
TYPE Mini Review
PUBLISHED 11 January 2023| DOI 10.3389/fpain.2022.1084701
EDITED BY

Nasser Khaled Yaghi,

Oregon Health and Science University, United

States

REVIEWED BY

Prasad Shirvalkar,

University of California San Francisco, United

States

*CORRESPONDENCE

Clement Hamani

clement.hamani@sunnybrook.ca

†These authors have contributed equally to this

work

SPECIALTY SECTION

This article was submitted to Neuromodulatory

Interventions, a section of the journal Frontiers

in Pain Research

RECEIVED 30 October 2022

ACCEPTED 22 December 2022

PUBLISHED 11 January 2023

CITATION

Pagano RL, Dale CS, Campos ACP and

Hamani C (2023) Translational aspects of deep

brain stimulation for chronic pain.

Front. Pain Res. 3:1084701.

doi: 10.3389/fpain.2022.1084701

COPYRIGHT

© 2023 Pagano, Dale, Campos and Hamani.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.
Frontiers in Pain Research
Translational aspects of deep
brain stimulation for chronic pain
Rosana L. Pagano1†, Camila S. Dale2†, Ana Carolina P. Campos3

and Clement Hamani3,4,5*
1Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo, Brazil, 2Laboratory of
Neuromodulation and Experimental Pain, Department of Anatomy, University of São Paulo, São
Paulo, Brazil, 3Sunnybrook Research Institute, Hurvitz Brain Sciences Centre, Toronto, ON, Canada,
4Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada,
5Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON,
Canada

The use of deep brain stimulation (DBS) for the treatment of chronic pain was
one of the first applications of this technique in functional neurosurgery.
Established brain targets in the clinic include the periaqueductal (PAG)/
periventricular gray matter (PVG) and sensory thalamic nuclei. More recently,
the anterior cingulum (ACC) and the ventral striatum/anterior limb of the
internal capsule (VS/ALIC) have been investigated for the treatment of
emotional components of pain. In the clinic, most studies showed a response
in 20%–70% of patients. In various applications of DBS, animal models either
provided the rationale for the development of clinical trials or were utilized as
a tool to study potential mechanisms of stimulation responses. Despite the
complex nature of pain and the fact that animal models cannot reliably reflect
the subjective nature of this condition, multiple preparations have emerged
over the years. Overall, DBS was shown to produce an antinociceptive effect
in rodents when delivered to targets known to induce analgesic effects in
humans, suggesting a good predictive validity. Compared to the relatively high
number of clinical trials in the field, however, the number of animal studies
has been somewhat limited. Additional investigation using modern
neuroscience techniques could unravel the mechanisms and neurocircuitry
involved in the analgesic effects of DBS and help to optimize this therapy.

KEYWORDS
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Introduction

Chronic pain is a major health problem associated with individual suffering and an

important social and economic burden. The prevalence of this condition in the general

population ranges from 8% to 50% (1–3). It is estimated that approximately 30% of

chronic pain patients have neuropathic pain (4, 5). This may be defined as pain due

to lesions and/or dysfunction of the nervous system. Though pharmacotherapy,

physiotherapy and nerve blocks are often effective, the treatment of neuropathic pain

may be quite challenging. This is in contrast to nociceptive pain, which is associated

with physical damage to the body.

Deep brain stimulation (DBS) involves the delivery of electrical current to the brain

parenchyma through implanted electrodes (6, 7). Its use for the treatment of pain was
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one of the first applications of this technique in Functional

Neurosurgery (8–10). Despite being proposed approximately

70 years ago, it was only in the 1970s and 1980s that DBS

became more widely studied for the treatment of pain, with

stimulation being more frequently delivered to the

periaqueductal (PAG)/periventricular gray matter (PVG),

sensory thalamic nuclei, or the internal capsule (IC) (11, 12).

More recently, with a better appreciation of the emotional

components of pain, stimulation of the anterior cingulate

cortex (ACC) (13–16) and the ventral striatum/anterior limb

of the internal capsule (VS/ALIC) (17) has also been proposed.

In various applications of DBS, animal models have either

provided the rational for clinical use or were utilized to study

potential mechanisms of therapeutic responses (7, 18). Despite

being conducted for over 50 years, the number of reports

studying the effects of DBS in preclinical models may be

considered limited compared to that of human publications.

In this review, we summarize the effects of DBS in

preclinical models and in patients with chronic pain.
Preclinical models

Prior to discussing preclinical work, it is worth differentiating

nociception from pain. The former refers to the neural encoding

of impending or actual tissue damage, whereas the later denotes

the subjective experience of actual or impending harm. In general,

preclinical models are largely suited to measure nociception. That

said, animals are likely to have a subjective experience associated
FIGURE 1

Deep brain stimulation (DBS) targets. Schematic representation of DBS targe
anterior cingulum; PAG, periaqueductal gray matter; PVG, periventricular g
anterior limb of the internal capsule.
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with nociception. Unfortunately, measuring this component is not

straightforward. To decrease the gap with the human condition,

proposed approaches include measures of spontaneous and

evoked pain, pain memory, avoidance, anxiety- or depression-like

behaviors, and the social modulation of pain (empathy).

Structures targeted in preclinical DBS studies are either

part of the pain matrix, limbic system, descending analgesic

systems, or those potentially capable of modulating

nociceptive signals (Figure 1). Itemized results according to

target are presented below.
Periaqueductal grey matter

The PAG is a highly conserved midbrain region that

surrounds the cerebral aqueduct (19). It is a critical site for

encoding aversive prediction errors and the processing of

nociceptive information (19). The PAG receives strong

nociceptive input from the spinal cord and provides top-down

brainstem–spinal cord modulation to flexibly shape the

experience of pain in different contexts, including the

transition from acute to chronic states (19). Two separate

nociceptive modulatory systems operate in the caudal PAG: a

dorsal system, which encompasses its dorsomedial,

dorsolateral and lateral subdivisions, and a ventral system that

includes the ventrolateral PAG and dorsal raphe (20).

In an initial report, Reynolds (21) showed that PAG

electrical stimulation produced analgesia in rats, opening a

new research venue for the treatment of pain. Following that
ts studied in recent clinical trials (A) and preclinical models (B). ACC,
ray matter; PVN, paraventricular nucleus; VS/ALIC, ventral striatum/
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work, PAG electrical stimulation was considered a pain

suppression method against various nocifensive behaviors

(22, 23). In rats, electrical stimulation of the PAG inhibited

spinal nociceptive transmission from the brainstem by

activating descending inhibition mediated by opioids and

glutamate (24). Analgesia-producing PAG stimulation alters

the spontaneous activity of neurons in the medullary reticular

formation (MRF) and inhibits the noxious-evoked excitation

of MRF neurons. The microinjection of morphine into the

PAG mitigated the reduced spontaneous activity of MRF units

and inhibited noxious-evoked neuronal excitation. These

effects were particularly observed in analgesia produced by

PAG manipulations and were partially reversed by naloxone

(25). PAG stimulation attenuated formalin-induced pain and

increased the nociceptive threshold of complete Freund’s

adjuvant (CFA)-induced inflammatory pain (20, 26, 27). In

addition, PAG stimulation has also been shown to inhibit

visceral nociceptive responses of spinal dorsal horn neurons

(28). Overall, the results described above suggest that electrical

stimulation of the PAG works more effectively on nociceptive

pain, including that related to acute and chronic inflammation.
Sensory thalamus

Initial evidence for targeting the sensory thalamus in pain

derived from the ablative neurosurgical literature (29–31). Sensory

thalamic nuclei receive somatotopically oriented input from

lemniscal fibers involved in sensory processing. Afferents from

the face and body innervate the ventral posteromedial (VPM)

and ventral posterolateral (VPL) nuclei, respectively. In rats with

neuropathic pain, VPL-DBS reduced mechanical allodynia

(27, 32–34), cold allodynia (35), and thermal hyperalgesia (36).

Similar to humans, VPL-induced analgesia in rats with peripheral

neuropathy was only documented when electrodes were

implanted in a somatotopic manner (33). In inflammatory pain

models, VPL stimulation was found to produce analgesia in

chronic, but not acute preparations (27). Sensory thalamic

stimulation also failed to reduce experimental pain in healthy

animals (37, 38). These observations are well aligned with clinical

findings suggesting that VPL-induced analgesia is more effective

for the treatment of neuropathic pain (39–41).

The mechanisms through which thalamic DBS induces

analgesia are still unclear. VPM-DBS inhibited the abnormal

hyperactivity of nociceptive neurons in the trigeminal

medullary dorsal horn of deafferented cats (42). In primates,

sensory thalamic stimulation decreased the activation of

spinothalamic tract neurons (43), an effect that seems to be

partly mediated by corticofugal and descending inhibitory

pathways (44). Corroborating these findings, VPL-DBS has

been suggested to induce serotonin release in the spinal cord of

primates via the modulation of raphe-spinal tract fibers (45).

VPL stimulation has also been shown to inhibit local neurons
Frontiers in Pain Research 03
and induce neuronal reorganization, modifying spontaneous

pathological activity, and inhibiting nociceptive impulse

transmission to cortical areas (46, 47).
Internal capsule

In cats (48) and rats (49), electrical stimulation of IC fibers

reduced thalamic nociceptive activity, having no effect on

activity of dorsal horn neurons in response to noxious heat

(50). IC stimulation inhibited neuronal hyperactivation in the

spinal trigeminal nucleus in a cat model of trigeminal nerve

deafferentation (51). In rats, IC stimulation induced analgesia

that was partially associated to aversive responses (52).

Moreover, IC stimulation inhibited nociceptive neurons in the

rat medullary dorsal horn, suggesting that its inhibitory

nociceptive effect may occur via second-order neurons,

following the activation of corticofugal fibers (53).
Insula

The insula is a key integration center of nociceptive stimuli,

representing an interface between sensory and limbic systems

(54). Neuronal tracing studies in primates has identified the

posterior insula as an important relay in the spinothalamic

pathway via connections with the VPM (54–57). Furthermore,

the posterior insula is considered an important cortical center

for the integration of pain and interoception (54, 58–63).

In addition to its role as a relay in ascending pain pathways, the

posterior insula is densely connected with the anterior insula, which

projects to (i) brainstem nuclei involved in the descending pain

modulation system (raphe, locus coeruleus, ventral tegmental

area, and PAG), and (ii) limbic structures involved in the

emotional valence to painful stimuli, such as the ACC and the

amygdala (61, 62, 64). Intracranial recordings during painful

stimuli have demonstrated the existence of nociceptive neurons in

the posterior insula (54, 65). In addition, most chronic pain

syndromes are associated with abnormal functional connectivity

of the posterior insula. Finally, electrical stimulation of the

posterior insula in neuropathic-pain rats induced antinociception

by functionally modulating the opioid, cannabinoid and

GABAergic systems in the PAG (66, 67). Along these lines,

electrical stimulation of the insula has been proposed as a

potential therapeutic alternative to restore maladaptive

connectivity and activity in pathways mediating sensory and

affective hypersensitivity in patients with chronic pain (54).
Limbic-related structures

The limbic system includes a wide range of interconnected

brain regions that process and regulate cognitive function,
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sensory perception, memory, emotions, and affective motivation

(68). Various limbic regions participate in pain processing

circuits, including the hypothalamus (68–70), amygdala, and

ACC (68, 71–73).

The hypothalamus, a central structure in the hypothalamic-

pituitary-adrenal (HPA) axis, is involved in mechanisms of

psychiatric disorders, including depression, anxiety, and

anorexia. The ventromedial hypothalamus (VMH), in

particular, contributes to the processing of the affective

dimension of pain (74), whereas the paraventricular nucleus

(PVN) is part of the pain inhibitory system (75–78). Pain

induced by electrical stimulation or chemical methods

increases immediate early gene expression in the PVN (79–81).

In rodents, electrical stimulation of the PVN induced

analgesia (78), decreased thermal pain sensitivity, knee

inflammation and synovial neutrophilic infiltration (82). PVN

electric stimulation enhanced c-Fos expression in the dorsal

horn of the spinal cord, nucleus raphe magnus, locus

coeruleus, and the PAG (75). Some of the analgesic effects of

PVN stimulation seem to be mediated via the release of

oxytocin from descending fibers to the dorsal horn (75–77).

As described above, the ACC is involved in affective-emotional

aspects of pain processing (83–89). Long-term potentiation of

excitatory synaptic transmission in the ACC sustains chronic

neuropathic pain conditions and pain-related anxiety (90). In

rodents, ACC stimulation inhibits activity of dorsal horn

neurons induced by noxious mechanical stimuli (91, 92),

reduces mechanical allodynia in neuropathic pain models (93),

and the aversive response to noxious tactile stimulation (94).

Some of these effects were associated with the activation of ACC

inhibitory neurons, as optogenetic stimulation of these cells

inhibited thalamic activity and reduced nociceptive behavior in

experimental models of acute and chronic pain (95, 96). Similar

to other brain structures, the ACC opioid system is critical to

selectively modulate the aversive quality of noxious mechanical

stimulation in neuropathic pain models (97). In rodents, ACC

high-frequency stimulation reduced aversive pain responses

induced by mechanical nociceptive stimuli, while low-frequency

stimulation increased pain aversive behaviors (98). Optogenetic

or chemogenetic stimulation of the ACC reduced abdominal

hyperalgesia and pain-related anxiety in a rat model of chronic

pancreatitis (99).
Clinical aspects

Structures commonly targeted in patients with chronic pain

are the PAG/PVG and sensory thalamic nuclei (11, 12)

(Figure 1). Targets investigated to reduce the emotional

components of pain include the ACC (13–16) and the VS/

ALIC (17). DBS targets proposed in the past that are not

routinely used to date include the IC (100, 101), septal region

(102, 103), and medial thalamus (104–106).
Frontiers in Pain Research 04
The choice of surgical target in humans depends on whether

patients present predominant neuropathic or nociceptive pain

and the clinical condition associated with its development. As

in animal models, it seems that stimulation of the sensory

thalamus is more effective for neuropathic pain, whereas

PAG/PVG has also been offered in the past to patients with

nociceptive pain (39, 107–110).

The atlas most frequently used by functional neurosurgeons

is the one by Schaltenbrand and Wahren (111, 112). Because the

nomenclature of thalamic subdivisions in that atlas is the one

proposed by Hassler (113), his system has been commonly

used. According to Hassler, sensory modalities from lemniscal

fibers innervate the ventralis caudalis nucleus (Vc) (113),

which corresponds to the ventral posterior nuclei descried in

animal studies (114). In most centers, target selection in the

sensory thalamus is based on coordinates from the anterior-

posterior (AC-PC) commissural plane and midcommissural

point (12). As in preclinical models, Vc stimulation has to be

delivered somatotopically, with face, arm, and leg regions

represented from medial to lateral (114). PAG/PVG is largely

targeted based on direct visualization, as this structure lies

near the boundaries of the III ventricle and cerebral aqueduct.

In addition to neuroimaging strategies, several centers use

electrophysiology to establish the ideal target. In the sensory

thalamus (115–118), stimulation induces paresthesias in

projected fields, which may be used to define the somatotopic

coverage of the region of interest. In addition, cells in the

sensory thalamus tend to fire in specific patterns and respond

to tactile and sensory stimuli (114). In contrast, PAG/PVG

stimulation occasionally induces a sensation of warmth that

may be characterized as pleasurable (100, 119, 120).

Stimulation delivered to the PAG may sometimes induce a

sense of anxiety and fear (100, 119, 120).

As described above, thalamic stimulation has been

commonly used to treat neuropathic pain associated with

stroke, spinal cord injury, multiple sclerosis, phantom limb

pain, among others, whereas PAG/PVG was also used in the

past to treat nociceptive pain (110). With the development of

effective pharmacological and non-invasive treatment

modalities for nociceptive pain, the use of DBS for these

indications has rapidly declined.

The long-term outcome of DBS for the treatment of chronic

neuropathic pain is quite variable, with most studies showing a

response in 20%–70% of the patients (39, 100, 107–109, 118–

136). In fact, the variability observed across studies in a recent

systematic review did not allow the authors to conduct a meta-

analysis (137). The inconsistency in reported outcomes has

been attributed to multiple factors, including the treatment of

different clinical conditions, technical aspects, and the selection

of different brain targets. As described above, the overall

impression in the field is that patients with neuropathic pain

tend to do worse with the procedure. Since these patients

predominate over those with nociceptive pain in recent studies,
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outcome in some recent trials tends to be worse than that of older

studies. Another aspect is that patients may lose clinical benefit

over time. Reasons to explain this phenomenon are unclear but

may involve neuroplasticity and tolerance (100, 110, 138). The

largest open-labeled multicenter trials in the field were

conducted by one of the manufacturers of DBS systems

(Medtronic) (139). Both studies were negative and showed a

relatively poor outcome with a higher than 50% improvement

being reported in 16%–47% and 13%–18% at 12 and 24

months, respectively (139).

Additional DBS targets investigated in recent clinical trials

are the ACC and VS/ALIC. Following ACC stimulation, pain

scores were improved by 60% and 43% at 6 and 12 months,

respectively (13). Of note, ACC DBS not only induced an

analgesic effect, but also improved affective components of

pain (13, 14). As for the VS/ALIC, a recent randomized

clinical trial in patients with poststroke pain found no

difference between active or sham stimulation on the Pain

Disability Index (primary outcome variable), but revealed a

significant improvement in outcome measures related to the

affective sphere of pain (17).

As DBS is a surgical procedure, it is important to describe

potential adverse effects. There is a 2%–3% risk of intracranial

hemorrhages, mostly asymptomatic. The surgery involves the

implantation of hardware (electrodes, extension cables and

pulse generators) (6, 39, 108, 109, 130, 140) and lead

problems occur in 4%–5% of the patients. Infections may

occur in 3%–5% of the patients. In approximately 50% of

these subjects, parts or the entire system may need to be

removed (141). Although not particularly considered a side

effect, some patients implanted with Vc electrodes do not

tolerate stimulation-induced paresthesias. As described above,

PAG DBS has been associated with the development of

stimulation-induced anxiety (110, 120, 130). A recently

reported complication of ACC DBS involves the development

of afterdischarges and seizures, which can be controlled by

changing stimulation settings (13, 142).
Conclusions and future perspectives

As described above, optimal DBS targets for the treatment of

chronic pain are still under investigation. Possible explanations

for the variable results of different preclinical and clinical

studies include the complex nature of pain, the study of

different conditions leading to the development of pain, and

the potential involvement of multiple networks. In recent years,

the concept of a traditional pain matrix has been

complemented by that of a pain connectome (143). This is

because pain has various salient qualities, being influenced by

attention, mood and cognitive aspects (143). For example,

attention-demanding tasks and stimuli can alter the quality and

salience of pain and the processing of nociceptive input (144–
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146). In addition, connectomes can take into account the

intrinsically dynamic and fluctuating relations of multiple brain

structures that play a role in different aspects of pain and

cognitive processes (147). Recent studies suggest that human

networks constantly change over time, presenting a dynamic

repertoire of brain states, including those relevant to pain and

attention (148–150). Three brain systems are critical

components of the pain connectome: The first is the salience

network, comprised of the anterior insula, mid-cingulate cortex,

temporoparietal junction, and dorsolateral prefrontal cortex

(151, 152). The second system is the default mode network

(DMN), which is active when subjects are instructed not to

think about something specific (153). The DMN is comprised

of the posterior cingulate cortex, precuneus, medial prefrontal

cortex (PFC), lateral parietal lobe, and areas within the medial

temporal lobe. The third system is the descending pain

modulatory system and includes the PAG (143, 145, 154, 155).

The thalamus and PAG are part of the canonical analgesic

pathway. The somatotopically organized sensory thalamus

receives input from wide-dynamic range and nociceptive-

specific neurons from the dorsal horn of the spinal cord and

projects to somatosensory cortical regions (156). The

disinhibition of the PAG leads to a release of norepinephrine

and serotonin from the locus coeruleus and raphe into the

dorsal horn, dampening pain transmission (157). Considering

that high frequency DBS inhibits neuronal activity (158–160),

one of the potential analgesic mechanisms of this therapy could

be related to a decrease in glutamatergic transmission from

thalamic cells projecting to the primary sensory cortex or a

reduction in GABAergic PAG firing, followed by the

disinhibition of analgesic descending pathways. This would be

in line with a stimulation-induced modulation of somatosensory

pain processes. In addition, chronic pain is associated with

important affective-emotional components that result from the

activation of the dynamic pain matrix, which involves several

brain areas. The anterior limb of the internal capsule is

considered a pivotal structure that interconnects limbic regions,

thalamic nuclei, the ACC and PFC (161). In addition to the

inhibition of neuronal cell bodies, DBS has been shown to

activate neuronal appendages (i.e., axonal projections and

dendrites) (7, 158, 160). Because the ALIC is predominantly

composed by prefrontal/orbitofrontal-subcortical projections

(161–163), stimulation of some of its limbic connections may

regulate affective and emotional components of pain. Of note,

ALIC DBS has been approved for the treatment of obsessive

compulsive disorders and is under investigation for major

depressive disorder (164–166). Another important structure in

the pain neurocircuitry and connectome is the ACC, as it plays

a role in depressive- and anxiety-like behaviors (167). The ACC

is interconnected with the PFC, thalamus and amygdala, a set

of structures rich in opiod receptors that are associated with

emotional-affective deficits in individuals with chronic pain

(168–170). Therefore, it is conceivable that the analgesic effects
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of ACC-DBS may be, at least in part, attributed to the modulation

of ACC-amygdala opioid pathway. Amygdaloid projection to the

PVN (171) have been shown to mediate pain transmission via the

release of oxytocin into the dorsal horn (76, 77, 172) or following

the activation of the locus coeruleus and raphe (173, 174). These

data suggest that the pain matrix and connectome may be

modulated through the stimulation of different structures, which

may not only be involved in somatosensory, but also in

cognitive and emotional aspects of pain.

In the clinic, not many DBS targets have been systematically

investigated in patients with chronic pain. It is possible that

some of the additional structures proposed in preclinical

studies may yield more pronounced analgesic effects. A

question that remains unanswered is whether any specific

target is better than the other or if potential synergistic effects

may occur. It is possible that a combination of targets

affecting different aspects or hubs in the pain connectome

may induce summative effects and more robust responses

(e.g., habenula, PFC, thalamus, PAG/PVG, nucleus

accumbens). This question can be potentially addressed in

preclinical models using a battery of tests to investigate

multiple domains. Also to be examined in preclinical models

is the contribution of additional DBS mechanisms for the

analgesic effects of this therapy, which go beyond the

activation and inhibition of neuronal cell bodies and fibers

(175). These include multiple forms of neuroplasticity,

metabolic changes, neurotransmitter release, structural

receptor changes, among other (7, 175, 176).

The outcome of DBS for the treatment of chronic pain is

quite variable. At present, reasons for this variability have

been speculated, but not clearly established. In some recently

published series and in two multicenter trials, outcome was

worse than the one reported in older studies (119, 135, 177).

Despite the relatively small number of patients who benefit

from the procedure, it seems that responders derive

substantial benefit from DBS (119). With that in mind, an

aspect that needs to be addressed is the development of

potential biomarkers of treatment response.

As some of the effects of PAG/PVG DBS in preclinical

models are mediated by endorphins, the clinical use of the

morphine-naloxone test has been advocated (100, 120, 126,

178). During this test, patients are given morphine, followed

by naloxone. Individuals who experience a substantial

recurrence of symptoms are considered to have a prominent

nociceptive component and amenable to PAG/PVG DBS.

That said, the validity of this test is still unclear (179). As

described above, older studies have shown a good

postoperative DBS response, particularly when stimulation

was delivered to the PAG/PVG, in patients with nociceptive

pain. In general, nociceptive pain has a better response to

opioids than neuropathic pain (180). In rodents, PAG/PVG

stimulation modulates endogenous opioid transmission,

suggesting a potential opioid-mediated mechanism for the
Frontiers in Pain Research 06
antinociceptive effect of stimulation in this target. Though

pain involves brain processes, the effects of DBS delivered to

different regions on multiple neural circuits and

neurotransmitter systems may help to explain the variable

response of this therapy in patients with neuropathic and

nociceptive pain.

One factor that seems to be related to a good postoperative

outcome is the clinical condition leading to the development of

pain. Patients with brachial plexus avulsion, complex regional

pain syndrome, and peripheral neuropathy seem to have a

better response to DBS than those with postherpetic neuralgia

or thalamic pain (39, 108, 109, 130, 135). Psychological or

litigation problems forecast a poor prognosis (39, 110, 130).

Preclinical work could help to address some of these aspects,

as animals, in theory, do not have a strong psychosocial

overlay. That said, the effects of cognitive, stress and

depression-like behaviors in animal models of nociception

have been poorly explored. This field of research could

certainly be expanded, since DBS delivered to different targets

has been shown to induce antidepressant-, antianhedonic-,

and anxiolytic-like effects in rodents (7, 159, 181). To more

closely mimic the multiple components of pain in humans

and increase its translational value of preclinical studies,

models could include not only nociceptive assessments, but a

battery of paradigms to evaluate cognitive and psychiatric-like

behaviors as well.

Another factor suggested to forecast a positive response to

invasive neuromodulation procedures is the so-called

insertional effect, characterized by the amelioration of pain

immediately after electrode implantation in the absence of

stimulation (119, 182). This may also explain the better

results observed in preclinical models compared to humans,

as the ratio between the electrode diameter and target volume

is far more pronounced in rodents.

In a recent series of studies in patients implanted with both

Vc and PVG electrodes, field potentials were recorded in the

thalamus during stimulation of the latter (183, 184). A

decrease in low frequency thalamic potentials after PVG

stimulation was found to predict a good therapeutic response

to DBS (183, 184).

Despite the complex nature of pain and the fact that animal

models do not reflect the subjective nature of this condition,

multiple preparations have emerged over the years. These are

rooted in dimensions of face, construct and predictive validity

(7, 18, 159). The former refers to similarities between the

model and clinical symptoms. Construct validity reflects

neurobiological similarities between the model and the human

condition. Predictive validity reflects commonalities in

treatment response between patients and the preclinical

scenario. Our study confirms the predictive validity of animal

models, as DBS delivered to clinically relevant targets in

animals reduces nociception. Compared to the vast clinical

literature, a limited number of studies have been published in
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animal models. With the translational potential described above

and the well-described mechanisms of nociception, work in

preclinical models is certainly underutilized in the field of

DBS for pain. Additional studies using modern neuroscience

techniques could unravel the mechanisms and neurocircuitry

involved in the analgesic effects of DBS and help to optimize

this therapy. These could include the use of batteries of tests

to measure the effects of DBS in different behavioral domains,

the use of connectivity analyses, the stimulation of multiple

brain targets at the same time, or the co-treatment of animals

with DBS and different medications to assess whether certain

classes of drugs may potentiate the effects of stimulation (7,

185, 186). In addition, chemogenetics, optogenetics and other

molecular techniques can be used to deconstruct and dissect

the neural circuits and cells involved in the mechanisms of DBS.
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