants (12). Follow-up images from infants who

underwent additional screenings were included. An assistive

neural network was used for filtering temporal images from

other views. 37,477 temporal images of no ROP and varying

severities of ROP as outlined below (Table 1) were utilized for

training and testing the binary classifier. These included images

of varying image quality to develop a robust model that could

also perform well on par quality images.
Image labeling

The experimental design is shown in the flowchart, Figure 1

below. The retinal images used for development were labeled by
frontiersin.org
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FIGURE 1

Experimental design.
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trained ROP graders (Level I to Level III) as part of the tele-ROP

program. The robust training, validation, and accreditation of the

technicians has been described previously (12). In brief, when

compared to an ROP specialist for any stage of ROP, a Level I

technician has a sensitivity and specificity of 94.5% (95% CI:

92.9%–95.9%) and 84% (95% CI: 92.9%–95.9%), and Level III

has a sensitivity and specificity of 99.4% (95% CI: 97.7%–99.9%)

and 93.2% (95% CI: 87.8%–96.7%) respectively. Level I

technicians agreed with 85.9% of the experts and when

comparing “treatment vs. no treatment”, “mild vs. severe ROP”

and “discharge vs. no discharge” with ROP specialists, the Kappa

(agreement) scores are 0.63, 0.61, and 0.79 respectively. Level III

technicians agreed with 94.3% of the experts. When comparing

“treatment vs. no treatment”, “mild vs. severe ROP” and

“discharge vs. no discharge” with ROP specialists, the Kappa

(agreement) scores are 0.85, 0.84, and 0.94 respectively. A Level I

technician would miss 0.9% of infants needing treatment and a

Level III only 0.4%. Based on the color coded decision aiding

algorithm utilized in the KIDROP program, all premature infants

with urgent/treatment warranted ROP (“red” triage; Stage 2 with

no plus in non-zone 1 location, plus or pre plus with any stage

any zone, zone 1 disease any stage, aggressive posterior ROP),

10%–15% of those requiring follow-up (“orange” triage; Stage 1

ROP, no plus in non-zone 1 location, immature retina, regressing

ROP), and a small proportion of those being discharged from

the screening program (“green” triage; mature blood vessels) are

ratified by an ROP expert by images being reviewed on the live

tele-ROP platform or by clinical examination on site wherever

possible. The graders/experts followed the International Clinical
Frontiers in Pediatrics 03
Classification of Retinopathy of Prematurity (ICROP 2 or ICROP

3 as relevant for the period of image acquisition). The diagnoses

were retrieved from the daily registers of the program. Per-eye

diagnoses were based on all images captured during the

screening session. The per-eye diagnosis was merged into two

categories: ROP absent (“no ROP”) and ROP present (ROP stage

1 to stage 3).
AI development

We used convolutional neural networks (CNNs), a class of

deep learning models, to train the classifier (Medios AI-ROP,

Medios Technologies, Remidio Innovative Solutions, Singapore).

In particular, we used the EfficientNet-B0 architecture. The

EfficientNet family of models improve on the previous

generation of CNNs by introducing a new scaling method that

balances network depth, width, and resolution. Furthermore, the

baseline architecture was designed using neural architecture

search. This consists of an automated process optimizing

network architecture for complexity and accuracy. These

developments allow the EfficientNet architecture to have the

same modeling capabilities while having fewer parameters

compared to other architectures. Within the EfficientNet family,

we chose the EfficientNet-B0 architecture, which is the least

demanding in terms of memory and computational power. This

choice of architecture opens the door to efficient and offline

deployment of the model, with results obtained within a fraction

of a second.
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The model has been initialized as a binary classifier and has

learned to distinguish temporal fundus images of no ROP from

those of images with ROP of stages 1–3. We chose this model of

training since an architecture taking a single image as input is

less complex and easier to train than an architecture with

multiple input images. Furthermore, a temporal image is

sufficient for a binary detection of the presence of ROP in a

majority of cases. The dataset was split into a train, validation,

and test set. The breakdown of each split by camera system

and ROP stages is detailed in Table 1. The train and

validation sets were used throughout the training process,

while the test set was used for an independent and final

evaluation of the model. Furthermore, the training set has

been constructed to ensure that there is no patient overlap

between the validation and test set. This is to ensure that there

is no data leakage when training.

We used a model pre-trained on ImageNet, a large and generic

data classification task. This is a training method called transfer

learning, which has been shown to produce faster convergence
FIGURE 2

Example of images before (left images) and after image processing (right ima
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and higher accuracies. An image processing method was

designed to enhance the contrast of input images. The method

relies on bilateral filtering. Figure 2 shows an example of images

before and after the image processing step. Furthermore, images

of left eyes were horizontally flipped to appear like right eye

images. Data augmentation techniques were limited to slight,

random rotations. The model outputs a probability of presence

of ROP, on top of which a threshold is applied. Different

thresholds lead to different compromises between sensitivity and

specificity. Class activation mapping was also implemented. This

serves as a visual check with the class activation mapping

highlighting the areas of the ROP image that might have

triggered a positive diagnosis. Physicians can validate the quality

of the model by comparing if the highlighted areas by the model

indeed correspond to a positive class from their diagnosis.

Anecdotal assessment of the model’s activation maps has shown

that it is relying on ROP features such as the ridge to form a

diagnosis. The model was trained with Keras and Tensorflow on

the Azure ML cloud platform.
ges).
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Statistical analysis

The performance of the algorithm was evaluated on an

independent test data set by comparing it against human graders.

The ground truth for these images were those provided by

trained ROP graders/experts as illustrated above in the

methodology. Performance was assessed by sensitivity, specificity,

positive and negative predictive values (PPV, NPV). The receiver

operating characteristic (ROC) analysis and area under curve

(AUC) with 95% CIs were also calculated. Statistical analyses

were performed using the Pandas data science library in the

Python programming language.
Results

The test set consisted of 7,489 temporal images from RetCam

systems (RetCam III and RetCam Shuttle) and 3netra Neo with

2,249 (30.0%) images of varying severity of ROP. The AI analysis

on a single temporal image was compared against an eye-level
FIGURE 3

Examples of outputs from the binary classification algorithm with activation ma
maps. (D) True positives with activation maps.
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diagnosis (from 6 different views) made by human graders and

specialists. Examples of images analyzed by the algorithm are

shown in Figure 3. Figure 4A shows the performance of the

algorithm on the overall test dataset as a confusion matrix.

The overall sensitivity and specificity of the AI algorithm in

detecting ROP were 91.46% (95% CI: 90.23%–92.59%) and

91.22% (95% CI: 90.42%–91.97%), respectively (Table 2). The

PPV was 81.72% (95% CI: 80.37%–83.00%) and NPV was

96.14% (95% CI: 95.60%–96.61%). The AUROC was 0.9701

(Figure 5). 460 images classified as “ROP” by the AI were false

positives. There were 192 false negatives, 97 of which belonged to

Stage 1, 83 belonged to Stage 2 and 12 belonged to Stage 3. Out

of the 192 false negative images, 136 (70.9%) came from a

patient with another AI positive temporal image captured during

the same visit with a better image quality, 38 (19.8%) had

another AI positive temporal image captured during subsequent

visits while 18 (9.4%) had no other AI positive temporal image.

The performance breakdown of the AI algorithm by camera

systems within the test as a confusion matrix is provided in

Figures 4B,C.
ps. (A) True negatives. (B) False negatives. (C) False positives with activation
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FIGURE 4

(A) Confusion matrix of the binary classifier on combined test dataset. (B) Confusion matrix of the binary classifier on test dataset with RetCam Camera.
(C) Confusion matrix of the binary classifier on test dataset with NEO Camera.

TABLE 2 Performance metrics of AI algorithm on test set (95% CI).

RetCam
(N = 5,783)

NEO
(N = 1,706)

Combined
(N = 7,489)

Sensitivity 92.54%
(91.26%–93.69%)

86.23%
(82.38%–89.52%)

91.46%
(90.23%–92.59%)

Specificity 91.99%
(91.09%–92.82%)

88.95%
(87.13%–90.59%)

91.22%
(90.42%–91.97%)

Accuracy 92.17%
(91.44%–92.85%)

88.34%
(86.72%–89.82%)

91.29%
(90.63%–91.92%)

Rao et al. 10.3389/fped.2023.1197237
Discussion

We developed a novel DL-based binary classification model for

ROP detection using a large dataset from a tele-ROP screening

program in South India. This algorithm exhibited promising

performance with a sensitivity of 91.46% and specificity of

91.22% across multiple camera systems. This was comparable to

manual grading by trained ROP graders. In addition to image

classification, the automated system can highlight areas of

abnormality triggering the AI diagnosis through activation maps.

We limited this model to a binary classification task. As a first
Frontiers in Pediatrics 06
step, the model is only indicating the presence of ROP without

distinguishing between stages. We have demonstrated that this

strategy was key in achieving good accuracy using temporal

images only. Using an efficient network architecture, transfer

learning as a training strategy, and a robust ground truth, the

proposed system performed effectively while being

computationally efficient. This paves the way for an offline, on-

the-edge deployment of the model that would not require

internet connectivity to make an inference. This would be a

significant contribution to ROP management in low-resource

settings and rural outreach such as those covered by the

KIDROP program. It has the potential to reduce the number of

screening sessions to be conducted by a specialist for a high-risk

preterm infant thus significantly improving workflow efficiency.

Fewer visits to the screening center from villages and taluks

placed geographically distant from the district headquarters could

potentially reduce the morbidity of these premature and often

sick infants.

Cogan and Patz through their work have shown that at 8

months of embryonic life, only the nasal retinal periphery is fully

vascularized (34, 35). The temporal retinal periphery is not
frontiersin.org
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FIGURE 5

Area under the curve for ROP (stage 1 and above).
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completely vascularized until shortly after full-term birth of an

infant. Since the larger temporal periphery is the last part of the

retina to become fully vascularized, this anatomical area has a

substantially larger ischemic area than the nasal retina. This

vascularization pattern of the retina explains the greater

susceptibility of the temporal retina to ROP. Hence, this is the

most probable location for the disease to initiate in premature

infants over 28 weeks (representing >98% of our cohort) and

hence one of our rationales for using temporal quadrant images

for training. This premise is also supported by Fielder et al. (36)

who described the natural history of ROP with respect to the site

(quadrant) of the disease and showed that the disease was visible

more in the horizontal retinal regions and spared the vertical

(superior and inferior) quadrants. Additionally, it has been

shown that the temporal retinal disease status in ROP is strongly

predictive and a reliable indicator of the disease status of the

entire retina (37). Being far easier to image than the nasal

periphery, image quality tends to be superior as well. This forms

the scientific basis of our choice of temporal images to simplify

the development process of this binary model to detect the

presence or absence of ROP. However, the idea is to eventually

combine this screening model with a treatment-triaging model

(plus disease/type 1 & 2 disease detection model) that analyzes

other views to give a more comprehensive prediction of the

presence and severity of ROP and our results with the temporal

retina are both encouraging and provide a platform for further

enhancement studies in the real world.

It may be argued that in the interim if universal image sets

from other population cohorts are validated through the model,

ROP that can occur in the nasal retina, especially for extremely

premature babies may be potentially missed. While we recognize

this as a limitation, the natural history described by Fielder et al.

(36) in 1992, reported that those who showed a nasal first

disease were born more premature (GA), and almost all (25/27

infants) eventually developed stage 3 (and involved both nasal

and temporal quadrants). The last two infants did not develop
Frontiers in Pediatrics 07
stage 3. It is safe, therefore, to assume that, given our current

cohort, a “severe” early “nasal only” image will be in zone 1 and/

or will develop temporal disease “as well” in a subsequent image,

most certainly by the time the disease has reached Type 1 ROP

that merits treatment. Similarly, more recently in 2010, although

the Swedish group (Austeng D et al) reported nasal “onset” of

disease in 27% of eyes in babies born extremely premature, it

must be noted that all these cases eventually had the temporal

disease in the subsequent visit (38). Furthermore, it is of

significance that no baby who required treatment had only nasal

disease. Even if it is assumed that nasal disease will be missed by

our current AI algorithm because of not being trained on nasal-

only images, the disease would be picked up in a subsequent visit

on the temporal image. Our population is considerably older in

gestational age than Western cohorts, and hence the current

algorithm covers such an eventuality. We are encouraged to

include nasal images with and without disease to test this

hypothesis in future studies.

The development of this algorithm on a single temporal field of

view does not limit us from running the binary algorithm on other

fields of view. Given that ROP stages remain the same irrespective

of the field of view, the algorithm will pick up ROP changes in any

field. The final deployment strategy on temporal image alone vs.

temporal image with an additional field of view will be taken

based on real-world evidence and will be adjusted accordingly.

The idea of using the least number of images in an AI algorithm

is to simplify the tele-ROP program. In our setting, non-

physicians and certified imagers capture these images (12). It is

infinitely easier to capture temporal images, where in our cohort,

nearly all babies who have the disease will display the same. An

algorithm that simplifies the capture and assessment would serve

better in a holistic tele-ROP program, making it more scalable to

settings that have fewer ROP specialists and non-physicians

trained to image.

15 million of the total 115 million yearly births globally are

delivered prematurely (5). The highest burden falls on middle-

income countries (8.2 M), followed by low-income (5.6 M) and

high-income countries (1.2 M). These high-risk premature

infants need on average 3–4 screening sessions before follow-up

can be discontinued. This poses an additional burden on ROP

specialists in resource-limited settings. An AI that can screen for

the presence of disease becomes imperative and can significantly

reduce the number of screening sessions required. This can also

help decentralize care, moving triaging away from an

ophthalmologist-led system. It can empower other caregivers like

nurses in Neonatal Intensive Care Units. This will improve

screening coverage and add objectivity to diagnosis. The

specialist can then focus on providing treatment for complex cases.

Computer-based feature extraction tools for automated

diagnosis of ROP such as Retinal image multiScale Analysis

(RISA) (39), ROPTool (40), VesselMa (41) have been around

since the mid-2000s. These tools use features such as vessel

dilation or tortuosity as variables to diagnose plus disease. In

recent years, advances in DL have led to the development of

several algorithms for fully automated detection of ROP. Most

prior studies have used machine learning to detect plus disease
frontiersin.org
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with encouraging results (22, 24, 25, 42, 43). Plus disease is the

treatment requiring form of ROP as per the ICROP. It is

important to identify, but it is not sufficient to define ROP itself.

To the best of our knowledge, there has been very little work

focused on ROP identification with the potential for an offline

capability that is essential in most developing nations. Our AI

algorithm stands to add tremendous value as a base algorithm

for screening in high-burden countries and has the potential to

reduce the number of screening sessions needed.

Wang et al. had trained an automated ROP detection system

(DeepROP) using deep neural networks (DNNs) for ROP

identification and grading. They used two specific DNN models

exhibiting high sensitivity and specificity values (44). Training

dataset consisted of a similar number of images to ours. This

system, however, uses multiple images from all fields of view

from an eye as input that can make deployment in the real-

world far more complex. This is done through a feature binding

block in the neural network architectures. On a Chinese test

dataset, the identification algorithm exhibited a remarkable

sensitivity and specificity of 96.2% and 99.3%, respectively, better

than our model on Indian eyes. This could potentially be

attributed to using highly curated images that were of superior

quality for model development and testing. Furthermore, when

implemented in a clinical setting, their ROP identification model

had a much lower sensitivity of 84.91% and a specificity of

96.09%, highlighting the importance of real-world evidence (44).

Their model additionally provides staging of disease. The

advantage of our model is that it uses only temporal images to

provide a binary classification with sufficient enough accuracy as

a screening tool. We prioritized real-world deployment and

model efficiency by choosing a less complex and shallow model

EfficientNetB0 and only used the temporal view of the eye

during development. In doing so, we ensure that deployment

(where images are captured by non-physician technicians) is

more feasible since capturing a single view of the eye is less

operationally demanding than requiring all views. An interesting

point to note is that while temporal-only images were used

during development, the testing was by comparing against an

eye-level diagnosis made with 6 different views by human experts

and not against a temporal image-level diagnosis. Thus, the AI

was challenged to make a prediction at an eye-level with a single

temporal image precluding any selection bias during testing. This

allowed for a true interpretation of the model’s performance.

Tong et al. developed an automated feature-learning approach

for ROP detection using DL methods displaying a sensitivity of

77.8% and specificity of 93.2% (45). In addition to image

classification, the system could accurately identify the stage of
TABLE 3 Performance of AI algorithms in the detection of ROP.

Authors #images Model Labels
Present study 227,326 CNN/EfficientNet No ROP/ROP

Wang et al. (34) 20,795 DNN/Id-Net normal/ROP (minor/se

Tong et al. (35) 36,231 CNN/ResNet Normal/mild/urgent/sem

Vijayalakshmi et al. (36) 160 Hessian analysis/SVM Normal/ROP

Hu et al. (37) 2,668 CNN/ImageNet Normal/ROP (mild/sev

DNN, deep neural network; CNN, convoluted neural network; SVM, support vector m
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ROP and the presence of plus disease. They used a similar

transfer learning approach with comparable dataset size.

However, the accuracy was reported to be lower than ours with a

larger number of false negative cases. Vijayalakshmi et al.

developed an automated detection and classification of ROP

images using Hessian analysis and a support vector machine.

They achieved a sensitivity of 90.37% and a much lower

specificity of 64.65% (46). They however relied on a small dataset

of 160 images, comprising no ROP, stage 2 and stage 3 ROP

only. Hu et al. used a smaller dataset of 3,074 images and

developed a screening model that achieved impressive results

with a sensitivity of 96%, specificity of 98%, and AUROC of

0.992 (47). However, all of these models have a significant

limitation of relying on large model architectures. This translates

to requiring either a cloud server or a high computational power

machine for deployment. While direct comparison with other

groups is challenging due to differences in the dataset, disease

distribution, ground truth diagnosis, and type of model, our

results were comparable with an advantage in the model

architecture used facilitating easy offline deployment on multiple

camera systems (Table 3).

There is currently no regulatory-approved AI for ROP and

hence no pre-specified sensitivity and specificity performance

endpoints. For referable diabetic retinopathy, the FDA-mandated

superiority endpoints were 85% sensitivity and 82.5% specificity

(48). We set the benchmark for the developed algorithm at 93%

sensitivity and 85% specificity. These numbers match the high

bar set during training for the Level 1 Graders in the KIDROP

program (12). We acknowledge that while overall results

(combined camera systems) and RetCam results are good, the

NEO camera results can be optimized further. The results on the

NEO camera can be improved by increasing the training dataset

coming from this specific camera system.

A breakdown by stages of the results indicated that the false

negatives were predominantly in Stage 1 ROP zone 3. In this

scenario, feature identification is tricky not only for the AI but

also for trained ROP graders. The results also indicate that the

developed algorithm holds great potential for identifying

moderate to severe cases of ROP with higher accuracy. National

screening guidelines require the infant to be closely monitored

over a few weeks. This strategy mitigates the risk of false

negatives, for example by ensuring two consecutive normal

reports by the AI. As seen in this study, 20% of false negative

images were flagged positive in subsequent follow-up visits of the

infant. Additionally, ensuring a visit after 40 weeks post-

menstrual age (PMA) will mitigate this risk further. This is

similar to the approach used in the KIDROP model. Trained
Sensitivity % (95% CI) Specificity % (95% CI) AUROC
91.46 (90.23–92.59) 91.22 (90.42–91.97) 97.01

vere) 96.2 (92.29–98.89) 99.3 (96.29–99.89) 99.49

i-urgent 77.8 (−) 93.2 (−) –

90.37 (−) 64.65 (−) –

ere) 96 (−) 98 (−) 99.22

achine.
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technicians categorize infants with no ROP in the “green” code as

per the triaging model after 40 weeks PMA only (12). These infants

would then be discharged from ROP screening. This strategy will

provide additional opportunities to screen the infant with the AI

before declaring the infant to be normal.

The strengths of the study are the large dataset forming the

backbone of the robust development process. The dataset is

representative of the population it is intended to be used on and

has a good distribution of disease severity and image quality,

along with a robust ground truth. Having images from multiple

camera systems brings about the potential for a device agnostic

algorithm, allowing it to be more adaptable. A robust algorithm

that can cater to various camera systems will help with usability

in various real world clinical settings. Additionally, using

lightweight models without compromising on performance paves

the way for an on-the-edge, efficient deployment. The use of a

large independent test dataset, unseen during model training,

reflects the promise this model holds.

This study has three main limitations. First, the dataset comes

only from a South Asian population. This may limit the

generalizability of the current model. It will require an expansion

in the diversity of the current dataset for deployment beyond this

population. Second, ungradable image quality can contribute to

misdiagnosis. While variable image quality added to the

robustness of the model, an algorithm that can filter for

minimum image quality and alert the operator is necessary

which is currently underway. Finally, the performance of the

algorithm on stages 4 & 5 disease is not clear due to inadequate

representation of these very advanced stages. We are also

working towards combining this screening model with a triaging

model that detects treatment requiring ROP that will provide a

more holistic solution. Further, real-world testing with a diverse

population is necessary prior to deployment in other geographies.

In conclusion, our preliminary results show that the novel AI

system has high sensitivity and specificity in detecting ROP. The

next steps would be a prospective study to evaluate the

integration of AI into the clinical workflow, and a comparison

with the current standard of care to show reproducibility and

consistency of the algorithm. We conclude that our findings are

encouraging, and further work remains to provide more insight

and understanding of the true potential of this technology. We

acknowledge that the increased capacity to screen is only of value

if there is scope to provide timely treatment. Advances in

screening with technology such as this need to be met with

increased treatment capacity, particularly for diseases such as

ROP, given the time-criticality of interventions to prevent

blindness. Hence, it is important that healthcare system

strengthening for ROP management be started in parallel.
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