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treatment of neonatal
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model
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Henrietta S. Bada1 and Melinda E. Wilson2
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Neonatal abstinence syndrome (NAS) refers to cadre of withdrawal
manifestations in infants born to mothers who used illicit and licit substances
during pregnancy. The increasing prevalence of NAS has been largely due to
the maternal use of opioids during pregnancy. NAS contributes to increased
morbidity and long-term disability in surviving infants. Clinically, oral opioid
therapies for opioid exposure have been a standard treatment with morphine
(MO) being the most commonly used medication. Recently, a non-opioid
agent, clonidine (CD) has also been used with potentially favorable short-
and long-term outcomes in infants. However, data regarding the cellular and
molecular effects of these treatments on the developing brain is still lacking
due to a lack of a reliable animal model that targets the neonatal brain. To
address this gap in knowledge we determined the effects of MO or CD on
the cell death of neonatal cortical explant cultures that were exposed to
oxycodone (OXY) in utero. Sprague Dawley rats were randomized and
implanted with programmable infusion pumps before mating to receive
either the OXY (dose increasing from 1.21–1.90 mg/kg/day to a maximum
dose of 2.86–3.49 mg/kg/day) or normal saline (NS) throughout pregnancy
and until one week after delivery. Male and female rat pups were sacrificed
on postnatal day 4, and the prefrontal cortex (PFC) and hippocampus (HC)
were dissected and treated with MO (0.10–1.00 µM) or CD (1.20–120.00 µM)
in culture media. After 5 days of treatment the explants were labeled with
propidium iodide to detect cell death. Dead cells were analyzed and
counted under fluorescence microscopy. In explants from the PFC, cell
death was greater in those prenatally exposed to OXY and postnatally treated
with MO (OXY/MO) (736.8 ± 76.5) compared to OXY/CD (620.9 ± 75.0;
p= 0.005). In the HC explants, mean cell death counts were not significantly
different between groups regardless of prenatal exposure or postnatal
treatment (p= 0.19). The PFC is vital in controlling higher-order executive
functions such as behavioral flexibility, learning and working memory.
Abbreviations

NAS, Neonatal Abstinence Syndrome; NOWS, Neonatal Opioid Withdrawal Syndrome; MO, Morphine;
CD, Clonidine; OXY, Oxycodone; CON, Control Postnatal treatment; PFC, Prefrontal Cortex; HC,
Hippocampus; NS, Normal Saline.
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Therefore, our finding is consistent with executive function problems in children with
prenatal opioid exposure.
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Introduction

Opioid use during pregnancy is reaching record levels in the

United States (1, 2). The recent data showed that the incidence

of illicit drug use including opioids and marijuana among

women of reproductive age was around 16.3% with 5.8% use

during pregnancy (3). The increase in maternal opioid use

during pregnancy has led to a dramatic increase in Neonatal

Abstinence Syndrome (NAS) or more recently termed

Neonatal Opioid Withdrawal Syndrome (NOWS) in those

infants exposed to opioids in utero (4). The incidence of

NOWS ranged from 4 to 423 cases (mean 31.8 ± 75.9) per

1,000 birth admissions from the cross-sectional study in the

United State from 2016 to 2017 (5). In 2017, the Healthcare

Cost and Utilization Project estimated that for every 1,000

newborn hospital stays, 7 were diagnosed with NAS. These

babies experience a constellation of symptoms characterized

by central nervous system hyperirritability (characterized by

incessant and high-pitched cries, tremor), autonomic nervous

system dysfunction (temperature instability, nasal stuffiness)

and gastrointestinal disturbances (vomiting, diarrhea, poor

feeding) (6). Seizures may occur in up to 2%–11% in infants

with NAS (7, 8). The current literature supports the use of

opioids as a first line pharmacologic treatment in tapering

doses for NAS (9). Morphine is the most commonly used

medication with small percentages of infants being treated

with methadone, and a very small percentage receiving

buprenorphine (10). However, it remains unclear how opioid

treatment of NAS affects long-term outcomes for these

infants. Pre- or perinatal exposure to opioids is associated

with long-term effects on neurodevelopment and cognitive

functions in children (11–13), decreased brain volumes (14)

and lower fractional anisotropy in several areas on the

brain magnetic neuroimaging reflecting decreased

myelination (15). Preclinical studies also reveal concerning

effects of opioid exposure on the developing brain (16)

including inhibition of neural progenitor cell differentiation

(17), decrease in neurogenesis (18) and impairment of synaptic

plasticity (19, 20). Moreover, perinatal exposure to opioids alters

the ontogeny of the stress-axis (21, 22) and immune response

(23). Therefore, it is important to consider other effective non-

opioid treatments for NAS to avoid further exposing the

developing brain to opioids and to ultimately improve both

short- and long-term clinical outcomes.

Clonidine, an alpha-2 adrenergic agonist that has sedative

properties, has been used in animal models of naloxone-induced
02
precipitated withdrawal to ameliorate withdrawal symptoms

from adult opioid-addicted rats (24, 25). Clinical studies

report that clonidine is an effective treatment for NAS as an

adjunct therapy with morphine (26) or chloral hydrate (27).

We report that in the pilot clinical study, clonidine treatment

is also effective as a monotherapy for NAS and results in

improved short-term neurodevelopmental assessment and a

shorter length of treatment as compared to morphine

treatment (28). The mechanisms whereby neonatal exposure

to opioids or clonidine may alter neurological development

have not been clearly determined. Virtually no data exist on

the molecular and cellular effects underlying the long-term

deficits in these children and there are currently only limited

animal models to determine such effects.

To begin to address this deficiency in model systems we

utilized neonatal explant cultures from animals that were

exposed to oxycodone (OXY) in utero and determined the

effects of postnatal morphine or clonidine exposure on cell

death. Organotypic explant cultures have been used

extensively to study mechanisms of cell death following

neurotoxic insults (29–32). Furthermore, they have advantages

over isolated in vitro culture systems in that the

microenvironment is maintained between neurons and

glia, the cultures can be maintained for weeks at a time and

they can be pharmacologically manipulated with drug

treatments to assess cell death, cell function and gene

expression (32). Additionally, the use of an in vitro

model avoids the complex maternal care and behaviors

that can confound in vivo models of early brain development

(33). The development of a reliable in vitro model is

critical to understanding the long-term molecular changes

that occur in the brain in babies experiencing NAS. We

hypothesized that postnatal treatment with clonidine

decreased cell death in stress-responsive brain regions

including the prefrontal cortex and the hippocampus as

compared to the treatment with morphine using an

organotypic explant culture model.
Materials and methods

Animals and perinatal treatment

The study protocol was approved by the University of

Kentucky Institutional Animal Care and Use Committee.

Virgin Sprague Dawley rats (Harlan, Indianapolis, IN)
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weighing 216.5–259 g (mean 242.7 g) (n = 10) were housed

individually at 22–25 °C and maintained in a 14L:10D

photoperiod (lights on at 0500 am) with regulated 30%–70%

humidity. Rat chow and water were provided ad libitum.

Once released from quarantine, the females were implanted

with programmable micro-infusion pumps (iPrecio® Model

SMP-200) (iPRECIO®, Alzet, Cupertino, CA) under isoflurane

anesthesia. The tips of the tubes were tunneled and positioned

for subcutaneous infusion on the nape of the neck. The

animals were randomly assigned to receive either oxycodone

(OXY) (Mallinckrodt, St. Louis, MO) (100 mg/ml, diluted in

normal saline (n = 5) or normal saline control (NS) (n = 5) on

a day of implantation, continued for one week before mating,

throughout pregnancy and one week after delivery. In OXY

group, the rats received the basal dose of 0.2 μl/hr for one day

(OXY dose from basal rate was approximately 1.21–1.9

mg/kg/day), then started to receive escalating doses by

pulsatile infusion twice a day during mating and pregnancy.

Since the pumps needed to be pre-programmed before

implantation, the doses were escalated according to the

expected weight gain during pregnancy and the possible

development of tolerance to opioid. Each female was housed

with the male breeder one week after the implantation of the

infusion pumps.

To mimic human use the pulsed dose was escalated as

follows. Weeks 1–2: A basal rate of 0.2 μl/hr and a pulse of

1 μl/hr for one hour twice a day was administered for 2 weeks

(daily dose from pulse infusion of approximately 0.77–0.87

mg/kg, total daily dose 2.46–2.77 mg/kg/day). Week 3: A

basal rate of 0.2 μl/hr and a pulse of 2 μl/hr for one hour

twice a day was administered for 1 week (daily dose from

pulse infusion of approximately 1.36–1.54 mg/kg, total daily

dose 2.85–3.23 mg/kg/day). Week 4: A basal rate of 0.2 μl/hr

and a pulse of 3 μl/hr for one hour twice a day was

administered for 1 week (dose from pulse infusion of

approximately 1.65–2.00 mg/kg, total daily dose 2.86–3.49

mg/kg/day). Finally, Week 5: A basal rate of 0.2 μl/hr and a

pulse of 2 μl/hr for one hour twice a day was administered

until sacrificed (daily dose from pulse infusion of

approximately 1.54 mg/kg, total daily dose 3.23 mg/kg/day).

The NS rats group received NS subcutaneously at the same

pre-programmed infusion rates.

GD 0 was designated as the day that sperm were detected in

the vaginal smear, and the females were individually housed

thereafter. On postnatal day (PD) 1, average of 22 days after

GD 0, the pups were counted and weighed. The dams were

allowed to nurse their own pups while continuing to receive

treatment from the infusion pump.

From the 5 dams in prenatal NS group, there were total of

24 pups (12 male and 12 female pups). From the 5 dams in

prenatal OXY group, there were total of 28 pups (16 male

and 12 female pups). At least one explant from each pup

(both PFC and HC) was treated with each one of the six
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postnatal treatments, the explants were run in duplicate for

each treatment. So the n of the pups for prenatal NS (control)

for all postnatal treatments = 24 (combined male and female),

and n for prenatal oxycodone for all postnatal treatments = 28

(combined male and female), Figure 1.
Organotypic cortical explants

See Figure 1. Cortical explants are isolated from PND 3–4

rat pups, as previous described (29, 34, 35) with slight

modifications. PD 3–4 is chosen because it is the optimal age

of development for them to survive, but still can differentiate

adequately and can potentially harvest both the PFC and HC

from the same animal. Additionally, cutting the explants from

younger animals is technically challenging. Pups were sexed

and brains were isolated and sectioned, 300 µm, in cold

dissection media containing Gey’s balanced salt solution

(G9779, Sigma-Aldrich, Saint Louis, MO), 0.2 M MgCl2 and

37.5% glucose on a vibratome from Bregma −.36
to −2.64 mm. Approximately 8–10 slices were harvested per

brain. In cold dissection media plus ketamine HCl (Ketaset,

NLS Animal Heath). Each brain was isolated for the

prefrontal cortex and for the hippocampus. Individual cortices

were plated on Millicell-CM membranes (PICMO3050, Fisher,

Hampton, NH) in wells containing 1X Basal Medium Eagle

(B9638, Sigma-Aldrich), Hanks’ Balanced Salt Solution

(14,025, Invitrogen), heat-inactivated horse serum

(3H30074.03, Fisher), 37.5% glucose in Geys BSS, glutamax

(35,050, Invitrogen, Carlsbad, CA), and penicillin/

streptomycin (15,140, Invitrogen). Explants remained in

culture at 34 °C with 5% CO2. Media was changed every three

days. Healthy explants are transparent with smooth edges

while overfed explants become opaque and underfed explants

thin to the point that they are undetectable (35). After 3 days

on the culture media, the explants were treated with one these

6 treatments: vehicle either alone (CON), or with 0.1 or 1 µM

morphine (MO), or 1.2, 12 or 120 µM clonidine (CD). These

concentrations of morphine treatment were used to cover the

range of the mean plasma concentrations of 125 up to above

300 and 167 ± 77 ng/ml that were reported in the neonates

that received the therapeutic doses of morphine (36, 37).

These concentrations of clonidine were used to cover the

extrapolated intra-cerebroventricular concentration reported to

prevent the reduction in the hypothalamic noradrenaline after

naloxone-induced withdrawal in chronically morphine treated

rats (38).
Assessment of cell death

After 5 days of treatment, explants were washed with

0.1 M PBS and incubated with 5 µg/ml of propidium
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FIGURE 1

Schematic of pre- and post-natal treatment regimen.
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iodide (PI) (1 mg/ml in H2O, P4170, Sigma-Aldrich) in

BME for 30 min. Explants were washed (0.1M PBS) and

visualized using a fluorescent microscope. PI entered cells

that had a porous cell membranes, indicating damage, and

bound to DNA. PI uptake indicated cell death and fluoresced

red (emission at 630 nm) under green light (excited at

495 nm). Pictures, 20X magnification of explants, were

captured using an image capture program, SPOT Advanced.

Red (dead) cells per frame were then counted using a Nikon

NIS-Element software®. Pictures were coded and analyzed

blindly.
Statistical analysis

Linear mixed effects models with a random effect for litter

were used for statistical analyses with statistical significance

defined as p < 0.05. Because there were no significant dose

effects in MO or CD treatment groups, the results from the 2

MO concentrations (0.1 or 1 µM) and the 3 CD (1.2, 12 or

120 µM) groups were combined for further analysis. The

interactions between gender and treatment groups were not

significant; therefore, the results from both male and female

offspring were combined.
Frontiers in Pediatrics 04
Results

In the PFC

Figure 2A shows the cell death counts with MO or CD

treatment in the PFC explants. In explants from prenatally

exposed OXY pups, only postnatal treatment with morphine,

not clonidine, increased cell death compared to CON. Postnatal

morphine also increased cell death compared to clonidine. In

explants from prenatally exposed normal saline (NS) pups, both

morphine and clonidine increased cell death compared to CON.
In the hippocampus

Figure 2B shows the effect of MO or CD on the HC

explants from prenatal exposure to either OXY or NS. In

either prenatal OXY or NS groups, postnatal treatment with

MO or CD had no effect on cell death when compared to

CON. However, in the prenatal NS explants, postnatal CD

treatment decreased cell death compared to MO. Postnatal

treatment with CD also decreased cell death in the prenatal

NS explants when compared to either postnatal treatment

with MO or CON in prenatal OXY explants. The decline in
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FIGURE 2

Quantification of cell death in organotypic explants following treatment with clonidine or morphine. (A) Prefrontal Cortex (PFC) Explants. (B)
Hippocampus (HC) explants.
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cell death in the prenatal NS-postnatal CD group did not differ

from the prenatal NS –postnatal CON group.

Assessment of cell death by propidium iodide staining

under fluorescence microscopy were as shown, from the PFC

(Figure 3A) and from the hippocampus (Figure 3B). Worst

staining for cell death noted in postnatal MO treatment

group, see Figure 2 for cell death count.
Discussion

To the best of our knowledge this is the first study to use an

invitro model of organotypic cortical explants to study the

effects of non-opioid vs. opioid treatment for NAS/ NOWS

on cell death. Our results showed the anatomical site- and

prenatal exposure- specific protective effects of clonidine on

cell death. Although organotypic explant cultures have been

used to study the effects of certain treatments on neuronal

toxicity and cell death (31, 39), they have not been previously

used to study the effects of prenatal opioid exposure and

postnatal treatment for NAS.

From this pilot study, postnatal exposure to clonidine

decreased cell death in the prefrontal cortex cortical explants

compared to postnatal exposure to morphine when the rats

were prenatally exposed to oxycodone; this possible protective

effect was not noted when the rats were prenatally exposed to
FIGURE 3

Propidium iodide staining for cell death from the PFC (A) and hippocampus (B
NS (panel A) and to OXY (panel B) with postnatal treatment with control, clo
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NS. In the hippocampus, clonidine also decreased cell death

compared to morphine, when rats were prenatally exposed to

NS. However, this effect was not present when the rats were

prenatally exposed to oxycodone. Postnatal clonidine also

decreased cell death in the hippocampus of prenatal NS rats

when compared to postnatal treatment with morphine or

control in prenatal oxycodone group.

As hypothesized, our results suggested that when the

animals were prenatally exposed to opioid, postnatal treatment

with the non-opioid clonidine led to a decrease in cell death

in the prefrontal cortex as compared to treatment with

morphine. This finding supports the possibility of using a

non-opioid therapeutic agent as an alternative or adjunctive

therapy for NAS/ NOWS as a growing body of evidence have

suggested adverse effects of opioids on the developing brain.

Our results support the findings from the previous preclinical

study by Bajic et al. that morphine exposure during the

neonatal period (PD1–7) increased the density of neuronal

cell death in the neonatal rat cortex and amygdala (40).

Others also reported increased neuronal cell death (41) and

reduced cortical thickness and the numbers of neurons in the

fetal frontal cerebral cortex in the offspring (42) after

prolonged intrauterine morphine exposure. Although we did

not explore the mechanisms of cell death in this study, one of

the mechanisms by which morphine enhances neuronal cell

death is reported to be increased apoptosis via a caspase-3
) under fluorescence microscopy, explants were prenatally exposed to
nidine and morphine respectively.
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dependent pathway (40, 43, 44). Oxidative stress has been

described as another cellular mechanism involved in opioid

neurotoxicity (45). We found brain region-specific effects of

the pre- and postnatal opioid treatment on cell death in this

study. Our findings are in line with Bajic et al. that the

prefrontal cortex but not the hippocampus, is one of the

supra-spinal regions susceptible to opioid toxicity. This may

be due to the relative densities of glutamatergic neurons

which may lead to increased neurotoxicity as has been shown

in other paradigms (46). A limitation of our study is that we

did not perform immunohistochemistry to identify the

specific cell types of dead cells. However, previous studies

showed that opioids disrupt neuronal and glial maturation by

context-dependent, modulatory effects throughout ontogeny

(47). Future study should aim to identify cell types and

possible mechanisms underlying our findings. There seemed

to be significant amount of background, which can be

potentially explained by the thickness of the samples. All

explants do not thin at the same rate. Another limitation is

that we used propidium iodide staining which only crosses

the membranes of the dead cells and detects both apoptotic

and necrotic cell death. Annexin V technic should be

considered for future experiments to specifically assess

apoptotic cell death (48). Of note, there were significant

amount of cell death in the explants from NS exposed rat

pups suggesting that this may be part of a normal process or

may reflect what happens to the cells in the explant cultures.

Clonidine, on the other hand, has been reported to provide

dose and brain region-specific neuroprotective effects for

cerebral ischemia in the in vivo model (49, 50). In vitro,

clonidine decreases the neuronal cell injury caused by

N-methyl-d-aspartate (NMDA) receptor agonist exposure, an

effect which is abolished by the selective alpha2-adrenoceptor

antagonist yohimbine in primary cortical neuron cultures (51).

The mechanism by which clonidine may have less toxic effects

as a treatment for neonatal drug withdrawal requires further

elucidation. In addition to preventing the elevation of

norepinephrine, thereby ameliorating sympathetic hyperactivity

in NAS (52) which in turn can alleviate withdrawal symptoms,

clonidine may provide neuroprotection by reducing the release

of glutamate resulting in decreased NMDA activation and

neuronal damage (53). Further studies are needed to explore

the mechanisms by which clonidine may provide

neuroprotective effects after perinatal opioid exposure.

Interestingly, the treatment group with highest cell death in

the PFC was among the pups that were prenatally exposed to

OXY and treated postnatally with morphine. The significance

of this finding may be related to the fetal programming by

prenatal opioid exposure (54). This concept was grounded on

the pathophysiology of the effects of prenatal cocaine

exposure (55) and early life stress (56), wherein prenatal

exposure to stress or substances of abuse can potentially lead

to altered programming of brain development and adverse
Frontiers in Pediatrics 07
short- and long-term neurodevelopmental outcomes. Fetal

programming involves the processes by which conditions

during critical periods of cellular proliferation, differentiation,

and maturation affect the developing brain and how the brain

responds to and interacts with these conditions, which in turn

can affect cell survival (57). Besides the effects on the stress-

axis (58), prenatal stress (59) and opioids (60, 61) can alter

the availability of neurotrophic factors such as brain-derived

neurotrophic factor (BDNF) which may be one of the key

signaling pathways that alters cell survival. Further study

including the use of animal models is required to elucidate

how prenatal opioid exposure can possibly make the brain

more susceptible to a postnatal averse environment and

investigate its effects on the long term outcomes (62).

We did not find significant interactions between treatment

groups and gender in this study which could be due to our

small sample size, therefore the results were combined.

However, previous studies have described the gender-specific

susceptibilities or vulnerabilities that impact cognitive,

executive and behavioral outcomes after prenatal substance

exposure (63). Our group previously reported more notable

hyperactivity in the open field test in prenatal oxycodone-

exposed male offspring compared to females (64). Prenatal

opioid exposure is consistently associated with behavioral

issues, primarily with the symptoms of attention–deficit

hyperactivity disorder (ADHD) in children (65, 66). Behavior

and attention is significantly regulated by the PFC; weaker

structure and function of the PFC is associated with attention

deficit/ hyperactivity (67). There exists emerging evidence that

the corticolimbic system undergoes age and gender –specific

development (68). Altogether, more studies are needed to

verify the effects of perinatal opioid exposure/ treatment on

the development on the corticolimbic system,interaction with

genders and other potential postnatal interventions that may

improve the long term outcomes (69, 70).
Conclusions

In this pilot study we attempted to develop an in vitro

model to study the effects of opioid (morphine) vs. non-

opioid (clonidine) treatment for NAS/NOWS after prenatal

exposure to oxycodone on cell death by using organotypic

explant cultures from two of the corticolimbic- regions, the

prefrontal cortex and the hippocampus. We found that post-

natal treatment with clonidine may have effects to decrease

cell deaths in the PFC as compared to morphine treatment, a

result which supports consideration to use clonidine as

another option for NAS/NOWS treatment. No differences in

the effects of postnatal treatment on cell death were found in

the hippocampus when prenatally exposed to oxycodone, but

in prenatal NS-treated explants, postnatal clonidine treatment

also decreased cell death compared to morphine. Although
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our experiments showed interesting findings from the small

sample sizes, future studies are warranted as there are certain

limitations. Those studies may utilize this model to investigate

other pharmacologic treatment choices for NAS/NOWS and

further determine the mechanisms for cell death/ cell survival

and other pathophysiology by which prenatal opioid exposure

and postnatal treatment may affect brain development.
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