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The bone is one of the most commonly affected organs in sickle cell disease
(SCD). Repeated ischemia, oxidative stress and inflammation within the bone is
largely responsible for promoting bone pain. As more individuals with SCD
survive into adulthood, they are likely to experience a synergistic impact of
both aging and SCD on their bone health. As bone health deteriorates, bone
pain will likely exacerbate. Recent mechanistic and observational studies
emphasize an intricate relationship between bone remodeling and the
peripheral nervous system. Under pathological conditions, abnormal bone
remodeling plays a key role in the propagation of bone pain. In this review, we
first summarize mechanisms and burden of select bone complications in SCD.
We then discuss processes that contribute to pathological bone pain that have
been described in both SCD as well as non-sickle cell animal models. We
emphasize the role of bone-nervous system interactions and pitfalls when
designing new therapies especially for the sickle cell population. Lastly, we
also discuss future basic and translational research in addressing questions
about the complex role of stress erythropoiesis and inflammation in the
development of SCD bone complications, which may lead to promising
therapies and reduce morbidity in this vulnerable population.
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Introduction

Sickle cell disease (SCD) is a monogenic red cell disorder that affects over 100,000

people in the United States and millions more worldwide (1, 2). A single base pair

substitution at the sixth amino acid position of the beta globin gene, results in mutated

hemoglobin (known as hemoglobin S, HbS) which polymerizes and changes the red cell

shape (“sickle”) under hypoxic conditions. The hallmark complication of SCD is pain

due to aggregation of sickled red cells within the microvasculature of the long bones,

resulting in ischemia, and pain.

In addition to acute pain, repeated cycles of ischemia and infarction contribute to

sickle cell bone disease (SBD). SBD refers to a combination of pathologies such as

osteonecrosis, low bone mineral density, vertebral bone deformities, pathological
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fractures and osteomyelitis (3). SBD can contribute to chronic pain.

For example, presence of osteonecrosis is associated with increased

hospitalizations for vaso-occlusive episodes (VOE) requiring

parenteral opiates (4).

As more individuals with SCD survive into adulthood, they are

likely to experience a synergistic impact of both aging and sickle

cell disease on their bone health. As bone complications accrue,

the prevalence of chronic pain is also likely to increase (5).

While opiates and non-steroidal anti-inflammatory drugs help

with acute pain, these agents are less effective in treating chronic

pain (6). Given the adverse effects of opiates including

dependence (7), it is critical to understand the pathogenesis of

SBD to catalyze the development of alternatives to opiates.

Recently, several animal and clinical studies have elucidated

contributors to the pathogenesis of chronic bone pain. While

most of the studies are in non-SCD models, they may still be

pertinent in SCD. In this review, we first provide a brief overview

of select bone complications that result in chronic pain, and

summarize mechanisms of bone pain, drawing particular

attention to the role of bone remodeling, afferent nerve

sensitization, and nerve sprouting. Finally, we briefly discuss

tentative therapies that may have a role in bone pain in SCD.
Low bone mineral density

One of the most common bone complications of SCD is low

bone mineral density (BMD) or low bone mass (3). Low bone

mass is observed in more than 50% of children (8, 9) as well as

over 70% of adults with SCD (10, 11). Furthermore, in children,

low BMD associates with an increased risk of avascular necrosis

(AVN) and chronic pain (9). In adults with SCD, low bone mass

has been strongly linked to risk of fractures at an early age (12).

Mechanistic studies show low BMD in SCD is due to both

accelerated bone loss and poor bone formation. Animal studies

show increased marrow osteoclast precursors numbers and

activity which is responsible for bone loss (13). In addition,

defective terminal osteoblast differentiation results in poor bone

formation (13–16). Markers of increased osteoclast activity such

as tartrate-resistant acid phosphatase (TRAP) type 5b, have also

been observed in sera of individuals with SCD (17–19).

Preclinical, and clinical studies show osteoclast activation

associates with both pathological bone loss and chronic bone

pain (20–23). Interestingly, children with SCD and low BMD

had improvement in chronic pain after receiving bisphosphates,

an anti-resorptive medication, highlighting the role of OC

activity in both low BMD and pain (24).
Fractures

Fractures are common n in children and young adults with

SCD (11, 24). In one study, 46% of adults had evidence of

vertebral fractures (11, 12). The mean age of adults with

fractures is often less than 40 years (11, 12). Fractures can be

seen in upper extremities, vertebral, pelvic, and femoral bone (11,
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12, 25, 26). Risk factors for developing fractures, in addition to

male sex and low vitamin D levels (27), include elevated lactate

dehydrogenase (LDH) and elevated aspartate aminotransferase

(AST) (12), suggesting a role for hemolysis. There was a lack of

correlation with bone mineral density (11, 28). Furthermore,

transfusions did not affect the risk of fractures (27). Presence of

fractures and abnormal healing from fractures can worsen

pre-existing pain and contribute to chronic pain (29). The

current treatment for fractures is mostly conservative and

surgeries such as laminectomy are reserved for when conservative

management fails (30, 31).

Mechanistically, decreased bone strength results from loss of

cortical, trabecular, and abnormal bone matrix composition

known as bone quality (32). In two separate studies, the authors

show femurs from sickle mice required less force to deform and

had lower capacity to sustain high mechanical stress suggesting

increased fragility and risk for fractures (14, 15). As in

humans, there is a lack of correlation with BMD. This suggests

that current imaging methods assessing BMD may be insufficient

to inform fracture risk and capture complex changes in

bone quality (33).
Avascular necrosis

Avascular necrosis or osteonecrosis is the second most

common chronic complication of SCD (4). About 10%–22% of

patients with SCD are affected; however, in reality, prevalence is

likely to be much higher (17, 34).

Avascular necrosis results from a disruption of the blood

supply to the ends of long bones, which results in death of bone

tissue (35). In SCD, femoral or humeral heads are commonly

affected. The femoral head is particularly susceptible to ischemia

as it lacks a collateral blood supply. Risk factors include older

age, male sex, high hemoglobin, body mass index, leukopenia,

frequent VOEs, and a history of acute chest syndrome (36).

Furthermore, genetic polymorphisms in genes with roles in

vascular integrity, inflammation, and oxidant stress, such as

Klotho, bone-morphogenic protein 6 (BMP-6), and annexin 2

(ANX2), confer an increased risk of AVN in SCD (37). While

initially asymptomatic, AVN can rapidly progress to collapse and

narrowing of the joint space (38), particularly in SCD. Treatment

for AVN includes improving vitamin D status, physical therapy

and/or surgical interventions, however the optimal treatment

modality for early AVN is still debated (39).
Bone remodeling, innervation, and its
functions

Bone is a dynamic tissue maintained in homeostasis by

opposing actions of bone resorption and formation. The cells

responsible for this homeostasis include osteoclasts, osteocytes,

and osteoblasts (40). Osteoclasts arise from a myeloid lineage

(32). Osteoblasts arise from mesenchymal stromal cells (MSC)

and are primarily involved in bone formation at sites resorbed by
frontiersin.org
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FIGURE 1

Mechanisms of bone pain in sickle cell disease. Protons secreted by
osteoclasts in response to cytokines, fractures, or ischemia triggers
afferent nerve signaling via nociceptors like acid-sensing ion
channel 3 (ASIC3) and the transient receptor potential channel
vanilloid subfamily member 1 (TRPV1) which communicate to the
brain and spinal cord via neurotransmitters such as substance
P (SP), neuropeptide Y (NY) and calcitonin gene–related peptide
(CGRP). These neurotransmitters also sensitize the afferent nerves.
In addition, they also play a role in bone formation and resorption
as well. Lastly, mast cells (MC), osteoclasts and osteoblasts also
release nerve growth factor (NGF) and netrin respectively that
promotes ectopic nerve growth which further contributes to pain.
Created with BioRender.com.
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osteoclasts (40). Osteocytes are terminally differentiated osteoblasts

that form the bone matrix (40). The balance of bone resorption and

formation is governed by cytokines, local bone environment and

precise crosstalk between osteoclasts, osteoblasts, and osteocytes

(41). For example, osteoblasts regulate formation, activation, and

maturation of multinucleated osteoclasts from their precursors by

secreting macrophage colony stimulating factor (M-CSF),

receptor activator of nuclear factor-κB ligand (RANKL) and

osteoprotegerin (OPG) (32). Osteocytes, which are the principal

source of RANKL, send precise signals which allows for

osteoclasts to resorb bone at designated locations (42).

Osteoclasts can then resorb bone by secreting enzymes such as

cathepsin K and hydrogen ions (41).

Bone is richly innervated (43). The skeletal nerves can be

classified as sensory, sympathetic, or parasympathetic nerves (44).

The density of the nerves is highest in the periosteum followed

by bone marrow and lowest in mineralized bone (45). Sensory or

afferent nerves are either thinly myelinated (A-delta) or

unmyelinated (C-fibers) and transmit pain from bone and bone

marrow to the dorsal root ganglion (DRG) (46–48). Together,

A-delta and C-fibers account for most of the pain-transducing

nerves in the bone (43). Specifically in SCD, skeletal pathologies

such as fractures, marrow infarction, and inflammation may play

a role in the initiation and propagation of bone pain.

Noxious stimuli activate pain receptors on sensory neurons

such as acid-sensing ion channel 3 (ASIC3), transient receptor

potential channel vanilloid subfamily member 1 (TRPV1),

tetrodotoxin (TTX)-resistant sodium channels (Nav.1.8),

purinergic receptor (P2X3), endothelin receptor (ETAR),

prostaglandin (PG) among others (22, 49). Upon activation of

these receptors, neurotransmitters such as calcitonin gene–related

peptide (CGRP), substance P (SP), glutamate and pituitary

adenylate cyclase-activating polypeptide (PACAP) are released

from nerve terminals in the DRG (45, 50, 51). Skeletal afferent

neurons also express tropomyosin receptor kinase A positive

(TrkA+) (52). In fact, the majority of bone-innervating sensory

fibers are CGRP and TrkA positive C-fiber neurons (53). CGRP

and substance P signaling also affects bone mass (54, 55). For

example, mice lacking CGRP have low bone mass, due to loss of

CGRP mediated effects on osteoblasts (54, 56). Bone resorption

and formation are also dependent on both sympathetic and

parasympathetic signaling (44, 57). Osteoclasts and osteoblasts

express α- and β-adrenergic receptors which are activated when

bound to norepinephrine (NE) (58) which favors bone resorption

in mice and humans (58, 59). As is the case with sensory nerves,

neurotransmitters from sympathetic nerves can also modulate

bone generation. Neuropeptide Y via its action on hypothalamic

Y2 receptors has been shown to exert a negative effect on

osteoblast activity and bone formation (60, 61). Of note,

osteoblasts and to some extent osteoclasts, also secrete

endocannabinoids such as 2-arachidonylglycerol (2-AG), which

can reduce sympathetic signaling via CB1 receptors on skeletal

sympathetic nerve endings (62). Lastly, neuropeptides from

sensory nerves such as CGRP can also affect sympathetic

signaling (63). Thus, there is an intricate and complex

relationship between bone cells, the sensory and autonomic
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nervous systems. This has implications for therapies to treat bone

pain, as complete inhibition of neuro-receptors may have

unintended consequences on bone formation or resorption.

Emerging data suggests bone pain is due to pathologic

remodeling, exuberant neurotransmitter release, and ectopic

nerve growth. These abnormal changes occur with age, stress

and/or systemic neuroinflammation, all of which are at play in

SCD (22, 64, 65) (Figure 1). In the following sections, we provide

evidence for these processes in bone pain described in SCD and

non SCD models.
Bone remodeling and bone pain

In SCD, chronic and acute inflammation results in elevated

levels of circulating interleukin 6 (IL-6), interleukin 1 beta

(IL-1β), and tumor necrosis factor alpha (TNF-α) (66). These

cytokines promote osteoclastogenesis (67–69). Tumor necrosis

factor alpha, for example, can directly increase osteoclast activity

with minimal RANKL secretion (67–69). The increased

osteoclastic activity favors accelerated bone resorption.

Osteoclasts resorb bone by acidifying their immediate bone

environment (41). In addition to mobilizing minerals, low pH

(acid) is a noxious stimulus, which is sensed by nociceptors such

as ASICs and 1TRPV1 (51, 70). In preclinical models, a

reduction in osteoclast activity was correlated with a decrease in

ASICs and TRPV1 expression, activation of neurons in DRG and
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decreased pain behaviors (21). Furthermore, in this study and

others, inhibition of ASIC3 and TRPV1 resulted in decreased

pain and biomarkers for early osteoblast differentiation (71, 72).

This is an important point as prolonged inhibition may

potentially result in decreased bone formation and delayed

fracture healing (72). Lastly, complete abrogation of these

receptors, may have unintended side effects. For example, in

an animal model of SCD, complete abrogation of TRPV1

resulted in worsening of VOEs by attenuating vasodilatory

effects of CGRP (73).

In addition to inhibiting nociceptors, limiting osteoclast

activity also reduces bone pain. Numerous studies in cancer and

osteoporosis models show that bisphosphonates, which reduce

osteoclast activity, improve bone pain (74–76). Pre-clinical

studies in mouse models of SCD also show that bisphosphonates

reduce markers of bone turnover and improve bone

microarchitecture (13). A recent study in 46 children with SCD-

related skeletal morbidity showed improvement in chronic pain

after treatment with intravenous bisphosphates, highlighting the

possible interaction between osteoclast activation, abnormal bone

remodeling, and the development of bone pain (24). An ongoing

prospective study is evaluating the effect of bisphosphonates on

bone pain in adults with SCD (NCT05283148).
Afferent nerve sensitization and bone pain

A vast majority of the skeletal nerves express TrKA, whose

ligand is nerve growth factor (NGF) (52). NGF promotes

proliferation and survival of sympathetic and sensory afferent

neurons during development (77). TrKA/NGF signaling also

plays a critical role in bone fracture repair (78). However,

abnormal TrkA/NGF signaling in the setting of exuberant

inflammation results in peripheral nerve sensitization.

Experimental evidence has shown that NGF is also released by

mast cells (79, 80), lymphocytes (81), and monocytes/

macrophages (82) in response to tissue inflammation. NGF

propagates peripheral nerve sensitization through several

mechanisms: (1) NGF binding to TrkA + neurons increases

neuronal excitability by altering the activity of different ion

channels in the nerve ending (83), which results in a lower

threshold for neuronal depolarization. (2) NGF/TrKA complexes

promote gene expression of nociceptors such as TRPV1, ASIC,

Nav1.8 (sodium) channels, CaV (calcium channels), in addition

to release of neuropeptides such as CGRP, and substance P,

which can, in turn, increase the sensitivity of the afferent neuron

to NGF (84). and (3) NGF induces inflammatory cells to release

bradykinin, histamine, ATP, serotonin, and protons, which in

turn activate receptors and ion channels thus propagating the

pain feedback loop (85).

In rodent models of osteoarthritis or fracture repair, an

increase in NGF levels associated with increased pain behaviors

(86, 87). Furthermore, local, and systemic NGF administration

into healthy humans induces deep pain and hypersensitivity that

can last for several days (88, 89). Also, individuals with SCD and

chronic pain also show elevated circulating levels of NGF (90).
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Thus, taken together, therapies that affect inflammatory cell

release of NGF or inhibit NGF may be beneficial in decreasing

bone pain.

Evidence from SCD and non-SCD models (91, 92) corroborate

inhibition of NGF as a target to reduce pain. A murine model of

SCD underscored the importance of mast cell activation,

infiltration and NGF in pain hypersensitivity by showing that

tryptase, secreted by mast cells, promotes release of substance

P and CGRP in DRG (targets of NGF), and inhibition of mast

cell activation by imatinib resulted in reduced musculoskeletal

pain behaviors and reduced activation of neurons in the DRG

(92). Animal models of osteoarthritis also show that increased

mast cell activation and numbers resulted in worsening

inflammation and pain which can be reversed with mast cell

inhibition. Thus, mast cell inhibition may help with bone pain

(93) and is a potential therapeutic target. Therapies such as

monoclonal antibodies against NGF (94) showed improvement in

OA induced pain in preclinical and clinical trials (95). However,

clinical trials were halted early due to reports of rapidly

progressive OA and of osteonecrosis among individuals receiving

these agents. Preclinical studies suggest it could be due to

autonomic dysfunction or decreased angiogenesis (52, 96)

however, some studies speculate that it could be the natural

progression of the disease itself (91).
Nerve growth sprouting and bone pain

Bone innervation and bone remodeling are closely linked (44).

Physiologically, nerve growth is an important signal for ossification

of newly formed bone (44). However, under pathological states,

excessive nerve sprouting can result in pain hypersensitivity.

Preclinical models of fractures or low back pain show that

osteoblasts and osteoclasts secrete NGF and Netrin respectively,

which are key proteins propagating nerve growth (78, 97, 98).

In mammals, Netrins are either secreted (Netrin-1, -3, -4, and

-5) or anchored to cell membrane (Netrin-G1 and -G2)

(99–101). Netrin-1 is responsible for neuronal migration as well

as axonal growth (102, 103). In addition to guiding neurons,

Netrin-1 can also guide leukocytes to the site of injury and

promote macrophage differentiation (103, 104). It is plausible

netrin levels may be affected in SCD. To date, no study has

surveyed the levels as well as impact of Netrin on chronic pain

in preclinical models or patients with SCD.

In non-SCD model of low back pain, osteoclasts secrete Netrin-

1 which supports the ingrowth of CGRP positive nerve fibers at the

endplates of vertebral bodies. Elimination of osteoclasts attenuated

pain behaviors (97). In an osteoarthritis model, osteoclasts were

also shown to secrete Netrin-1 that induces growth of CGRP

positive nerves and DRG activation (98). More importantly, both

the genetic and pharmacological blockade of Netrin1 reduce pain

behaviors (98) suggesting an important role for Netrin-1

inhibitors in bone pain. It is interesting to note that therapies

affecting global netrin inhibition may affect other cell lines as

netrin is important for hematopoietic stem cell (HSC)

quiescence, and self-renewal (105). This is important as SCD is
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characterized by exuberant increase in HSC cells due to chronic

stress erythropoiesis and inflammation resulting in premature

aging of the HSC system (106).
Future directions

Bone is a dynamic organ. Bone formation and absorption are

influenced by local as well as systemic factors including

inflammation (107). In SCD, chronic hemolysis, inflammation,

delayed puberty, and poor muscle mass may contribute to

excessive bone remodeling and loss (3). Thus, an understanding

of mechanisms leading to bone loss is important to understand

bone pain.

Questions that still need answering include how stress

erythropoiesis contributes to bone remodeling and pain.

Individuals with thalassemia, a red cell disorder characterized by

defective beta or alpha globin production and ineffective

erythropoiesis, also exhibit low bone mass, increased risk of

fractures, and bone pain (108). Erythropoiesis can also stimulate

myelopoiesis, which in the right bone microenvironment,

differentiate to osteoclasts (109). Marrow expansion can also

activate mechanosensitive PIEZO receptors which may transduce

pain (47). Other questions include if chronic hemolysis also

contributes to osteoclastogenesis. In SCD, hemolysis results in

release of free heme, which contributes to reactive oxidative

stress (ROS) (110). In response to ROS, cells lining the blood

vessels express heme oxygenase (HO-1) which attenuates

inflammation. Non-SCD models show HO-1 regulates

osteoclastogenesis by inhibiting RANKL- induced osteoclastic

differentiation (111). Ferroptosis, iron induced cell death, could

also play a role in osteoclastogenesis, however further research is

needed (112, 113).

Effective therapies against bone pain also have to balance

their targets precisely, such that bone health is not impaired.

For example, CGRP inhibitors, used effectively against

migraines, may help with bone pain, however it could mediate

increased vaso-occlusive crisis seen in animal models of SCD

(73, 114). Thus, there is an unmet need for therapies that

treat bone pain that are safe and do not further impact bone

health in SCD.
Conclusion

Bone complications and bone pain often starts early in

childhood (4, 9) and results in much disability, missed school or

work days and poor quality of life due to lack of effective

treatments. The etiology is poorly understood and is likely

multifactorial with contributions from hypoxia, inflammation,

nutritional status, and growth delays. Interestingly, disease
Frontiers in Pain Research 05
modifying therapies such as chronic red cell exchanges and even

hematopoietic stem-cell transplant does not seem to reverse

chronic pain suggesting a role for peripheral and/or central nerve

sensitization (64, 115). While opiates are often used for this

indication, their adverse effects limit their use.

To identify novel therapeutics, a deeper understanding of

pathogenesis of bone pain is needed. Specifically, the role of

systemic inflammation, central sensitization, growth delays,

nutritional interventions and physical activity are lacking. Such

research, for example, could catalyze the use of existing anti-

inflammatory treatments often used to treat bone pain in

inflammatory arthritis (116). While newer studies are investigating

the role of bisphosphonates on bone pain, given complex

pathogenesis of bone pain, a monotherapy may not be sufficient.

Instead, an integrated and interdisciplinary approach that involves

patient education, hematologists, pain specialists, nutritionists, and

psychologists may be needed to help with bone pain.
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